喬雪峰,張玉娟,崔 巍
1中國醫(yī)學(xué)科學(xué)院 北京協(xié)和醫(yī)學(xué)院 北京協(xié)和醫(yī)院檢驗(yàn)科, 北京 1007302北京煤炭總醫(yī)院檢驗(yàn)科, 北京 100028
·綜 述·
循環(huán)腫瘤細(xì)胞致腫瘤血行轉(zhuǎn)移研究進(jìn)展
喬雪峰1,2,張玉娟1,崔 巍1
1中國醫(yī)學(xué)科學(xué)院 北京協(xié)和醫(yī)學(xué)院 北京協(xié)和醫(yī)院檢驗(yàn)科, 北京 1007302北京煤炭總醫(yī)院檢驗(yàn)科, 北京 100028
循環(huán)腫瘤細(xì)胞;血行轉(zhuǎn)移
眾所周知,腫瘤轉(zhuǎn)移是造成腫瘤患者死亡的重要原因之一。原發(fā)腫瘤釋放成千上萬的腫瘤細(xì)胞入血,但僅有不足0.01%的循環(huán)腫瘤細(xì)胞(circulating tumor cells,CTCs)能夠在外周血存活并形成轉(zhuǎn)移[1],CTCs檢測在肺癌、乳腺癌、前列腺癌等多種癌癥中具有診斷、判斷預(yù)后等價(jià)值[2]。以往認(rèn)為腫瘤轉(zhuǎn)移發(fā)生在原發(fā)腫瘤形成后,經(jīng)典的腫瘤轉(zhuǎn)移經(jīng)過原發(fā)灶腫瘤、腫瘤細(xì)胞播散入血并在外周血存活、組織侵襲、形成轉(zhuǎn)移灶等階段[3];但最近研究發(fā)現(xiàn),上皮細(xì)胞播散可發(fā)生于癌前病變極早期,在形成明顯的原發(fā)灶之前,上皮細(xì)胞或已脫落入血并在遠(yuǎn)處定植[4]。腫瘤細(xì)胞脫落入血,CTCs在進(jìn)行血行轉(zhuǎn)移的過程中受到宿主細(xì)胞和血液微環(huán)境等多方面因素的調(diào)控,需要不斷獲得適應(yīng)微環(huán)境的生存能力,因此認(rèn)識(shí)和探討CTCs的血行轉(zhuǎn)移調(diào)控機(jī)制能夠?yàn)榕R床監(jiān)測腫瘤播散轉(zhuǎn)移提供重要價(jià)值。
研究表明,上皮來源的腫瘤細(xì)胞脫離原發(fā)灶進(jìn)入血液循環(huán)后,會(huì)發(fā)生細(xì)胞性質(zhì)改變,一部分上皮性腫瘤細(xì)胞轉(zhuǎn)變?yōu)榫哂小奥巍碧卣鞯拈g充質(zhì)細(xì)胞[5],發(fā)生上皮間質(zhì)轉(zhuǎn)化(epithelial-mesenchymal transition,EMT),從而失去與鄰接上皮細(xì)胞間的聯(lián)系,并進(jìn)一步克服血流剪切力及免疫系統(tǒng)等各種微環(huán)境因素的破壞而存活下來。在此階段,血小板對(duì)CTCs起到了重要保護(hù)作用[6]。
CTCs入血0~2 min內(nèi)即可與血小板發(fā)生直接或間接的相互作用。首先,CTCs通過高表達(dá)組織因子(tissue factor,TF)而激活凝血系統(tǒng),促使血小板向其聚集[7];其次,CTCs表面的整合素αvβ3及活化的血小板表面的αIIbβ3均能結(jié)合纖維蛋白,三者形成腫瘤細(xì)胞-纖維蛋白-血小板聚集體;再次,CTCs可借助P-選擇素配體與血小板表面的P-選擇素受體相結(jié)合,誘導(dǎo)血小板向其聚集[8]。血小板向CTCs聚集能為后者提供物理屏障,從而可有效避免自然殺傷(natural killer,NK)細(xì)胞對(duì)CTCs的免疫清除,同時(shí)還可賦予CTCs宿主MHC I類分子特性,干擾NK細(xì)胞丟失自我(missing-self)而殺傷自身;血小板釋放的轉(zhuǎn)化生長因子-β(transforming growth factor beta,TGF-β)和血小板生長因子(platelet-derived growth factor,PDGF),可分別下調(diào)NK細(xì)胞NKG2D免疫受體和抑制NK細(xì)胞殺傷作用[9]。腫瘤細(xì)胞的促凝活性有助于其在循環(huán)中播散,腫瘤接種前靜脈注射重組鼠源性組織因子途徑抑制物(tissue factor pathway inhibitor,TFPI)能抑制83%的CTCs誘導(dǎo)的腫瘤轉(zhuǎn)移[10];低分子量肝素能抑制P-選擇素及其配體結(jié)合,削弱血小板-腫瘤細(xì)胞間的相互聚集,從而抑制腫瘤轉(zhuǎn)移[11]。研究亦發(fā)現(xiàn),循環(huán)腫瘤細(xì)胞簇(CTC clusters)及黏附于其他細(xì)胞的CTCs,與單個(gè)CTCs相比,其存活率及活性均明顯增高。但目前CTCs分離計(jì)數(shù)方法的處理過程,會(huì)分散聚集狀態(tài)下的CTCs,導(dǎo)致CTCs某些生物信息丟失[12]。
血小板除對(duì)CTCs具有保護(hù)作用外,還具有促進(jìn)腫瘤轉(zhuǎn)移的潛能。多種腫瘤患者的高血小板計(jì)數(shù)及血小板凝聚與患者生存期降低具有相關(guān)性[6],血小板α-顆粒儲(chǔ)存了大量促血管生成因子,如血管內(nèi)皮生長因子(vascular endothelial growth factor,VEGF)、堿性成纖維細(xì)胞生長因子(basic fibroblast growth factor,bFGF)、內(nèi)皮細(xì)胞生長因子(endothelial cell growth factor,EGF)、PDGF、胰島素樣生長因子1和2 (insulin-like growth factor- 1/- 2,IGF- 1/- 2)等,促進(jìn)內(nèi)皮細(xì)胞的活化,并直接募集骨髓來源樹突狀細(xì)胞(bone marrow-derived dendritic cells,BMDCs),促進(jìn)腫瘤生長[13],對(duì)血小板和腫瘤細(xì)胞表面的整合素進(jìn)行封閉或基因清除能抑制腫瘤轉(zhuǎn)移。
肺轉(zhuǎn)移癌模型研究亦發(fā)現(xiàn),巨噬細(xì)胞和骨髓來源的免疫細(xì)胞亞群均有促進(jìn)腫瘤細(xì)胞存活和增殖的作用,如CTCs表達(dá)血管細(xì)胞黏附分子- 1(vascular cell adhesion molecule- 1,VCAM- 1)與巨噬細(xì)胞表達(dá)的整合素α4結(jié)合,能保護(hù)CTCs免受腫瘤壞死因子相關(guān)凋亡誘導(dǎo)配體(tumor necrosis factor-related apoptosis inducing-ligand,TRAIL)的破壞,促進(jìn)CTCs的存活與轉(zhuǎn)移[14]。
CTCs入血后即在中性粒細(xì)胞及單核巨噬細(xì)胞的幫助下,與血管內(nèi)皮細(xì)胞建立初始聯(lián)系,以利于后續(xù)的轉(zhuǎn)移。目前,關(guān)于外周血管捕獲腫瘤細(xì)胞的假說有兩種,其一為物理捕獲假說[15],即腫瘤細(xì)胞直徑大多為20~30 μm,當(dāng)脫落入血的CTCs首次經(jīng)過循環(huán)下游內(nèi)徑約8 μm左右的毛細(xì)血管床時(shí)能被輕易捕獲,且CTCs之間及其與宿主細(xì)胞間的相互聚集會(huì)進(jìn)一步促進(jìn)對(duì)CTCs的捕獲;臨床上結(jié)直腸癌大多轉(zhuǎn)移至肝臟,乳腺癌常轉(zhuǎn)移至肺,這是由腫瘤所在部位的循環(huán)模式所決定的。研究亦發(fā)現(xiàn),CTCs除被毛細(xì)血管捕獲外,還能被內(nèi)徑較大的血管所捕獲,提示CTCs與內(nèi)皮細(xì)胞間初始聯(lián)系的建立還存在其他機(jī)制,即黏附分子介導(dǎo)假說[16]。該假說認(rèn)為,CTCs通過其表達(dá)的黏附分子與血細(xì)胞相互作用從而獲得向內(nèi)皮細(xì)胞滾動(dòng)、黏附及隨后外侵的能力。這兩種假說亦可同時(shí)存在,即CTCs入血后短時(shí)間內(nèi)出現(xiàn)的捕獲大多是被動(dòng)的,遵循物理捕獲假說;而在宿主非腫瘤細(xì)胞協(xié)助下,CTCs與血管內(nèi)皮細(xì)胞間形成的特異、持久的黏附則可能遵循后一種假說。研究發(fā)現(xiàn),在最初24 h內(nèi),初始捕獲于腦部毛細(xì)血管的黑色素瘤細(xì)胞或肺癌細(xì)胞會(huì)反復(fù)幾次進(jìn)入或離開該捕獲位點(diǎn),此時(shí)腫瘤細(xì)胞死亡率非常高,能否維持于初始捕獲位點(diǎn)并完成隨后浸潤,取決于腫瘤細(xì)胞的自身特性或與其自身相關(guān)的血栓、血小板和白細(xì)胞等的相互作用[17]。
原發(fā)腫瘤分泌的可溶性因子會(huì)先于CTCs到達(dá)預(yù)捕獲位點(diǎn),增強(qiáng)該位點(diǎn)局部的通透性,并可誘導(dǎo)BMDCs向轉(zhuǎn)移靶器官募集,形成轉(zhuǎn)移前微環(huán)境(premetastatic niches),以利于腫瘤細(xì)胞的定居和生長[18]。干擾腫瘤細(xì)胞對(duì)宿主促轉(zhuǎn)移細(xì)胞的募集及相互作用,能明顯抑制腫瘤轉(zhuǎn)移[8]。原發(fā)腫瘤還會(huì)觸發(fā)炎癥反應(yīng),引起內(nèi)皮細(xì)胞和血小板活化,動(dòng)員各種類型BMDCs細(xì)胞,包括非成熟髓系細(xì)胞、中性粒細(xì)胞及單核細(xì)胞,促進(jìn)腫瘤轉(zhuǎn)移[18- 19],髓系細(xì)胞釋放白細(xì)胞介素(interleukin,IL)- 1α、IL- 1β、腫瘤壞死因子-α(tumor necrosis factor-α,TNF-α),介導(dǎo)內(nèi)皮細(xì)胞活化,進(jìn)而表達(dá)E-選擇素(E-selectin)、P-選擇素(P-selectin)、細(xì)胞間黏附分子-1(intercellular adhesion molecule- 1,ICAM- 1)或VCAM- 1,上述細(xì)胞黏附分子與CTCs表面相應(yīng)配體結(jié)合,進(jìn)而促進(jìn)CTCs的滾動(dòng)與黏附。
體外研究亦表明,腫瘤細(xì)胞活化內(nèi)皮細(xì)胞的過程是P-選擇素依賴且需要血小板、中性粒細(xì)胞及腫瘤細(xì)胞同時(shí)存在,如結(jié)直腸癌細(xì)胞會(huì)聯(lián)合血小板和中性粒細(xì)胞共同活化內(nèi)皮細(xì)胞[20]。黏附于內(nèi)皮細(xì)胞的活化血小板可借助其表面的P-選擇素與白細(xì)胞表面的P-選擇素糖蛋白配體-1相結(jié)合,募集白細(xì)胞并活化白細(xì)胞整合素β2[21],后者有助于與血小板整合素αIIbβ3結(jié)合的纖維蛋白原相結(jié)合,穩(wěn)定血小板-白細(xì)胞間的相互作用。白細(xì)胞在腫瘤轉(zhuǎn)移的早期階段起促進(jìn)作用,血管內(nèi)捕獲位點(diǎn)若不能誘導(dǎo)L-選擇素配體的表達(dá),則腫瘤轉(zhuǎn)移會(huì)減弱,基因或藥物清除單核/巨噬細(xì)胞系細(xì)胞會(huì)減少腫瘤轉(zhuǎn)移[22]。而小鼠模型研究發(fā)現(xiàn),小鼠在注射黑色素瘤細(xì)胞后1 h,再經(jīng)尾靜脈注射中性粒細(xì)胞,24 h后肺內(nèi)CTCs明顯增加[23]。但亦有研究顯示,分離自荷瘤小鼠,分子標(biāo)記為CD11b+Ly- 6G+MMP- 9+的腫瘤攜帶中性粒細(xì)胞(tumor-entrained neutrophils,TENs)可產(chǎn)生高水平的過氧化氫,殺死腫瘤細(xì)胞,對(duì)抗乳腺癌細(xì)胞在肺中的轉(zhuǎn)移播散[24]??梢?,中性粒細(xì)胞具有促進(jìn)及抑制腫瘤轉(zhuǎn)移的雙重作用,其趨向取決于其所處的微環(huán)境,如聚集于腫瘤細(xì)胞周圍的血小板可釋放TGF-β封鎖TENs的活性而促進(jìn)腫瘤轉(zhuǎn)移[25]。
腫瘤細(xì)胞轉(zhuǎn)移效率依賴于其自身行為和宿主組織特性。腫瘤細(xì)胞入血后1~3 d發(fā)生轉(zhuǎn)移,CTCs與血小板間的相互作用會(huì)加快其轉(zhuǎn)移的速度。血小板源性TGF-β與血小板-CTCs的直接接觸會(huì)激活CTCs TGF-β/Smad 和NF-κB信號(hào)通路[25],引起腫瘤細(xì)胞發(fā)生EMT,使得CTCs上皮標(biāo)志表達(dá)基因受抑而間質(zhì)細(xì)胞標(biāo)志基因表達(dá)活躍,由此增強(qiáng)外侵及播散能力;當(dāng)CTCs到達(dá)轉(zhuǎn)移靶器官后,再經(jīng)過間質(zhì)上皮轉(zhuǎn)化(mesenchymal-epithelial transition,MET),繼續(xù)增殖進(jìn)而形成腫瘤轉(zhuǎn)移灶[26]。參與EMT過程的幾種生長因子中TGF-β的研究最為廣泛,清除血小板特異性TGF-β會(huì)破壞腫瘤細(xì)胞外侵,降低腫瘤轉(zhuǎn)移[27]。上述CTCs中NF-κB信號(hào)通路激活還能促進(jìn)促炎癥趨化因子2(chemokine C ligend 2,CCL2)的表達(dá),募集單核細(xì)胞[19],參與腫瘤轉(zhuǎn)移。
同時(shí),各種促轉(zhuǎn)移基因的表達(dá)能改變機(jī)體的微環(huán)境,增強(qiáng)血小板活化的腫瘤細(xì)胞侵襲能力[25],如與血管及細(xì)胞外基質(zhì)重塑相關(guān)基因(EREG, COX2, MMP1, MMP2)表達(dá)上調(diào)促進(jìn)CTCs的外侵和轉(zhuǎn)移[28],高表達(dá)血管生成素樣蛋白ANGPTL4和血管內(nèi)皮生長因子VEGF-A的CTCs更容易形成肺轉(zhuǎn)移[29]。并且轉(zhuǎn)移相關(guān)巨噬細(xì)胞(標(biāo)記為F4/80+CD11b+Gr1-)分泌VEGF-A,可增加血管內(nèi)皮細(xì)胞通透性,促進(jìn)腫瘤細(xì)胞外侵、播散及生長[30]。結(jié)直腸癌實(shí)驗(yàn)性轉(zhuǎn)移模型發(fā)現(xiàn),CTCs來源的CCL2可直接向內(nèi)皮細(xì)胞表達(dá)的CCR2傳遞信號(hào),增加血管通透性,促進(jìn)CTCs的轉(zhuǎn)移,且完全獨(dú)立于髓細(xì)胞的作用[31]。轉(zhuǎn)移位點(diǎn)成纖維細(xì)胞表達(dá)的骨膜蛋白periostin和細(xì)胞黏合素tenas-cin C是轉(zhuǎn)移成功所必需的[32],TGF-β與這2種蛋白的表達(dá)增強(qiáng)有關(guān),再次提示腫瘤細(xì)胞或宿主細(xì)胞表達(dá)的TGF-β對(duì)腫瘤轉(zhuǎn)移啟動(dòng)的重要性。
總之,腫瘤細(xì)胞脫落入血并在外周血中存活以及外侵轉(zhuǎn)移受細(xì)胞本身和微環(huán)境的多重因素影響和調(diào)控,包括血小板-CTCs、腫瘤細(xì)胞-內(nèi)皮細(xì)胞、單核巨噬細(xì)胞-內(nèi)皮細(xì)胞之間的相互調(diào)控。以上假說多基于動(dòng)物實(shí)驗(yàn),而作為現(xiàn)階段腫瘤血行轉(zhuǎn)移研究的標(biāo)準(zhǔn)模式,動(dòng)物模型的建立存在些許不足,如此類方法研究腫瘤細(xì)胞血行轉(zhuǎn)移的過程缺乏原發(fā)腫瘤,CTCs入血方式不是原發(fā)腫瘤脫落而是人為的直接靜脈注射,CTCs在循環(huán)中停留時(shí)間相對(duì)較短等。因此,對(duì)CTCs與腫瘤轉(zhuǎn)移的認(rèn)識(shí)不可避免地存在局限性,結(jié)論是否適用于人體腫瘤等尚需更多臨床試驗(yàn)性研究驗(yàn)證與解答。隨著實(shí)驗(yàn)技術(shù)的進(jìn)展,相信在不遠(yuǎn)的將來,人類終將揭開腫瘤轉(zhuǎn)移過程的神秘面紗,腫瘤亦將不再可怕。
[1]Rhim AD, Mirek ET, Aiello NM, et al. EMT and dissemination precede pancreatic tumor formation[J]. Cell, 2012,148:349- 361.
[2]Chen Q, Ge F, Cui W, et al. Lung cancer circulating tumor cells isolated by the EpCAM-independent enrichment strategy correlate with Cytokeratin 19-derived CYFRA21- 1 and pathological staging[J]. Clin Chim Acta, 2013,419:57- 61.
[3]Joyce JA, Pollard JW. Microenvironmental regulation of metastasis[J]. Nat Rev Cancer,2009,9:239- 252.
[4]Kang Y, Pantel K. Tumor cell dissemination: emerging biological insights from animal models and cancer patients[J]. Cancer Cell, 2013,23:573- 581.
[5]Yu M, Bardia A, Wittner BS, et al. Circulating breast tumor cells exhibit dynamic changes in epithelial and mesenchymal composition[J]. Science, 2013,339:580- 584.
[6]Gay LJ, Felding-Habermann B. Contribution of platelets to tumour metastasis[J]. Nat Rev Cancer, 2011,11:123- 134.
[7]Liu Y, Jiang P, Capkova K, et al. Tissue factor-activated coagulation cascade in the tumor microenvironment is critical for tumor progression and an effective target for therapy[J]. Cancer Res, 2011,71:6492- 6502.
[8]Erpenbeck L, Schon MP. Deadly allies: the fatal interplay between platelets and metastasizing cancer cells[J]. Blood, 2010,115:3427- 3436.
[9]Lyman GH, Khorana AA. Cancer, clots and consensus: new understanding of an old problem[J]. J Clin Oncol, 2009,27:4821- 4826.
[10]Amirkhosravi A, Meyer T, Amaya M, et al. The role of tissue factor pathway inhibitor in tumor growth and metastasis[J]. Semin Thromb Hemost, 2007,33:643- 652.
[11]Bendas G, Borsig L. Cancer cell adhesion and metastasis: selectins, integrins, and the inhibitory potential of heparins[J]. Int J Cell Biol, 2012,2012:676, 731.
[12]楊卓,張玉娟,陳倩,等. 循環(huán)腫瘤細(xì)胞檢測及其特性[J]. 協(xié)和醫(yī)學(xué)雜志, 2013,4:191- 194.
[13]Massberg S, Konrad I, Schurzinger K, et al. Platelets secrete stromal cell-derived factor 1alpha and recruit bone marrow-derived progenitor cells to arterial thrombi in vivo[J]. J Exp Med, 2006,203:1221- 1233.
[14]Chen Q, Zhang XH, Massague J. Macrophage binding to receptor VCAM-1 transmits survival signals in breast cancer cells that invade the lungs[J]. Cancer Cell, 2011,20:538- 549.
[15]Valastyan S, Weinberg RA. Tumor metastasis: molecular insights and evolving paradigms[J]. Cell, 2011,147:275- 292.
[16]Stanger BZ, Kahn ML. Platelets and tumor cells: a new form of border control[J]. Cancer Cell, 2013,24:9- 11.
[17]Kienast Y, von Baumgarten L, Fuhrmann M, et al. Real-time imaging reveals the single steps of brain metastasis formation[J]. Nat Med, 2010,16:116- 122.
[18]Deng J, Liu Y, Lee H, et al. S1PR1-STAT3 signaling is crucial for myeloid cell colonization at future metastatic sites[J]. Cancer Cell, 2012,21:642- 654.
[19]Qian BZ, Li J, Zhang H, et al. CCL2 recruits inflammatory monocytes to facilitate breast-tumour metastasis[J]. Nature, 2011,475:222- 225.
[20]Laubli H, Spanaus KS, Borsig L. Selectin-mediated activation of endothelial cells induces expression of CCL5 and promotes metastasis through recruitment of monocytes[J]. Blood, 2009,114:4583- 4591.
[21]Dole VS, Bergmeier W, Mitchell HA, et al. Activated platelets induce Weibel-Palade-body secretion and leukocyte rolling in vivo: role of P-selectin[J]. Blood, 2005,106:2334- 2339.
[22]Gil-Bernabe AM, Ferjancic S, Tlalka M, et al. Recruitment of monocytes/macrophages by tissue factor-mediated coagulation is essential for metastatic cell survival and premetastatic niche establishment in mice[J]. Blood, 2012,119:3164- 3175.
[23]Huh SJ, Liang S, Sharma A, et al. Transiently entrapped circulating tumor cells interact with neutrophils to facilitate lung metastasis development[J]. Cancer Res, 2010,70:6071- 6082.
[24]Granot Z, Henke E, Comen EA, et al. Tumor entrained neutrophils inhibit seeding in the premetastatic lung[J]. Cancer Cell, 2011,20:300- 314.
[25]Labelle M, Begum S, Hynes RO. Direct signaling between platelets and cancer cells induces an epithelial-mesenchymal-like transition and promotes metastasis[J]. Cancer Cell, 2011,20:576- 590.
[26]Kalluri R, Weinberg RA. The basics of epithelial-mesenchymal transition[J]. J Clin Invest, 2009,119:1420- 1428.
[27]Nawshad A, Lagamba D, Polad A, et al. Transforming growth factor-beta signaling during epithelial-mesenchymal transformation: implications for embryogenesis and tumor metastasis[J]. Cells Tissues Organs, 2005,179:11- 23.
[28]Gupta GP, Nguyen DX, Chiang AC, et al. Mediators of vascular remodelling co-opted for sequential steps in lung metastasis[J]. Nature, 2007,446:765- 770.
[29]Weis S, Cui J, Barnes L, et al. Endothelial barrier disruption by VEGF-mediated Src activity potentiates tumor cell extravasation and metastasis[J]. J Cell Biol, 2004,167:223- 229.
[30]Qian B, Deng Y, Im JH, et al. A distinct macrophage population mediates metastatic breast cancer cell extravasation, establishment and growth[J]. PLoS One,2009,4:e6562.
[31]Wolf MJ, Hoos A, Bauer J, et al. Endothelial CCR2 signaling induced by colon carcinoma cells enables extravasation via the JAK2-Stat5 and p38MAPK pathway[J]. Cancer Cell, 2012,22:91- 105.
[32]Oskarsson T, Acharyya S, Zhang XH, et al. Breast cancer cells produce tenascin C as a metastatic niche component to colonize the lungs[J]. Nat Med, 2011,17:867- 874.
北京市科學(xué)技術(shù)委員會(huì)基金(Z1211070005112002)
崔 巍 電話:010-69159713,E-mail:cuiw@pumch.cn
R73-37
A
1674-9081(2014)03-0331-04
10.3969/j.issn.1674-9081.2014.03.017
2014- 04- 29)