胡曉珍,高 超
(浙江大學(xué)高分子科學(xué)與工程學(xué)系,浙江 杭州 310027)
碳是生命形成的物質(zhì)基礎(chǔ),而且在人類物質(zhì)生活中有著不可替代的地位。無論是衣服中的棉纖或化學(xué)纖維,食物中的糖、蛋白質(zhì)和脂肪,還是人們居住的房屋、出行所用的各種交通工具,碳元素都必不可缺。碳元素不但能形成柔軟的石墨,還能結(jié)晶形成最堅硬的物質(zhì)——金剛石。除此之外,碳元素還具有密度低、輕質(zhì)等特點(diǎn)。隨著人們對新型輕質(zhì)高強(qiáng)材料的需求越來越大,碳基纖維成為高新技術(shù)驅(qū)動下發(fā)展起來的一種新材料。
碳纖維是碳含量超過90%的一種高性能纖維,可按原料分為聚丙烯腈(PAN)基碳纖維、瀝青基碳纖維和粘膠基(纖維素)碳纖維[1]。1959年進(jìn)藤昭男首次制備出PAN基碳纖維,1962年日本東麗(Toray)公司開始生產(chǎn)并積極研制用于生產(chǎn)碳纖維的專用優(yōu)質(zhì)原絲,并于1967年成功生產(chǎn)出T300 PAN基碳纖維[1]。由于其綜合力學(xué)性能好且成本相對較低,成為工業(yè)生產(chǎn)的主流產(chǎn)品,約占全球碳纖維總量的90%[2]。其生產(chǎn)工藝主要包括制造PAN原絲、預(yù)氧化、低溫碳化、高溫碳化4個步驟。另外,為了改善碳纖維與樹脂的粘合效果,會對碳纖維進(jìn)行浸膠等表面處理。在眾多PAN基碳纖維產(chǎn)品中,日本東麗公司生產(chǎn)的碳纖維是獲得國際公認(rèn)的代表性產(chǎn)品,主要型號有T300,T700,T800,T1000,T1100等[2]。其中T1100的拉伸強(qiáng)度最高,達(dá)6.6 GPa,拉伸模量高達(dá)324 GPa。此外,T系列產(chǎn)品還可通過后續(xù)高溫石墨化過程得到更高模量的石墨纖維[1,3]。我國從20世紀(jì)60年代后期開始研制碳纖維,目前與國外相比仍存在較大差距[4]。
碳納米管(CNTs)纖維是碳基纖維中另一個重要成員[5-30]。其制備方法主要有溶液紡絲、碳管陣列抽絲和浮動化學(xué)氣相沉積(CVD)紡絲3種[5-6]。溶液紡絲法是將CNTs用強(qiáng)質(zhì)子性溶劑分散或加入表面活性劑穩(wěn)定形成液晶,利用濕法紡絲技術(shù)而得[7-11]。2000年,Poulin研究小組將單壁碳納米管(SWCNTs)分散在1.0%(質(zhì)量分?jǐn)?shù))的十二烷基硫酸鈉(SDS)溶液中,以一定的注射速度注入聚乙烯醇(PVA)溶液,首次制備出了CNTs纖維[7]。溶液紡絲法制備的CNTs纖維力學(xué)性能不太理想,抗拉強(qiáng)度僅為1.8 GPa,仍有待提高[8]。除此之外,分散CNTs時所用的強(qiáng)質(zhì)子性溶劑腐蝕性強(qiáng),加入的助劑也會對所得CNTs纖維純度造成影響。CNTs陣列抽絲法的關(guān)鍵是制備能夠連續(xù)抽絲的CNTs陣列,這種方法制得的CNTs纖維抗拉強(qiáng)度可達(dá)3.3 GPa[12],但制備CNT陣列的成本較高,難以規(guī)?;a(chǎn)[12-18]。浮動CVD紡絲是指用CVD垂直生長爐中的氣凝膠直接紡絲[19-22],這種方法過程相對簡單,但纖維中有殘留的催化劑雜質(zhì)。
傳統(tǒng)碳纖維及CNTs纖維制備都需要高溫裂解過程:碳纖維是用聚合物前驅(qū)體裂解;而CNTs纖維則需要先催化裂解碳?xì)浠衔锓肿又频锰脊芑?。這種高溫裂解過程能耗高,會產(chǎn)生有害氣體和粉塵污染。因此,迫切需要探索碳基纖維低溫、綠色制備新原理和新方法?;诖?,作者課題組提出了石墨烯纖維的概念。
逆向思維帶給作者研究團(tuán)隊設(shè)計靈感,既然碳基纖維由純碳組成,為什么不以天然純碳物質(zhì)如石墨等為原料直接制備呢?這樣就可能避免高溫碳化過程,并探尋出簡便有效的碳基纖維制備新方法,同時高效利用我國優(yōu)質(zhì)豐富的石墨礦資源(儲量占全球70%)。
石墨極難熔融,要對其進(jìn)行紡絲加工,液相分散其細(xì)化顆粒是惟一可能的辦法??紤]到石墨剝離可形成石墨烯,而石墨烯可分散在一定的溶劑中,因此,設(shè)計出“石墨-石墨烯-新碳基纖維”新路徑。這一新型碳基纖維設(shè)計思路不但立足石墨資源,還可與石墨烯的性能相結(jié)合,創(chuàng)造出多種多功能纖維新品種。
石墨烯是由碳原子以蜂窩狀結(jié)構(gòu)連接起來的二維片狀材料,完美的結(jié)構(gòu)賦予其優(yōu)異的力學(xué)、電學(xué)、熱學(xué)等性能[31-33]。石墨烯具有迄今為止最高的拉伸強(qiáng)度(130 GPa),最高的楊氏模量(1 TPa),并且有最高的載流子遷移率(15 000 cm2·V-1·s-1)和最快傳熱速度(導(dǎo)熱系數(shù)5 000 W·m-1·K-1),這一系列優(yōu)異性能為其在材料、器件、儲能等領(lǐng)域提供了廣闊的應(yīng)用前景。然而石墨烯不能熔融,加上其內(nèi)部的大π鍵促使其發(fā)生聚集,難以形成均一的分散液,因此石墨烯的后續(xù)加工具有一定難度。
氧化石墨烯(GO)是由鱗片石墨通過氧化插層過程得到的一種石墨烯衍生物[34],它在極性溶劑中具有良好的分散性,且可以很方便地還原為石墨烯[35],為石墨烯的溶液加工提供了可能性。
要將石墨烯或GO進(jìn)行紡絲,必須克服兩個重大挑戰(zhàn):①石墨烯是一種典型的二維納米粒子,粒子間沒有傳統(tǒng)線形高分子那樣的鏈纏結(jié)作用,能否將二維納米粒子直接濕紡成纖?在此之前,這在理論及實驗研究上都是空白。②如何制得連續(xù)的宏觀組裝纖維?根據(jù)紡絲的缺陷控制原理,只有讓石墨烯片沿纖維軸向均一有序排列,才可能實現(xiàn)纖維的連續(xù)組裝;否則,任意一片錯排,就會形成缺陷點(diǎn)而使纖維中斷。
針對這些重大難題,高超團(tuán)隊開展了多年的艱苦探索。他們首先通過化學(xué)氧化石墨法,制得了高度可溶解的全單層GO;進(jìn)而發(fā)現(xiàn)并通過實驗證實了GO的溶致液晶性,研究了GO向列相、層狀相豐富的液晶相行為,確證了其液晶內(nèi)部的排列取向有序以及更高級的層狀有序結(jié)構(gòu)特征(圖1),這為制備長程有序的石墨烯宏觀材料奠定了基礎(chǔ)[36]。
高超等[37-38]利用液晶的預(yù)排列取向,基于傳統(tǒng)高分子科學(xué)的液晶紡絲原理實現(xiàn)了石墨烯液晶的紡絲,首次制得了連續(xù)的石墨烯纖維。從而完整解決了石墨烯連續(xù)紡絲的兩個難題,研制了通過“石墨-液化石墨烯-石墨烯纖維”路徑常溫加工制備碳基纖維的新技術(shù)(圖2)。
許震和高超等[37]制備得到的纖維不但具有較高的拉伸強(qiáng)度(102 MPa),而且具有良好的韌性,能夠打成緊密的結(jié)(圖2);經(jīng)過氫碘酸的還原,石墨烯纖維拉伸強(qiáng)度可提高至140 MPa,并且具有良好的導(dǎo)電性(2.5×104S·m-1)。這一研究工作打開了制備新型碳基纖維的大門。
圖2 由天然鱗片石墨制備石墨烯纖維的過程示意圖:(a)鱗片石墨的照片,(b)氧化石墨烯水溶液照片,(c)石墨烯纖維的照片,(d)鱗片石墨的SEM像,(e)氧化石墨烯的SEM像,(f)石墨烯纖維結(jié)的SEM像Fig.2 Photos of natural graphite(a), graphene oxide aqueous solution(b), graphene fibers(c); SEM images of graphite(d), graphene oxide sheets(e) and graphene fiber knot(f)
為了進(jìn)一步提高石墨烯纖維的性能,許震等[39]采用大尺寸的鱗片石墨(500 μm)制備出大尺寸的GO(4~40 μm),用CaCl2引入離子鍵作用,并采用旋轉(zhuǎn)凝固浴為凝膠纖維施加拉力,所得石墨烯纖維的拉伸強(qiáng)度達(dá)502 MPa,電導(dǎo)率達(dá)4.1×104S·m-1(圖3)。
除了工業(yè)可用的濕法紡絲之外,干法紡絲也可以用來制備石墨烯纖維。高超研究團(tuán)隊從GO液晶出發(fā),通過“冷凍干紡”的方法制備了有序多孔石墨烯氣凝膠纖維以及三維塊體材料(圖4)[40]。材料內(nèi)部石墨烯有序的多孔結(jié)構(gòu)使其同時實現(xiàn)了高比表面積(884 m2·g-1)、高強(qiáng)度(188 kN·m·kg-1)、高導(dǎo)電性(4.9×103S·m-1)的3個特性,擴(kuò)展了其在儲能、催化等領(lǐng)域的應(yīng)用。
俞書宏團(tuán)隊[41]、傅強(qiáng)團(tuán)隊[42]和朱美芳團(tuán)隊[43]也采用GO液晶濕法紡絲方法實現(xiàn)了連續(xù)的石墨烯纖維制備;曲良體團(tuán)隊采用受限熱致凝膠化方法制備了純石墨烯纖維,熱處理后纖維拉伸強(qiáng)度達(dá)400 MPa[44]。Wallance研究小組從GO液晶出發(fā),利用不良溶劑沉淀、離子交聯(lián)、聚電解質(zhì)排斥等原理進(jìn)行濕法紡絲得到的石墨烯纖維[45],其導(dǎo)熱率為1 435 W·m-1·K-1,遠(yuǎn)高于多晶石墨和其它三維碳基材料。Tour研究小組分別采用大尺寸和小尺寸的GO原料制備石墨烯纖維,研究發(fā)現(xiàn)大尺寸原料制備的GO纖維具有更好的柔韌性[46]。
圖3 許震等制備的高強(qiáng)石墨烯纖維SEM像(a,b)和石墨烯纖維的拉伸曲線(c)[39]Fig.3 SEM images of graphene fibers(a,b) prepared by Xu zhen et al and its stress-strain curves of graphene fibers(c)[39]
圖4 冷凍干紡法過程示意圖(a),采用其制備的多孔纖維(b)和三維塊體(d-f)的照片及其對應(yīng)的SEM照片(c,g)[40]Fig.4 Schematic diagram of preparation of GO porous fibers and GO porous cylinders(a), photos of GO porous fibers(b) and cylinders(d-f), SEM images of GO porous fibers(c) and cylinders(g)[40]
除了GO外,CNTs也可用作原料來制備石墨烯纖維。Baughman研究小組從多壁碳納米管(MWCNTs)出發(fā),經(jīng)剝離制得石墨烯納米帶,在溶劑揮發(fā)過程中,石墨烯納米帶自發(fā)組裝形成厘米級的纖維[47]。Tour研究小組由碳納米管出發(fā),經(jīng)氧化剝離得到GO納米帶,GO納米帶在氯磺酸中也能形成液晶,通過濕紡技術(shù)得到了GO纖維(圖5)[48]。后續(xù)的高溫?zé)崽幚?1 500 ℃)過程賦予石墨烯纖維高的力學(xué)性能(378 MPa)和良好的導(dǎo)電性(2.85×104S·m-1)。Kim研究小組利用還原的GO納米帶,通過電泳自組裝的方法也得到了石墨烯纖維[49]。
圖5 石墨烯納米帶的結(jié)構(gòu)示意圖(a),石墨烯納米帶纖維的SEM像(b)和石墨烯納米帶纖維的宏觀照片(c)[48]Fig.5 Structural illustration of graphene nanoribbon(a), SEM image of graphene nanoribbon fibers(b) and macroscopic photo of graphene nanoribbon fibers(c)[48]
朱宏偉團(tuán)隊采用化學(xué)氣相沉積的石墨烯薄膜為原料,將薄膜平鋪在水或乙醇液面上,直接拉出數(shù)厘米石墨烯纖維[50]。得益于纖維的多孔結(jié)構(gòu)和表面褶皺,其具有較好的電容值(1.4 mF·cm-2),通過與MnO2納米粒子復(fù)合,復(fù)合纖維的電容值提高至12.4 mF·cm-2。曲良體團(tuán)隊還分別通過Cu線模板法、同軸紡絲技術(shù)制備了中空的石墨烯纖維,在形貌上豐富了石墨烯纖維家族(圖6)[51-52]。曹安源團(tuán)隊采用濕紡法制備了石墨烯帶,并將Pt納米粒子引入體系,制備了性能良好的超級電容器,比電容達(dá)82.8 F·g-1[53]。
圖6 曲良體研究團(tuán)隊制備的石墨烯微管(a)和空心石墨烯纖維(b)[51-52]Fig.6 SEM images of graphene microtubings(a), schematic diagram of preparation and photo of graphene hollow fibers(b)[51-52]
2.5.1 石墨烯-CNTs復(fù)合纖維
李亞利團(tuán)隊用CVD方法制備出石墨烯和CNTs的復(fù)合物,并抽出帶狀材料,經(jīng)扭轉(zhuǎn)得到石墨烯-CNTs復(fù)合纖維[55]。纖維拉伸強(qiáng)度達(dá)300 MPa,電導(dǎo)率達(dá)105S·m-1,可被用作燈絲。曲良體團(tuán)隊先將Fe3O4插入石墨烯片層,采用毛細(xì)管灌注的方法得到復(fù)合纖維,再采用CVD方法在纖維上生長CNTs得到石墨烯-CNTs復(fù)合纖維,他們還用纖維的織物制得柔性的超級電容器[56]。
彭慧勝團(tuán)隊采用CVD法生長CNTs薄膜,然后用溶液浸漬的方法將石墨烯引入,再通過卷繞將膜卷成石墨烯-CNTs復(fù)合纖維[57]。Kim團(tuán)隊將石墨烯和CNTs結(jié)合起來,對聚乙烯醇纖維增強(qiáng),發(fā)現(xiàn)石墨烯和CNTs能夠協(xié)同增強(qiáng)聚合物纖維(圖7)[58],制備的復(fù)合纖維具有非常好的韌性(1 000 J·g-1)。
圖7 石墨烯和碳納米管結(jié)合增強(qiáng)聚合物纖維的制備過程示意圖[58]Fig.7 Schematic illustration of structural graphene-CNTs-PVA composites preparation[58]
2.5.2 石墨烯-無機(jī)納米粒子復(fù)合纖維
為了進(jìn)一步提高石墨烯纖維的電學(xué)性能,許震等將Ag納米線和石墨烯結(jié)合起來共紡絲,得到電學(xué)性能優(yōu)異(0.9×105S·m-1)的石墨烯-Ag納米線復(fù)合纖維材料(圖8)[59]。采用無機(jī)納米粒子還可以使石墨烯纖維具備多功能性。曲良體團(tuán)隊就將磁性的Fe3O4納米粒子引入制備了磁性石墨烯纖維[44]。
圖8 Ag納米粒子(a)和Ag納米線(b)摻雜石墨烯的示意圖(內(nèi)嵌圖為對應(yīng)復(fù)合材料的截面SEM圖),可伸展石墨烯導(dǎo)電纖維示意圖(c)和可伸展石墨烯導(dǎo)電纖維照片(d)[59]Fig.8 Schematic illustration of Ag nanoparticle(a) and Ag nanowire(b) doped graphene fibers(the inserted SEM images are the section morphologies of corresponding graphene composites, respectively), schematic diagram of graphene stretchable conductors(c), and photo of graphene stretchable conductors(d)[59]
2.5.3 石墨烯-聚合物復(fù)合纖維
石墨烯作為一種二維納米材料,可以用來改善聚合物基體的性能,也可以與聚合物有效結(jié)合起來,構(gòu)筑具有規(guī)整層狀結(jié)構(gòu)的仿貝殼復(fù)合材料。許震和高超等將尼龍6原位接枝在氧化石墨烯表面,通過熔融紡絲得到石墨烯-尼龍6復(fù)合纖維,在石墨烯含量為0.1%(質(zhì)量分?jǐn)?shù))時,尼龍6纖維的拉伸強(qiáng)度提高了一倍,充分體現(xiàn)了石墨烯作為納米材料的增強(qiáng)作用(圖9)[60]。高建平等將GO與天然高分子海藻酸鈉共混紡絲,所得復(fù)合纖維拉伸強(qiáng)度較純海藻酸鈉纖維提高了43%。除此之外,GO與海藻酸鈉形成的凝膠纖維具有良好的生物相容性,可用作醫(yī)用輔料[61]。黃玉東等在GO片上接枝聚丙烯酸,后紡絲得到了高性能石墨烯復(fù)合纖維[62]。
圖9 石墨烯-尼龍6復(fù)合纖維制備示意圖(a),復(fù)合纖維的宏觀照片(b)和純尼龍6和復(fù)合纖維的拉伸曲線(c)[60]Fig.9 Apparatus of melt spinning for graphene-nylon6 composites fibers(a), photograph of graphene-nylon 6 fibers(b), and (c)stress-strain curves of neat nylon6 and graphene-nylon6 composite fibers with 0.01%(NG0.01) and 0.1%(NG0.1)(mass fraction) loading of graphene[60]
高超團(tuán)隊分別用聚乙烯醇、超支化聚縮水甘油醚、聚丙烯腈和聚甲基丙烯酸縮水甘油酯與石墨烯結(jié)合制備了仿貝殼纖維(圖10)[63-67]。石墨烯仿貝殼纖維具有優(yōu)于貝殼和純石墨烯纖維的抗拉強(qiáng)度和韌性,而且具有導(dǎo)電性和抗化學(xué)腐蝕性等特點(diǎn),能夠在多個領(lǐng)域廣泛使用。
首先,事業(yè)單位各部門、人員要明確責(zé)任分工和權(quán)限,除了要設(shè)立部門責(zé)任制之外,還應(yīng)將具體責(zé)任落實到個人。其次,各部門應(yīng)帶頭細(xì)化單位內(nèi)部的各類規(guī)章機(jī)制,強(qiáng)調(diào)細(xì)節(jié)管理,爭取每一環(huán)節(jié)都設(shè)有嚴(yán)謹(jǐn)?shù)募s束機(jī)制,為經(jīng)費(fèi)管控保駕護(hù)航。
圖10 石墨烯-聚合物仿貝殼纖維的制備過程示意圖(a),貝殼的層狀結(jié)構(gòu)(b)和仿貝殼纖維的層狀結(jié)構(gòu)(c)Fig.10 Shematic illustration of preparation of graphene-polymer nacre-mimic fibers(a),layered structure of natural nacre(b),and layered structure of graphene-polymer nacre-mimic fibers(c)
石墨烯纖維良好的柔韌性和導(dǎo)電性為其在可伸展導(dǎo)體方面提供了應(yīng)用前景。許震等就利用Ag與石墨烯的高導(dǎo)電復(fù)合纖維制備了可伸展的導(dǎo)體[59]。
石墨烯超高的比表面積和良好的導(dǎo)電性為其在儲能領(lǐng)域的應(yīng)用奠定了基礎(chǔ)。目前石墨烯纖維的主要儲能應(yīng)用集中在制備超級電容器和太陽能電池。石墨烯纖維制備的超級電容器具有柔性好、可彎曲的優(yōu)勢,可以編織成織物制備可穿戴的器件。黃鐵騎等采用純石墨烯纖維制備了超級電容器,該電容器不但具有良好的電容值(3.3 mF·cm-2),而且具有良好的穩(wěn)定性和柔韌性[68]。他們還通過原位生長聚苯胺的方法將石墨烯纖維的電容值提高至66.6 mF·cm-2??芰恋壤猛S濕法紡絲技術(shù)得到具有核殼結(jié)構(gòu)的纖維,其中石墨烯和碳納米管組成核,聚電解質(zhì)-羥甲基纖維素鈉組成殼(圖11)[69]。所得纖維制備的超級電容器,表現(xiàn)出超高電容269 mF·cm-2和較高的能量密度5.91 μWh·cm-2。
鄭冰娜等首次制備了柔性石墨烯基非對稱超級電容器。首先利用高錳酸鉀與碳反應(yīng)生成二氧化錳,得到二氧化錳修飾的石墨烯纖維,該纖維的面積比電容可達(dá)59.2 mF·cm-2。再將該纖維與石墨烯/碳納米管復(fù)合纖維通過凝膠電解質(zhì)組裝成為柔性非對稱纖維超級電容器。該方法可以將電容器工作電壓擴(kuò)展到1.6 V,最大能量密度可達(dá)11.9 μWh·cm-2(11.9 mWh·cm-3),是目前已報道纖維電容器中的最高值。且該電容器具有良好的柔韌性,可反復(fù)彎折1 000次,電容保持率依舊接近100%(圖12)[70]。
圖11 核殼結(jié)構(gòu)的纖維形貌圖(a),核殼纖維卷繞電容器的截面SEM像(b),電容器表面SEM像(c),電容器的循環(huán)伏安曲線(d),電容隨電流密度的變化曲線(e),纖維與棉線共編織物(f),柔性纖維織物電容器照片(g)和織物不同彎曲角度的恒電流充放電曲線(h)[69]Fig.11 Morphology of the as-prepared core(MWCNT-graphene)-shell(CMC) fibers(a), SEM image of cross-section of supercapacitors(b), SEM image of side view of supercapacitors(c), CV curves of RGO+CNT@CMC(d), dependence of CA and CV on the charge/discharge current density for RGO@CMC (3, 4), CNT@CMC (5, 6) and RGO+CNT@CMC (1, 2)(e), image of two intact coaxial fibers woven with cotton fibers(f), image of cloth supercapacitors woven by two individual coaxial fibers(g), (h)GCD curves of the cloth supercapacitors (1 represents initial cloth supercapacitors without bending and 2, 3, 4 shows cloth supercapacitors with bending angles of 180° along three directions)[69]
圖12 石墨烯基非對稱纖維超級電容器結(jié)構(gòu)示意圖(a):(I)二氧化錳修飾的石墨烯纖維表面SEM照片,(II)石墨烯/碳納米管復(fù)合纖維截面的SEM照片;石墨烯基非對稱纖維超級電容器彎折穩(wěn)定性測試結(jié)果(b):(I)松弛狀態(tài),(II)彎折狀態(tài)電容器照片和(III)松弛與彎折狀態(tài)下的循環(huán)伏安曲線(掃描速率100 mV/s)[70]Fig.12 Schematic diagram of the structure of fiber-based asymmetric micro-supercapacitors(a): (I)SEM image of graphene-MnO2 composite fibers, (II)SEM image of graphene-MWCNTs composite fibers;capacitance retention at different bending times(b), inset: photos of two-ply fiber-based asymmetric micro-supercapacitors at flat(I) and bending(II) states, (III)CV curves of two-ply fiber-based asymmetric micro-supercapacitors at flat and bending states(scanning rate of 100 mV·s-1)[70]
曲良體團(tuán)隊也制備了具有核殼結(jié)構(gòu)的石墨烯纖維,內(nèi)層是毛細(xì)管灌注法制備的結(jié)構(gòu)較為緊實的石墨烯纖維,外層是電離生長的疏松石墨烯結(jié)構(gòu),用這種纖維制作的超級電容器,電容值達(dá)25~40 F·g-1[71]。Wallance團(tuán)隊通過調(diào)節(jié)石墨烯濕法紡絲的凝固浴制得多孔的石墨烯纖維,并將其編織成織物用于制備超級電容器,所得電容器電容值達(dá)409 F·g-1(電流密度達(dá)1 A/g)[72]。
戴黎明團(tuán)隊制備的石墨烯-碳納米管復(fù)合纖維可用作制備超級電容器,也可將復(fù)合纖維編織成柔性織物用來制備超級電容器,所制得電容器電容值高達(dá)200.4 F·g-1[56],高出石墨烯基超級電容器和碳管基超級電容器的電容值。彭慧勝團(tuán)隊采用石墨烯-碳管復(fù)合纖維制備超級電容器,其電容值達(dá)31.50 F·g-1,遠(yuǎn)高于純碳納米管纖維所制電容器(5.83 F·g-1)[57]。他們還將這種纖維用來制備柔性的染料敏化太陽能電池,電池的能量轉(zhuǎn)換效率達(dá)到8.5%。
石墨烯纖維還可以用來制備響應(yīng)性器件。曲良體團(tuán)隊采用激光還原法制取了非對稱的氧化石墨烯-石墨烯纖維,這種纖維在濕潤環(huán)境中具有形狀記憶性能[73]。他們用扭轉(zhuǎn)的方法制得扭曲的石墨烯纖維,這種纖維在濕潤環(huán)境中會發(fā)生形變,可用來制備濕度激發(fā)驅(qū)動器[74]。
石墨烯纖維實現(xiàn)了由天然石墨常溫制備新型碳基纖維的目標(biāo)。自2011年許震和高超等首次制備出石墨烯纖維以來,大量的研究工作展示了其巨大的發(fā)展空間和令人振奮的應(yīng)用前景。然而與傳統(tǒng)碳纖維和CNTs纖維相比,石墨烯纖維技術(shù)還處于嬰兒期,各方面研究還有很大的提升空間。例如,石墨烯單片的抗拉強(qiáng)度達(dá)130 GPa,楊氏模量達(dá)1 TPa,但目前所得石墨烯纖維的力學(xué)強(qiáng)度遠(yuǎn)不及此(~0.5 GPa,~47 GPa)[38]。如何提高石墨烯纖維中二維納米片間的相互作用從而提高纖維的力學(xué)強(qiáng)度仍是很重要的研究課題。在不久的未來,希望研究者們能夠制備出可與碳纖維性能相媲美、甚至超過碳纖維性能的石墨烯纖維,拓展其應(yīng)用領(lǐng)域。石墨烯良好的導(dǎo)電性為導(dǎo)電石墨烯纖維的制備奠定了基礎(chǔ),目前所得石墨烯纖維的電導(dǎo)率(0.9×105S·m-1)比石墨烯單片電導(dǎo)率(~106S·m-1)低一個數(shù)量級,導(dǎo)電性仍有待提高。石墨烯最高的導(dǎo)熱系數(shù)為石墨烯纖維在導(dǎo)熱和散熱領(lǐng)域的應(yīng)用提供了條件,這方面的研究還很少。石墨烯超大的比表面積、高的載流子遷移率和良好的導(dǎo)電性為其在傳感、顯示、儲能等領(lǐng)域提供了廣闊的應(yīng)用前景。
參考文獻(xiàn) References
[1] He Fu(賀 福).CarbonFibreandGraphiteFibre(碳纖維與石墨纖維)[M]. Beijing: Chemical Industry Press,2010.
[2] Jiang Runxi(姜潤喜). 碳纖維的發(fā)展現(xiàn)狀[J].SyntheticTechnologyandApplication(合成技術(shù)及應(yīng)用), 2010, 25(1): 28-33.
[3] Li Xiaoping(黎小平),Zhang Xiaoping(張小平), Wang Hongwei(王紅偉). 碳纖維的發(fā)展及其應(yīng)用現(xiàn)狀[J].Hi-TechFiber&Application(高科技纖維與應(yīng)用), 2005, 30(5): 25-40.
[4] Rong Guangdao(戎光道). 我國碳纖維產(chǎn)業(yè)發(fā)展現(xiàn)狀及建議[J].ChinaSyntheticFiberIndustry(合成纖維工業(yè)), 2013, 36(2): 41-45.
[5] Sun Xuemei, Chen Tao, Yang Zhibin,etal. The Alignment of Carbon Nanotubes: An Effective Route To Extend Their Excellent Properties to Macroscopic Scale[J].AccountsofChemicalResearch, 2013, 46: 539-549.
[6] Liu Luqi, Ma Wenjun, Zhang Zhong. Macroscopic Carbon Nanotube Assemblies: Preparation, Properties, and Potential Applications[J].Small, 2011, 7(11): 1 504-1 520.
[7] Vigolo B, Pénicaud A, Coulon C,etal. Macroscopic Fibers and Ribbons of Oriented Carbon Nanotubes[J].Science, 2000, 290(5495): 1 331-1 334.
[8] Dalton B Alan, Collins Steve, Muoz Edgar,etal. Supertough Carbon Nanotube Fibres[J].Nature, 2003, 423(6 941): 703.
[9] Ericson Lars M, Fan Hua, Peng Haiqing,etal. Macroscopic, Neat, Single-Walled Carbon Nanotube Fibers[J].Science, 2004, 305(5 689): 1 447-1 450.
[10] Virginia A Davis, A Nicholas G Parra-Vasquez1, Micah J Green,etal. True Solutions of Single-Walled Carbon Nanotubes for Assembly into Macroscopic Materials[J].NatureNanotechnology, 2009, 4: 830-834.
[11] Zhang Shanju, Koziol Krzysztof K K, Kinloch Ian A,etal. Macroscopic Fibers of Well-Aligned Carbon Nanotubes by Wet Spinning[J].Small, 2008, 4(8): 1 217-1 222.
[12] Zhang Xiefei, Li Qingwen, Holesinger G Terry,etal. Ultrastrong, Stiff, and Lightweight Carbon Nanotube Fibers[J] .AdvancedMaterials, 2007, 19(23): 4 198-4 201.
[13] Jiang Kaili, Li Qunqing, Fan Shoushan. Spinning Continuous Carbon Nanotube Yarns[J].Nature, 2002, 419: 801.
[14] Fan Shoushan, Chapline Michael G , Franklin Nathan R,etal. Self-Oriented Regular Arrays of Carbon Nanotubes and Their Field Emission Properties[J].Science, 1999, 283(5 401): 512-514.
[15] Zhang Mei, Atkinson Ken R, Baughman Ray H. Multifunctional Carbon Nanotube Yarns by Downsizing an Ancient Technology[J].Science, 2004, 306(5 700): 1 358-1 361.
[16] Zhang X, Jiang K, Feng C,etal. Spinning and Processing Continuous Yarns from 4-Inch Wafer Scale Super-Aligned Carbon Nanotube Arrays[J].AdvancedMaterials, 2006, 18(12): 1 505-1 510.
[17] Zhang Xiefei, Li Qingwen, Tu Yi,etal. Strong Carbon-Nanotube Fibers Spun from Long Carbon-Nanotube Arrays[J].Small, 2007, 3(2): 244-248.
[18] Motta M, Moisala A, Kinloch I A,etal. High Performance Fibres from ‘Dog Bone’ Carbon Nanotubes[J].AdvancedMaterials, 2007, 19(21): 3 721-3 726.
[19] Li Yali, Kinloch A Ian, Windle H Alan. Direct Spinning of Carbon Nanotube Fibers from Chemical Vapor Deposition Synthesis[J].Science, 2004, 304(5 668): 276-278.
[20] Zhong XiaoHua, Li YaLi, Liu YaKun,etal. Continuous Multilayered Carbon Nanotube Yarns[J].AdvancedMaterials, 2010, 22(6): 692-696.
[21] Zhu H W, Xu C L, Wu D H,etal. Direct Synthesis of Long Single-Walled Carbon Nanotube Strands[J].Science, 2002, 296(5 569): 884-886.
[22] Marcelo Motta, Li Yali, Kinloch A Ian,etal. Mechanical Properties of Continuously Spun Fibers of Carbon Nanotubes[J].NanoLetters, 2005, 5(8): 1 529-1 533.
[23] Ma Wenjun, Liu Luqi, Yang Rong,etal. Monitoring a Micromechanical Process in Macroscale Carbon Nanotube Films and Fibers[J].AdvancedMaterials, 2009, 21(5): 603-608.
[24] Liu Guangtong, Zhao Yuanchun, Deng Ke,etal. Highly Dense and Perfectly Aligned Single-Walled Carbon Nanotubes Fabricated by Diamond Wire Drawing Dies[J].NanoLetters, 2008, 8(4): 1 071-1 075.
[25] Liu Zheng, Zheng Kaihong, Hu Lijun,etal. Surface-Energy Generator of Single-Walled Carbon Nanotubes and Usage in a Self-Powered System[J].AdvancedMaterials, 2010, 22(9): 999-1 003.
[26] Zhang Mei, Fang Shaoli, Zakhidov Anvar A,etal. Strong, Transparent, Multifunctional, Carbon Nanotube Sheets[J].Science, 2005, 309(5 738): 1 215-1 219.
[27] Koziol Krzysztof, Vilatela Juan, Moisala Anna,etal. High-Performance Carbon Nanotube Fiber[J].Science, 2007, 318(5 858): 1 892-1 895.
[28] Lima Márcio D, Fang Shaoli, Lepró Xavier,etal. Biscrolling Nanotube Sheets and Functional Guests into Yarns[J].Science, 2011, 331(6 013): 51-55.
[29] Lima Márcio D, Li Na, Andrade Mnica Jung de,etal. Electrically, Chemically, and Photonically Powered Torsional and Tensile Actuation of Hybrid Carbon Nanotube Yarn Muscles[J].Science, 2012, 338(6 109): 928-932.
[30] Behabtu Natnael, Young Colin C, Tsentalovich Dmitri E,etal. Strong, Light, Multifunctional Fibers of Carbon Nanotubes with Ultrahigh Conductivity[J].Science, 2013, 339(6 116): 182-186.
[31] Geim A K. Graphene: Status and Prospects[J].Science, 2009, 324(5 934): 1 530-1 534.
[32] Allen Matthew J, Tung Vincent C, Kaner Richard B. Honeycomb Carbon: A Review of Graphene[J].ChemicalReviews, 2010, 110(1): 132-145.
[33] Zhu Yanwu, Murali Shanthi, Cai Weiwei,etal. Graphene and Graphene Oxide: Synthesis, Properties, and Applications[J].AdvancedMaterials, 2010, 22(35): 3 906-3 924.
[34] Dreyer Daniel R, Park Sungjin, Bielawski Christopher W,etal. The Chemistry of Graphene Oxide[J].ChemicalSocietyReviews, 2010, 39(1): 228-240.
[35] Park Sungjin, Ruoff Rodney S. Chemical Methods for the Production of Graphenes[J].NatureNanotechnology, 2009, 4: 217-224.
[36] Xu Zhen, Gao Chao. Aqueous Liquid Crystals of Graphene Oxide[J].ACSNano2011, 5(4): 2 908-2 915.
[37] Xu Zhen, Gao Chao. Graphene Chiral Liquid Crystals and Macroscopic Assembled Fibres[J].NatureCommunications, 2011, 2: 571.
[38] Xu Zhen, Gao Chao. Graphene in Macroscopic Order: Liquid Crystals and Wet-Spun Fibers[J].AccountsofChemicalResearch, 2014, 47: 1 267-1 276.
[39] Xu Zhen, Sun Haiyan, Zhao Xiaoli,etal. Ultrastrong Fibres Assembled from Giant Graphene Oxide Sheets[J].AdvancedMaterials, 2013, 25(2): 188-193.
[40] Xu Zhen, Zhang Yuan, Li Peigang,etal. Strong, Conductive, Lightweight, Neat Graphene Aerogel Fibres with Aligned Pores[J].ACSNano, 2012, 6(8): 7 103-7 113.
[41] Cong Huaiping, Ren Xiaochen, Wang Ping,etal. Wet-Spinning Assembly of Continuous, Neat, and Macroscopic Graphene Fibers[J].ScientificReports, 2012, 2: 612.
[42] Chen Li, He Yuling, Chai Songgang,etal. Toward High Performance Graphene Fibers[J].Nanoscale, 2013, 5: 5 809-5 815.
[43] Huang Guoji, Hou Chengyi, Shao Yuanlong,etal. Highly Strong and Elastic Graphene Fibres Prepared from Universal Graphene Oxide Precursors[J].ScientificReports, 2014, 4: 4 248.
[44] Dong Zelin, Jiang Changcheng, Cheng Huhu,etal. Facile Fabrication of Light, Flexible and Multifunctional Graphene Fibers[J].AdvancedMaterials, 2012, 24(14): 1 856-1 861.
[45] Jalili Rouhollah, Aboutalebi Hamed Seyed, Esrafilzadeh Dorna,etal. Scalable One-Step Wet-Spinning of Graphene Fibers and Yarns from Liquid Crystalline Dispersions of Graphene Oxide: Towards Multifunctional Textiles[J].AdvancedFunctionalMaterials, 2013, 23(43): 5 345-5 354.
[46] Xiang Changsheng, Young C Colin, Wang Xuan,etal. Large Flake Graphene Oxide Fibers with Unconventional 100% Knot Efficiency and Highly Aligned Small Flake Graphene Oxide Fibers[J].AdvancedMaterials, 2013, 25(33): 4 592-4 597.
[47] González Carretero Javier, Martínez Castillo Elizabeth, Lima Dias Marcio,etal. Oriented Graphene Nanoribbon Yarn and Sheet from Aligned Multi-Walled Carbon Nanotube Sheets[J].AdvancedMaterials, 2012, 24(42): 5 695-5 701.
[48] Xiang Changsheng, Behabtu Natnael, Liu Yaodong,etal. Graphene Nanoribbons as an Advanced Precursor for Making Carbon Fiber [J].ACSnano, 2013, 7(2): 1 628-1 637.
[49] Jang Euiyun, González Carretero Javier, Choi Ajeong,etal. Fibers of Reduced Graphene Oxide Nanoribbons[J].Nanotechnology. 2012, 23: 235 601.
[50] Li Xinming, Zhao Tianshuo, Wang Kunlin,etal. Directly Drawing Self-Assembled, Porous, and Monolithic Graphene Fiber from Chemical Vapor Deposition Grown Graphene Film and Its Electrochemical Properties[J].Langmuir, 2011, 27(19): 12 164-12 171.
[51] Hu Chuangang, Zhao Yang, Cheng Huhu,etal. Graphene Microtubings: Controlled Fabrication and Site-Specific Functionalization[J].NanoLetters, 2012, 12(11): 5 879-5 884.
[52] Zhao Yang, Jiang Changcheng, Hu Chuangang,etal. Large-Scale Spinning Assembly of Neat, Morphology-Defined, Graphene-Based Hollow Fibers[J].ACSNano, 2013, 7(3): 2 406-2 412.
[53] Sun Jiankun, Li Yanhui, Peng Qingyu,etal. Macroscopic, Flexible, High-Performance Graphene Ribbons[J].ACSNano, 2013, 7(11): 10 225-10 232.
[54] Zheng Bingna(鄭冰娜), Gao Chao(高 超). 石墨烯-碳納米管宏觀組裝復(fù)合纖維的制備及其電化學(xué)性能研究[J].PolymerBulletin(高分子通報), 2013, 10: 171-178.
[55] Zhong Xiaohua, Wang Rui, Wen Yangyang,etal. Carbon Nanotube and Graphene Multiple-Thread Yarns[J].Nanoscale, 2013, 5(3): 1 183-1 187.
[56] Cheng Huhu, Dong Zelin, Hu Chuangang,etal. Textile Electrodes Woven by Carbon Nanotube-Graphene Hybrid Fibers for Flexible Electrochemical Capacitors[J].Nanoscale, 2013, 5(8): 3 428-3 434.
[57] Sun Hao, You Xiao, Deng Jue,etal. Novel Graphene/Carbon Nanotube Composite Fibers for Efficient Wire-Shaped Miniature Energy Devices[J].AdvancedMaterials, 2014, 26(18): 2 868-2 873.
[58] Shin K M, Lee B, Kim H S,etal. Synergistic Toughening of Composite Fibres by Self-Alignment of Reduced Graphene Oxide and Carbon Nanotubes[J].NatureCommunations, 2012, 3: 650.
[59] Xu Zhen, Liu Zheng, Sun Haiyan,etal. Highly Electrically Conductive Ag-Doped Graphene Fibers as Stretchable Conductor[J].AdvancedMaterials, 2013, 25(23): 3 249-3 253.
[60] Xu Zhen, Gao Chao. In Situ Polymerization Approach to Graphene-Reinforced Nylon-6 Composites[J].Macromolecules, 2010, 43 (16): 6 716-6 723.
[61] He Yongqiang, Zhang Nana, Gong Qiaojuan,etal. Alginate/Graphene Oxidebers with Enhanced Mechanical Strength Prepared by Wet Spinning[J].CarbohydratePolymers, 2012, 88: 1 100-1 108.
[62] Jiang Zaixing, Li Qiang, Chen Menglin,etal. Mechanical Reinforcement Fibers Produced by Gel-Spinning of Poly-Acrylic Acid (PAA) and Graphene Oxide (GO) Composites[J].Nanoscale, 2013, 5: 6 265-6 269.
[63] Kou Liang, Gao Chao. Bioinspired Design and Macroscopic Assembly of Poly(vinyl alcohol)-Coated Graphene into Kilometers-Long Fibres[J].Nanoscale, 2013, 5(10): 4 370-4 378.
[64] Hu Xiaozhen, Xu Zhen, Gao Chao. Multifunctional, Supramolecular, Continuous Artificial Nacre Fibres[J].ScientificReports, 2012, 2: 767.
[65] Hu Xiaozhen, Xu Zhen, Liu Zheng,etal. Liquid Crystal Self-Templating Approach to Ultrastrong and Tough Biomimic Composites[J].ScientificReports, 2013, 3: 2374.
[66] Liu Zheng, Xu Zhen, Hu Xiaozhen,etal. Lyotropic Liquid Crystal of Polyacrylonitrile-Grafted Graphene Oxide and Its Assembled Continuous Strong Nacre-Mimetic Fibers[J].Macromolecules, 2013, 46(17): 6 931-6 941.
[67] Zhao Xiaoli, Xu Zhen, Zheng Bingna,etal. Macroscopic Assembled, Ultrastrong and H2SO4-Resistant Fibres of Polymer-Grafted Graphene Oxide[J].ScientificReports, 2013, 3: 3164.
[68] Huang Tieqi, Zheng Bingna, Kou Liang,etal. Flexible High Performance Wet-Spun Graphene Fiber Supercapacitors[J].RSCAdv, 2013, 3: 23 957-23 962.
[69] Kou Liang, Huang Tieqi, Zheng Bingna,etal. Coaxial Wet-Spun Yarn Supercapacitors for High-Energy Density and Safe Wearable Electronics[J].NatureCommunications, 2014, 5: 3 754.
[70] Zheng Bingna, Huang Tieqi, Kou Liang,etal. Graphene Fiber-Based Asymmetric Micro-Supercapacitors[J].JournalofMaterialsChemistryA, 2014(2):9 736-9 743.
[71] Meng Yuning, Zhao Yang, Hu Chuangang,etal. All-Graphene Core-Sheath Microfibers for All-Solid-State,Stretchable Fibriform Supercapacitors and Wearable Electronic Textiles[J].AdvancedMaterials, 2013, 25(16): 2 326-2 331.
[72] Aboutalebi H S, Jalili R, Esrafilzadeh D,etal. High-Performance Multifunctional Graphene Yarns: Toward Wearable All-Carbon Energy Storage Textiles[J].ACSnano, 2014, 8(3): 2 456-2 466.
[73] Cheng Huhu, Liu Jia, Zhao Yang,etal. Graphene Fibers with Predetermined Deformation as Moisture-Triggered Actuators and Robots[J].AngewandteChemieInternationalEdition, 2013, 52(40): 10 482-10 486.
[74] Cheng Huhu, Hu Yue, Zhao Fei,etal. Moisture-Activated Torsional Graphene-Fiber Motor[J].AdvancedMaterials, 2014, 26(18): 2 909-2 913.