趙婷婷,畢淑云,王 瑜,王天嬌,龐 博
(1.長春師范大學(xué)化學(xué)學(xué)院,長春 130032;2.吉林出入境檢驗(yàn)檢疫局檢疫檢驗(yàn)技術(shù)中心,長春 130062)
Meso-四(對(duì)-羥基苯基)卟啉和溶菌酶的相互作用機(jī)理
趙婷婷1,畢淑云1,王 瑜1,王天嬌1,龐 博2
(1.長春師范大學(xué)化學(xué)學(xué)院,長春 130032;2.吉林出入境檢驗(yàn)檢疫局檢疫檢驗(yàn)技術(shù)中心,長春 130062)
在模擬生理?xiàng)l件下,利用熒光光譜和同步熒光光譜法研究Meso-四(對(duì)-羥基苯基)卟啉(THPP)與溶菌酶的相互作用.結(jié)果表明:THPP對(duì)溶菌酶的猝滅過程為靜態(tài)猝滅;291K時(shí),THPP與溶菌酶的結(jié)合常數(shù)為5.97×104L/mol;疏水作用力為THPP與溶菌酶的主要作用力;金屬離子Fe2+,F(xiàn)e3+,Cu2+,Mg2+,Ca2+和Zn2+的存在不影響THPP與溶菌酶的結(jié)合常數(shù);THPP與溶菌酶的結(jié)合距離為3.35nm;THPP可使色氨酸殘基周圍的極性減弱,疏水性增強(qiáng).
meso-四(對(duì)-羥基苯基)卟啉;溶菌酶;熒光猝滅
溶菌酶是一種普遍存在于生物體內(nèi)的小分子堿性蛋白,可與較多的內(nèi)源和外源性物質(zhì)結(jié)合,從而發(fā)揮其消炎、殺菌和抗病毒的作用[3].近年來,對(duì)小分子與蛋白質(zhì)結(jié)合的研究已引起人們廣泛關(guān)注[4-6].本文應(yīng)用Adler法[7],即吡咯和取代苯甲醛在丙酸介質(zhì)中回流,縮合得到THPP,選擇溶菌酶作為模型蛋白,研究THPP與溶菌酶的相互作用及對(duì)溶菌酶構(gòu)象的影響.
1.1 儀器與試劑
RF-5301PC型熒光分光光度計(jì)(日本島津公司);恒溫水浴鍋(南京桑力電子設(shè)備廠);pH-3S數(shù)字酸度劑(南京桑力電子設(shè)備廠);TU-1901型紫外-可見分光光度計(jì)(北京普析通用儀器有限公司).溶菌酶(長春鼎國生物科技有限公司)儲(chǔ)備液濃度為1.0×10-4mol/L,于4℃冰箱保存;THPP由長春師范大學(xué)無機(jī)實(shí)驗(yàn)室合成,由無水乙醇配置的儲(chǔ)備液濃度為1.0×10-3mol/L;其他試劑為國產(chǎn)分析純;實(shí)驗(yàn)用水為二次蒸餾水.
1.2 儀器工作條件
在熒光測(cè)定中,λex=280nm,激發(fā)和發(fā)射通帶寬度均為3nm,掃描范圍為290~450nm.紫外測(cè)定220~450nm的吸光度值.在同步熒光光譜掃描中,設(shè)定Δλ=60nm.
1.3 方 法
將125μL溶菌酶溶液和不同濃度的THPP溶液依次加入比色管中,用pH=7.4的Tris-HCl緩沖溶液定容至2.5mL.
2.1 熒光猝滅機(jī)理
圖1為291K時(shí)在pH=7.4的Tris-HCl緩沖溶液中5.0×10-6mol/L溶菌酶與THPP作用后的熒光光譜.在280nm激發(fā)溶菌酶時(shí),其發(fā)射峰位于337nm處.由圖1可見,隨著THPP濃度的增大,溶菌酶的熒光強(qiáng)度不斷降低并發(fā)生藍(lán)移(從337nm移至333nm),即發(fā)生了猝滅作用,使得溶菌酶中色氨酸殘基的疏水性增強(qiáng)[8].
熒光猝滅一般分為動(dòng)態(tài)猝滅過程和靜態(tài)猝滅過程:靜態(tài)猝滅是指猝滅劑分子與熒光物質(zhì)基態(tài)分子相互作用,生成非熒光復(fù)合物,導(dǎo)致熒光物質(zhì)熒光強(qiáng)度降低;動(dòng)態(tài)猝滅是指猝滅劑分子與熒光物質(zhì)激發(fā)態(tài)分子相互碰撞,生成瞬時(shí)復(fù)合物而使其熒光猝滅.猝滅過程遵循Stern-Volmer方程[9]:
其中:F和F0分別為THPP存在和不存在時(shí)溶菌酶的熒光強(qiáng)度;c(THPP)為THPP的濃度;KSV為Stern-Volmer猝滅常數(shù);τ0為溶菌酶的熒光壽命(生物大分子的τ0=10-8s[9]);Kq為猝滅速率常數(shù),動(dòng)態(tài)猝滅的猝滅常數(shù)與溫度成正比.圖2為不同溫度下溶菌酶與THPP結(jié)合的Stern-Volmer曲線.將曲線上的值代入式(1)可得KSV和Kq值,結(jié)果列于表1.由表1可見,隨著溫度的升高,KSV逐漸減小,且Kq遠(yuǎn)大于各類猝滅劑對(duì)生物大分子的最大擴(kuò)散猝滅常數(shù)(2×1010L/(mol·s))[10],表明THPP對(duì)溶菌酶的熒光猝滅過程為靜態(tài)猝滅過程,THPP與溶菌酶形成復(fù)合物.
圖1 291K時(shí)溶菌酶與THPP作用后的熒光光譜Fig.1 Fluorescence spectra of lysozyme in the presence of THPP at 291K
圖2 不同溫度下THPP與溶菌酶結(jié)合的Stern-Volmer曲線Fig.2 Stern-Volmer curves for THPP binding to lysozyme at various temperatures
表1 不同溫度下Stern-Volmer的猝滅常數(shù)和猝滅速率常數(shù)Table 1 Stern-Volmer quenching constants and the quenching rate constants at various temperatures
2.2 結(jié)合常數(shù)與結(jié)合位點(diǎn)數(shù)及THPP與溶菌酶的結(jié)合作用力
THPP與溶菌酶相互作用的結(jié)合常數(shù)與結(jié)合位點(diǎn)數(shù)的計(jì)算公式[11]為
范德華力、氫鍵、靜電引力和疏水作用力等是藥物小分子與生物大分子間的主要作用力[12].由Vant Hoff方程:
圖3 不同溫度下lg((F0-F)/F)與lg(c(THPPt)-nc(溶菌酶t)(F0-F)/F0)的關(guān)系曲線Fig.3 Plots of lg((F0-F)/F)vs lg(c(THPPt)-nc(lysozymet)(F0-F)/F0)at various temperatures
可得不同溫度下的ΔH,ΔG和ΔS值,結(jié)果列于表3.若ΔH<0,ΔS<0,則主要作用力為范德華力或氫鍵;若ΔH<0或ΔH≈0,ΔS>0,則主要作用力為靜電引力;若ΔH>0,ΔS>0,則主要作用力為疏水作用力[13].由表3可見,ΔG<0,表明溶菌酶與THPP的結(jié)合為自發(fā)過程,由ΔH>0和ΔS>0表明,溶菌酶與THPP主要靠疏水作用結(jié)合.
表2 溶菌酶與THPP在不同溫度下的結(jié)合常數(shù)KA和結(jié)合位點(diǎn)數(shù)nTable 2 Binding constants KAand binding sites nof THPP binding with lysozyme at various temperatures
表3 不同溫度下THPP與溶菌酶相互作用的熱力學(xué)參數(shù)Table 3 Thermodynamic parameters for THPP binding to lysozyme at various temperatures
2.3 共存金屬離子對(duì)THPP與溶菌酶作用結(jié)合常數(shù)的影響
測(cè)定291K時(shí)5.0×10-6mol/L的Fe2+,F(xiàn)e3+,Cu2+,Mg2+,Ca2+和Zn2+對(duì)THPP與溶菌酶結(jié)合常數(shù)的影響,結(jié)果列于表4.由表4可見,金屬離子的存在不影響THPP與溶菌酶的結(jié)合.
表4 291K時(shí)金屬離子對(duì)THPP與溶菌酶相互作用的影響Table 4 Effects of metal ions on the binding of THPP to lysozyme at 291K
2.4 THPP對(duì)溶菌酶構(gòu)象的影響
Δλ=60nm時(shí)濃度為5.0×10-6mol/L溶菌酶的同步熒光光譜如圖4所示.由圖4可見,隨THPP濃度的增加,溶菌酶的熒光強(qiáng)度逐漸降低,在341nm處的發(fā)射峰發(fā)生了藍(lán)移(從341nm移至336nm),進(jìn)一步表明THPP使溶菌酶中色氨酸殘基周圍的極性減弱,疏水性增強(qiáng)[14],溶菌酶的構(gòu)象發(fā)生改變.
2.5 結(jié)合距離
根據(jù)F?rster非輻射能量轉(zhuǎn)移理論[15],當(dāng)溶菌酶的發(fā)射光譜與THPP的吸收光譜發(fā)生有效重疊時(shí),溶菌酶與THPP間會(huì)發(fā)生非輻射能量轉(zhuǎn)移,其能量轉(zhuǎn)移效率E、給體-受體間的距離r0和臨界能量轉(zhuǎn)移距離R0的表達(dá)式分別為:
其中:R0是E為50%時(shí)的臨界距離;K2為熒光給體與受體間偶極躍遷的空間取向因子,平均值為2/3;n=1.33[16]為介質(zhì)折射常數(shù);φ=0.13為不存在受體時(shí)給體的熒光量子產(chǎn)率;J為給體的熒光發(fā)射光譜和受體的吸收光譜間的重疊積分.溶菌酶的熒光光譜與THPP吸收光譜的重疊曲線如圖5所示,其中溶菌酶和THPP的濃度均為5.0×10-6mol/L.計(jì)算結(jié)果列于表5.臨界能量轉(zhuǎn)移距離R0的理論值為5~10nm,給體和受體間結(jié)合距離r0的理論值為7~10nm[17].由表5可見,THPP與溶菌酶的R0和r0均在理論值范圍內(nèi),因此,THPP與溶菌酶在相互作用過程中發(fā)生了非輻射能量轉(zhuǎn)移.
圖4 Δλ=60nm時(shí)溶菌酶與THPP相互作用的同步熒光光譜Fig.4 Synchronous fluorescence spectra of lysozyme in the presence of THPP atΔλ=60nm
圖5 THPP的吸收光譜與溶菌酶熒光光譜的重疊曲線Fig.5 Overlaps of the absorption spectra of THPP with the fluorescence spectra of lysozyme
表5 F?rster非輻射能量轉(zhuǎn)移參數(shù)Table 5 Parameters of F?rster non-radiation energy transfer
綜上所述,本文研究了THPP與溶菌酶的相互作用.結(jié)果表明,二者結(jié)合時(shí)溶菌酶內(nèi)源性熒光發(fā)生了有規(guī)律的動(dòng)態(tài)猝滅;二者間的主要作用力為疏水作用力;Zn2+,Mg2+,Ca2+,F(xiàn)e3+,Cu2+和Fe2+不影響THPP與溶菌酶的結(jié)合常數(shù);相互作用時(shí)THPP使色氨酸殘基周圍的極性減弱,疏水性增強(qiáng);THPP與溶菌酶間的結(jié)合距離為3.35nm;溶菌酶可攜帶THPP在體內(nèi)進(jìn)行運(yùn)轉(zhuǎn)、貯存和分配.
[1] 雷亞春,張勇,劉滇生,等.卟啉及其配合物在分析化學(xué)中應(yīng)用進(jìn)展[J].光譜實(shí)驗(yàn)室,2003,20(4):479-485.(LEI Yachun,ZHANG Yong,LIU Diansheng,et al.Progress of Porphyrin and Its Comlexes in Analytical Chemistry Application[J].Chinese Journal of Spectroscopy Laboratory,2003,20(4):479-485.)
[2] 張麗娜,陳欣,夏陽,等.熒光光譜法研究四苯基-鋅金屬卟啉與蛋白質(zhì)的相互作用機(jī)理 [J].光譜學(xué)與光譜分析,2009,29(3):773-776.(ZHANG Lina,CHEN Xin,XIA Yang,et al.Study on Interaction Mechanism between Meso-tetra-(4-h(huán)ydroxyphenyl)-Zn Porphyrin and Bovine Serum Albumin by Fluorescence Method[J].Spectroscopy and Spectral Analysis,2009,29(3):773-776.)
[3] 張海容,劉曉燕,李慧卿,等.藥物青蒿素與溶菌酶相互作用研究[J].分析科學(xué)學(xué)報(bào),2013,29(4):539-542.(ZHANG Hairong,LIU Xiaoyan,LI Huiqing,et al.Studies on the Interaction of Artemisinin with Lysozyme[J].Journal of Analytical Science,2013,29(4):539-542.)
[4] 宋志英,韓冬,王娟,等.四種呋喃香豆素類藥物與溶菌酶的作用機(jī)制及構(gòu)效關(guān)系研究 [J].分析測(cè)試學(xué)報(bào),2013,32(1):23-31.(SONG Zhiying,HAN Dong,WANG Juan,et al.Study on Reaction Mechanisms and Their Structurectivity Relationship between Each of Four Furanocoumarin Drugs and Lysozyme[J].Journal of Instrumental Analysis,2013,32(1):23-31.)
[5] 周秀清,程建華,孫磊,等.用光譜法研究異鼠李素與牛血清白蛋白的相互作用及幾種金屬離子對(duì)反應(yīng)的影響[J].吉林大學(xué)學(xué)報(bào):理學(xué)版,2008,46(5):983-987.(ZHOU Xiuqing,CHENG Jianhua,SUN Lei,et al.Studies on Interaction between Isorhamnetin and Bovine Serum Albumin and Effects of Several Metal Ions on Interaction by Spectrometry[J].Journal of Jilin University:Science Edition,2008,46(5):983-987.)
[6] 畢淑云,宋大千,魏世剛,等.用熒光猝滅法研究人血清白蛋白與吲哚美辛的結(jié)合反應(yīng) [J].吉林大學(xué)學(xué)報(bào):理學(xué)版,2006,44(3):493-496.(BI Shuyun,SONG Daqian,WEI Shigang,et al.Interaction between Indomethacin and Human Serum Albumin by Fluorescence Quenching Method[J].Journal of Jilin University:Science Edition,2006,44(3):493-496.)
[7] Adler A D,Longo F R,F(xiàn)inarelli J D,et al.A Simplified Synthesis for Meso-tetraphenylporphine[J].Journal of Organic Chemistry,1967,32(2):476.
[8] Yuan T,Weljie A M,Vogel H J.Tryptophan Fluorescence Quenching by Methionine and Selenomethionine Residues of Calmodulin:Orientation of Peptide and Protein Binding[J].Biochemistry,1998,37(9):3187-3195.
[9] Lakowicz J R.Principles of Fluorescence Spectroscopy[M].New York:Plenum Press,1999:237.
[10] Ware W R.Oxygen Quenching of Fluorescence in Solution:An Experimental Study of the Diffusion Process[J].Journal of Physical Chemistry,1962,66(3):455-458.
[11] BI Shuyun,SONG Daqian,KAN Yuhe,et al.Spectroscopic Characterization of Effective Components Anthraquinones in Chinese Medicinal Herbs Binding with Serum Albumins[J].Spectrochimica Acta:A Mol Biomol Spectrosc,2005,62(1/2/3):203-212.
[12] Leckband D.Measuring the Forces That Control Protein Interactions[J].Annual Review of Biophysics and Biomolecular Structure,2000,29:1-26.
[13] Ross P D,Sabramanian S.Thermodynamics of Protein Association Reactions Forces Contributing to Stabiliby[J].Biochemistry,1981,20(11):3096-3102.
[14] Miller J N.Recent Advances in Molecular Luminescence Analysis[J].Proceedings of the Analytical Division of the Chemical Society,1979,16:203-208.
[15] F?rster T.Intermolecular Energy Migration and Fluorescence[J].Annals of Physics,1948,2:55-57.
[16] Suzukida M,Le H P,Shahid F,et al.Resonance Energy Transfer between Cysteine-34and Tryptophan-214in Human Serum Albumin.Distance Measurements as a Function of pH[J].Biochemistry,1983,22(10):2415-2420.
[17] 陳國珍,黃賢智,許金鉤,等.熒光分析法[M].2版.北京:科學(xué)出版社,1990:123.(CHEN Guozhen,HUANG Xianzhi,XU Jingou,et al.The Method of Fluorescence Analysis[M].2nd ed.Beijing:Science Press,1990:123.)
(責(zé)任編輯:單 凝)
Interaction Mechanism of Meso-tetra(4-h(huán)ydroxyphenyl)porphyrin and Lysozyme
ZHAO Tingting1,BI Shuyun1,WANG Yu1,WANG Tianjiao1,PANG Bo2
(1.College of Chemistry,Changchun Normal University,Changchun130032,China;2.Technology Center of Inspection and Quarantine,Jilin Entry-Exit Inspection and Quarantine Bureau,Changchun130062,China)
Meso-tetra(4-h(huán)ydroxyphenyl)porphyrin(THPP)interacting with lysozyme was investigated by the fluorescence spectroscopy under simulated physiological conditions.The results indicate that THPP quenched the intrinsic fluorescence of lysozyme via a static quenching procedure.The binding constant KAbetween THPP and lysozyme was 5.97×104L/mol at 291K.According to the thermodynamic parameters,it was obtained that hydrophobic was a main acting force between THPP and lysozyme.The presence of Fe2+,F(xiàn)e3+,Cu2+,Mg2+,Ca2+and Zn2+did not affect the binding constant of THPP and lysozyme.According to F?rster’s non-radiative energy transfer theory,the distance between THPP and lysozyme was 3.35nm.The synchronous fluorescence spectra reveal that the vicinity of tryptophan becomes more hydrophobicity with the increase of THPP.
meso-tetra(4-h(huán)ydroxyphenyl)porphyrin(THPP);lysozyme;fluorescence quenching
O657.3
A
1671-5489(2014)04-0820-05
卟啉是卟吩環(huán)上連有取代基的一類大環(huán)化合物總稱,在自然界和生命體中(如血紅素和葉綠素等)廣泛存在,在生命的新陳代謝過程中發(fā)揮重要作用[1].Meso-四(對(duì)-羥基苯基)卟啉(THPP)是一種具有親水羥基的非水溶性卟啉,在生物學(xué)和醫(yī)學(xué)領(lǐng)域應(yīng)用前景廣闊[2].
10.13413/j.cnki.jdxblxb.2014.04.37
2013-12-09.
趙婷婷(1990—),女,漢族,碩士研究生,從事光譜分析化學(xué)的研究,E-mail:949427203@qq.com.通信作者:畢淑云(1970—),女,漢族,博士,教授,從事光譜分析化學(xué)的研究,E-mail:sy_bi@sina.com.
吉林省自然科學(xué)基金(批準(zhǔn)號(hào):20140101023JC)、吉林省教育廳“十二五”科技項(xiàng)目(批準(zhǔn)號(hào):20140257)和長春師范大學(xué)研究生創(chuàng)新基金(批準(zhǔn)號(hào):CSCXY2013008).