• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Applications of Functionalized Quantum Dots in Bioanalysis,Imaging and Targeting Delivery

    2015-01-22 07:13:32HEDongxiuWANGDanxiaQUANWenjieYUCuiyun
    關(guān)鍵詞:功能化生物醫(yī)學(xué)探針

    HE Dongxiu,WANG Danxia,QUAN Wenjie,YU Cuiyun

    (Institute of Pharmacy & Pharmacology,Department of Pharmacy,University of South China,Hengyang,421001,China)

    ·博士筆談·

    ApplicationsofFunctionalizedQuantumDotsinBioanalysis,ImagingandTargetingDelivery

    HE Dongxiu*,WANG Danxia,QUAN Wenjie,YU Cuiyun

    (Institute of Pharmacy & Pharmacology,Department of Pharmacy,University of South China,Hengyang,421001,China)

    Quantum dots (QDs),fluorescen nanomaterials,have exceptional optical properties.Functionalized QDs that include QDs and targeting moieties have been considered to have the potential as novel molecular probes and suited for a number of biomedical researches,which plays an important role in biomedicine.In recent years,the functionalized QDs have exhibited an important role in biomedical research and applications,especially in the field of bioanalysis,imaging and targeting delivery.

    Functionalized quantum dots; applications; bioanalysis; bioimaging; targeting delivery

    1 Introduction

    Nanoparticles that interface with biological systems have recently attracted great attention of biomedical researchers due to their widespread applications in biomedical applications[1-5].Functional nanoparticles,one of the cutting-edge materials of the twenty-first century,are considered to have the potential as novel molecular tools for biomedical research,which plays a critical role in biomedicine.One major merit of using functional nanoparticles is that one can control and tailor properties in a very predictable manner to meet the needs of specific biomedical application.

    Quantum dots (QDs) are semiconductor inorganic nanomaterials ranging from 1~10 nm.QDs have shown great potential interest to biomedical scientists because of their unique advantages over traditional fluorescent dyes,such as broad excitation spectra,robust,narrow-band emission,size-tunable absorption and photo-luminescence spectra,exceptional photo-stability,high quantum yield,and versatility in surface modification[3].Over the past decade,QDs have been used in many different aspects of biomedical field.First used for cellular imaging,QDs later became useful tools for bioanalysis[1],imaging and targeting delivery[4].Functionalized QDs,bioconjugated with types of targeting ligands or drug/gene through selective binding to the receptors over-expressed on the cell surface,have the potential to considerably improve analytic sensitivity.Additionally,functionalized QDs can provide the excellent efficiency of fluorescence imaging and target delivery[6-7].Here,this article provides a brief review on the recent developments of functionalized QDs in the biomedical applications,especially in the field of bioanalysis,bioimaging and targeting delivery.

    2 Bioanalytical applications

    Bioanalysis has recently used to define analytical techniques used in the quantification and characterization of biologicals.Analysis of drugs,forensic science,biomarkers,clinical chemistry and therapeutic drug monitoring have also belonged to the concept of bioanalysis[8].For successful analytic methods,there are two main aspects for obtaining satisfactory sensitivity and reproducibility.The first is to exploit highly efficient signal-transduction labels.The other is to adopt a simple,sensitive signal-transduction method.Functionalized QDs can produce a high analytical signal (luminescence,electrochemical or electrochemiluminescence).Additionally,functionalized QDs can offer high sensitivity and selectivity in bioassays[9].Herein,functionalized QDs have generated increasingly widespread applications in pharmaceutical analysis[10-21],biomarkers detection[22]and other important analyses including ATP[23]and toxins[24].

    2.1 Pharmaceutical analysis applications

    Quantification of pharmaceuticals plays an important role for the purposes of defining their pharmaceutics or minimizing drug safety risk.The fluorescent labeling is one of the most important methods of modern pharmaceutical analysis as a nonradioactive labeling technique.Now the new-type fluorescent quantum dots may have better application in the pharmaceutical analysis because functionalized QDs overcome the disadvantage of the traditional fluorescent dyes.

    Alibolandietal.[10]developed the electrogenerated chemiluminescent method for the sensitive and selective determination of chloramphenicol based on the functionalized QDs generating an efficient,stable signal during potential cycling or pulsing.Their results suggested that the presented method was also well qualified for the detection of chloramphenicol in milk with a limit of detection of 0.2 ppb.And,several researches recently also suggested that functionalized QDs can be used for the quantification of d-penicillamine in pharmaceutical formulations[11]and heparin[12]with satisfactory limit of detection and limit of quantification.

    Besides the detection of small molecule drugs,functionalized QDs have also been proved to have prospect for sensitive detection of biomacromolecular drugs,such as protein[13-15],enzyme[16-17],DNA[19],small interfering RNA(siRNA)[20]and carbohydrate[21].Montoro Bustos et al demonstrated for the first time that the streptavidin modified CdSe/ZnS QDs was applied to the sequential quantification of five proteins (transferrin,complement C3,apolipoprotein A1,transthyretin and apolipoprotein A4) at different concentration levels in human serum samples[13].Huangxian Ju team designed the facile electrochemiluminescent method for sensitive dynamic monitoring of carbohydrate expression on living cells by combining the specific recognition of lectin to carbohydrate groups with the functionalized CdSe QDs[21].

    2.2 Biomarkers detection applications

    The detection of biomarkers is important and useful for screening and early diagnosis of disease,disease stage forecasting,and clinical management[25].Especially,tumor markers assays play a critical role in the cancer diagnosis if a set of tumor markers can be quantified and statistically differentiated between carcinoma cells and normal cell.Functionalized QDs have recently attracted increasingly widespread applications in biomarkers detection[22,25-27 ].

    Liuetal.[22]reported on a disposable micro-device suitable for sandwich-type electrochemiluminescence (ECL) detection of prostate specific antigen (PSA).Taking advantage of dual-amplification effects of the Pt/Au and ZnO quantum dots dotted carbon nanotube (ZnO@CNT),this immunosensor could detect the PSA quantitatively,in the range of 0.001~500 ng/mL,with a low detection limit of 0.61 pg/mL.

    Functionalized QDs were synthesized by Tang and his colleagues through formation of PAMAM dendrimer with CdS,ZnS and PbS.These functionalized QDs were used for a novel multiplexed stripping voltammetric immunoassay for simultaneous detection of three biomarkers (CA 125,CA 15-3,and CA 19-9)[28].

    3 Biomedical imaging applications

    Noninvasive imaging and minimally invasive in vivo biomedical imaging techniques are especially valuable tools in the arsenal of clinical diagnosis.Many types of biomedical imaging(e.g.,magnetic resonance imaging,optical fluorescence) are available.Whichever is bioimaging technique,its continuous development relies mainly on the improvement of corresponding contrast agents.The photochemical stability and high fluorescence intensity of QDs make them become the ideal contrast agents in practical clinical diagnosis application.Recently,functionalized QDs,conjugated with various targeting moieties,have been wide used for biomedical fluorescence imaging[6,29-36].

    3.1 In vitro imaging application

    One of the most advancing applications of functionalized QDs is in vitro imaging of cancer.Many research groups applied functionalized QDs for in vitro fluorescence imaging of cancer cells derived from ovarian carcinoma[6],melanoma[30],hepatocellular carcinoma[31],breast cancer[32],pancreatic cancer[33],glioblastoma[34],ovarian epidermoid carcinoma[35]and lung adenocarcinoma[36].

    Zhangetal.[32]found that QDs conjugated with anti-type 1 insulin-like growth factor receptor (IGF1R) is a promising candidate for targeting and imaging in breast cancer cells.The key in this targeting was the detection of up-regulated IGF1R in MCF-7 breast cancer cells by QD-anti-IGFR1 conjugate.

    Yong and coworkers[33]selectively detected human pancreatic cancer cells using QDs conjugated with anti-Claudin-4 antibody and anti-prostate stem cell antigen (anti-PSCA).These conjugates were recognized by the membrane proteins Claudin-4 and PSCA which are over-expressed in both primary and metastatic pancreatic cancer cells.

    Kawashimaetal.[35]also explored intermolecular interactions involved in the lateral propagation of cell-signaling by EGFR single-molecules in human ovarian epidermoid carcinoma cells (A431) using nanocomposites loaded CdSe/ZnS QDs.Kawashima found that CHO and A431 cells were efficiently labeled by QD-EGF conjugates due to the specific binding of EGF to EGFR.

    3.2 In vivo imaging application

    3.2.1 Tumor imaging application The basic principles underlying in vitro targeting of cancer cells can be applied in vivo.However,in vivo applications of functionalized QDs are more complicated and challenging.One main challenge for in vivo imaging using the functionalized QDs is their biodistribution and pharmacokinetics.Chenetal[38].have monitored the dynamic distribution of CdHgTe/SiO2 nanocomposites in vivo by near infrared fluorescence imaging system.Another main challenge for in vivo targeting and imaging is the fluorescence emitting property of the functionalized QDs.Visible emitting QDs provide poor signal to background ratio in deep tissue and when imaging targets in small animals[29].While NIR QDs offer several advantages for the non-invasive visualization of living tissues because of its deeper photon penetration,low absorption and scattering.So,functionalized NIR QDs are considered to have the potential as novel probe for carcinoma imaging[39-42].

    Carcinoma cell labeling or tracking in living organisms was monitored efficiently and sensitively by functionalized QDs,which may provide tools to locate tumors and metastases or map tumor margins during surgery.

    It was demonstrated that functionalized QDs can represent excellent tool for new tumor vessel imaging[41-42]or multimodal molecular imaging of angiogenesis[43].

    3.2.2 Lymph node imaging Lymphatic metastasis is one of the main metastatic pathways of most cancers and determines the prognoses of those cancers to a large extent.The sentinel lymph node (SLN),which can reflect the status of group lymph nodes accurately,is defined as the first lymph node (LN) to receive the lymphatic drainage and metastasis of the primary tumor[44].Compared with the sentinel lymph node biopsy technique,lymph node mapping (LNM) should identify LNs more readily than SLNs.Several studies on the detection of SLN using functionalized QDs have been reported[37,44-45].The initial research of the SLN mapping in vivo using NIR emitting QDs have been reported by Kim and coworkers[44].

    Sietal[45].demonstrated that functionalized QDs are excellent tracers for intraoperative LNM.SLN detection using functionalized QDs only takes a few minutes after injection,which greatly simplifies surgical procedures.Wu Q and Chu MQ recently reported that the sensitivity in SLN mapping has greatly been enhanced by using self-illuminating QDs[46].

    3.3.3 Vasculature imaging Vasculature,consisting of blood vessels and lymphatic drainage systems,is vital to life and participates in many pathological processes,including metastasis and tumorigenesis.In vivo real-time visualization of the vasculature has great potential to improve our understanding of vasculature related physiological and pathological processes and to advance clinical diagnostics and therapy[47].NIR-emitting QDs can be finely tuned in size and shape to modulate pharmacokinetics and tissue distribution,and they could be useful in in vivo real-time visualization of tissue blood flow in the nude mouse[47]or in living pulmonary edema mouse[48].It has also been reported that lymphatic drainage from the eye present in mice by visualizing the trajectory of the CdSe/ZnS QDs coated with carboxylic acids once injected into the eyes of 17 live mice[49].

    4 Targeting delivery applications

    Targeting delivery by nanoparticles or nanocapsules offers a promising approach to improving upon the efficacy of existing drugs and enabling the development of new therapies.QDs are newer luminescent nanoparticles with rich surface chemistry and unique optical properties that make them useful as visualization probes or carriers for traceable targeting delivery applications without the need for external dyes[50-51].

    4.1 Targeting drug delivery applications

    By directly noncovalent coupling or covalent coupling drug molecules to the QDs surface,drug-conjugated QDs can be delivered to specific sites and subsequently release drug molecules from the QDs surface in response to local biological conditions such as pH or the presence of enzymes.Several research groups have demonstrated the integration of therapeutic antibody[52]or drug molecules[53]with functionalized QDs for targeting drug delivery in vitro and in vivo.Xuetal.[52]demonstrated for the first time that the nanocomposite comprising of QDs and anti-GRP78 scFv could be efficiently internalized by cancer cells,thus upregulate phophosphate-AKT-ser473 and possess biological anti-tumor activity by inhibition of breast cancer growth in a xenograft model.Functionalized QDs,fibrinogen (fib) coated CdTe/ZnTe and paclitaxel (PTX),can target MCF-7 cells and effectively deliver PTX towards breast cancer cells via the α5β1-integrins[53].Chakravarthyetal.[54]found that doxorubicin (Dox) can be effectively released from the nanocomposites loaded CdSe/CdS/ZnS QDs and Dox and accumulated in the cell nucleus.They also demonstrated that the functionalized QDs can provide targeted macrophage-selective therapy for the treatment of pulmonary disease.Furthermore,Jeyadevia’s study revealed that using TGA-CdTe QDs as nanocarrier of quercetin could enhance the anti-arthritic effect of quercetin even at a lower concentration of the drug in rheumatic complications[55].

    4.2 Targeting gene delivery applications

    Gene therapy has emerged as a powerful strategy for disease treatment over the past several decades because of the genetic link associated with tumor development and progression.The delivery of nucleic acid therapeutics to down-regulate or replace mutated genes,and to silence unexpected gene expression,is becoming an attractive approach to suppressing tumor cell growth and invasion.There have been intensive efforts to develop safe and efficient gene delivery carriers to provide high transfection efficiency at the desired target.

    Besides the delivery of small molecule drugs,QDs have also been proved to have prospect for delivery of more intricate genes,such as small interfering RNA (siRNA).The short and double-stranded therapeutic siRNA works by silencing the expression of unwanted,disease-causing genes.Nevertheless,free forms of them owe high negative charge and are easy to degrade in body environment.Thus,in order to achieve optimal function in physiological conditions,they must be delivered via conbination with cationic nanocariers.Because of appropriately surface functionalized with cationic moieties,functionalized QDs are good choices of siRNA carriers as they not only render these genetic drugs with physiological stability and target specificity,but also the entire nanocomposites can be optically traced.Therefore,functionalized QDs were specifically designed to overcome barriers in siRNA delivery such as siRNA protection,cellular penetration,endosomal release,carrier unpacking,intracellular transport and gene silencing.Lietal.[56]confirmed that QDs could efficiently delivery siRNA into HeLa cells and silence a target gene,and the functionalized QDs could also be used as fluorescence probes,allowing real-time tracking and localization of QDs during delivery and transfection in vivo.More importantly,functionalized QDs have been demonstrated to deliver an active siRNA to knockdown EGFRvIII receptors in human glioma cells,and subsequently monitor the resulting down-regulated signaling pathway with high efficiency[57],suggesting that QDs could be designed to deliver gene to a specified target cell type.

    5 Summary

    Real-time bioanalysis and imaging,visual tracking and targeting delivery have been hot topics in life science fields.Current investigation of functionalized QDs in vitro and in vivo has offered less invasive imaging,visual tracking and drug delivery.However,up to date functionalized QDs clinical applications have been limited due to side-effects.Various non-toxic elements QDs such as silica,zinc,sulfur and copper have been explored with recent developments in the preparation and characterization techniques of QDs.The emergence of nanocomposites including QDs,targeting moieties,and other materials enabled to improve imaging and targeting delivery applications because of their better biocompatibility,lower toxicity and longer circulation time in vivo,which were better applied for biomedical applications.

    [1] Irina YG,Elena SS,Valentina VG,et al.Synthesis and bioanalytical applications of nanostructures multiloaded with quantum dots[J].Trends in Analytical Chemistry,2015,66:53-62.

    [2] Barbara B,Veggel FCJ,Boguslaw T.Applications of nanoparticles for MRI cancer diagnosis and Therapy[J].J Nanomater,2013,2013(12):12.

    [3] Alireza V,Haleh M,Mohammad S,et al.Quantum dots:synthesis,bioapplications and toxicity[J].Nanosale Res Left,2012,7(1):480-494.

    [4] LiuY,Miyoshi H,Nakamura M.Nanomedicine for drug delivery and imaging:a promising avenue for cancer therapy and diagnosis using targeted functional nanoparticles[J].Int J Cancer,2007,120(12):2527-2537.

    [5] Yuan L,Tang Q,Yang D,et al.Preparation of pH-responsive mesoporous silica nanoparticles and their application in controlled drug delivery[J].J phys chem C,2011,155(115):9926-9932.

    [6] Ronak S,Oleh T,Olga G,et al.Tumor targeted quantum dot-mucin 1 aptamer-doxorubicin conjugate for imaging and treatment of cancer[J].J control release,2011,153(1):16-22.

    [7] Ye F,Asa B,Heba A,et al.Biodegradable polymeric vesicles containing magnetic nanoparticles,quantum dots and anticancer drugs for drug delivery and imaging[J].Biomaterials,2014,35(12):3885-3894.

    [8] Howard hill.Development of bioanalysis:a short history[J].Bioanalysis,2009,1(1):3-7.

    [9] Cangel Pui-yee Chan.Ingenious nanoprobes in bioassays[J].Bioanalysis,2009,1(1):115-133.

    [10] Alibolandi M,Hadizadeh F,Vajhedin F,et al.Design and fabrication of an aptasensor for chloramphenicol based on energy transfer of CdTe quantum dots to graphene oxide sheet[J].Mater Sci Eng C,2015,48:611-619.

    [11] Samadhan PP,Anil H,Laxman S.Walekar,Turn-on fluorescence probe for selective and sensitive detection of d-penicillamine by CdS quantum dots in aqueous media:Application to pharmaceutical formulation[J].Sens Actuators B Chem,2015,209:911-918.

    [12] Peng X,Long Q,Li H,et al.“Turn on-off” fluorescent sensor for protamine and heparin based on label-free silicon quantum dots coupled with gold nanoparticles[J].Biosens Bioelectron,2015,213:131-138.

    [13] Montoro Bustos AR.,Garcia-Cortes M,González-Iglesias H,et al.Sensitive targeted multiple protein quantification based on elemental detection of Quantum Dots[J].Anal Chim Acta,2015,879(16 ):77-84.

    [14] Zhang B,Tang D,Goryacheva I Y,et al.Anodic-stripping voltammetric immunoassay for ultrasensitive detection of low-abundance proteins using quantum dot aggregated hollow microspheres[J].Chem Eur J,2013,19:2496-2503.

    [15] Zhang Z,Li J,Wang X,et al.Quantum dots based mesoporous structured imprinting microspheres for the sensitive fluorescent detection of phycocyanin[J].ACS Appl Mater Interfaces,2015,7 (17):9118-9127.

    [16] Prasad BB,Prasad A,Tiwari MP.Quantum dots-multiwalled carbon nanotubes nanoconjugate-modified pencil graphite electrode for ultratrace analysis of hemoglobin in dilute human blood samples[J].Talanta,2013,109:52-60.

    [17] Chen Y,Jiang B,Xiang Y,et al.Aptamer-based highly sensitive electrochemiluminescent detection of thrombin via nanoparticle layer-by-layer assembled amplification labels[J].Chem Commun,2011,47 (27):7758-7760.

    [18] Huang F,Wang F,Feng S,et al.Direct electrochemistry and electrochemical biosensing of glucose oxidase based on CdSe@CdS quantum dots and MWNT-modified electrode[J].J Solid State Electrochem,2013,17:1295-1301.

    [19] Divsar F,Ju H.Electrochemiluminescence detection of near single DNA molecules by using quantum dots-dendrimer nanocomposites for signal amplification[J].Chem Commun,2011,47 (35):9879-9881.

    [20] Zhu WY,Su XP,Gao XY,et al.A label-free and PCR-free electrochemical assay for multiplexed microRNA profiles by ligase chain reaction coupling with quantum dots barcodes[J].Biosens Bioelectron,2014,53:414-419.

    [21] Han E,Ding L,Jin S,et al.Electrochemiluminescent biosensing of carbohydrate- functionalized CdS nanocomposites for in situ label-free analysis of cell surface carbohydrate[J].Biosens Bioelectron,2011,26:2500-2505.

    [22] Liu F,Deng W,Zhang Y,et al.Application of ZnO quantum dots dotted carbon nanotube for sensitive electrochemiluminescence immunoassay based on simply electrochemical reduced Pt/Au alloy and a disposable device[J].Ana Chim Acta,2014,818:46-53.

    [23] Jie G,Yuan J,Zhang J.Quantum dots-based multifunctional dendritic superstructure for amplified electrochemiluminescence detection of ATP[J].Biosens Bioelectron,2012,31:69 - 76.

    [24] Gan N,Zhou J,Xiong P,et al.An ultrasensitive electrochemiluminescent immunoassay for aflatoxin M1 in milk,based on extraction by magnetic graphene and detection by antibody-labeled CdTe quantum dots-carbon nanotubes nanocomposites[J].Toxins,2013,5:865-883.

    [25] Kwan HL,Justin F G,Jeaho P,et al.Quantitative molecular profiling of biomarkers for pancreatic cancer with functionalized quantum dots[J].Nanomedicine:NBM,2012,8:1043-1051.

    [26] Peng C W,Tian Q,Yang G F,et al.Quantum-dots based simultaneous detection of multiple biomarkers of tumor stromal features to predict clinical outcomes in gastric cancer[J].Biomaterials,2012,33(23):5742-5752.

    [27] Jing X,Susan M,Sreenivas N,et al.Comparison of quantum dot technology with conventional immunohistochemistry in examining aldehyde dehydrogenase 1A1 as a potential biomarker for lymph node metastasis of head and neck cancer[J].Eur J cancer Care,2012,48:1682-1691.

    [28] Tang D,Hou L,Niessner R,et al.Multiplexed electrochemical immunoassay of biomarkers using metal sulfide quantum dot nanolabels and trifunctionalized magnetic beads[J].Biosens Bioelectron,2013,46:37- 43.

    [29] Pei D,Li Y,Huang Q,et al.Quantum dots encapsulated glycopolymer vesicles:Synthesis,lectin recognition and photoluminescent properties[J].Colloids Surf B Biointerfaces,2015,127:130-136.

    [30] Xiao Q,Qiu T,Huang S,et al.Preparation and biological effect of mucleotide-capped CdSe/ZnS quantum dots on Tetrahymena thermophila[J].Biol Trace Elem Res,2015,147(1-3):346-351.

    [31] Camblin M,Detampel P,Kettiger H,et al.Polymersomes containing quantum dots for cellular imaging[J].Int J Nanomedicine,2014,9:2287-2298.

    [32] Zhang H,Sachdev D,Wang C,et al.Detection and downregulation of type I IGF receptor expression by antibody-conjugated quantum dots in breast cancer cells[J].Breast Cancer Res Treat,2009,114(2):277-285.

    [33] Yong K T,Ding H,Roy I,et al.Imaging pancreatic cancer using bioconjugated InP quantum dots[J].ACS Nano,2009,3(3):502-510.

    [34] Anirban D,Eric HallChien MW.Noncovalent attachment of PbS quantum dots to single- and multiwalled carbon nanotubes[J].J nanotechno,2014,2014:1-7.

    [35] Kawashima N,Nakayama K,Itoh K,et al.Reversible dimerization of EGFR revealed by single-molecule fluorescence imaging using quantum dots[J].Chemistry,2010,16(4):1186-1192.

    [36] Zhang CL,Ji XH,Zhang Y, et al.One-pot synthesized aptamer-functionalized cdTe:Zn2+ quantum dots for tumor-targeted fluorescence imaging in vitro and in vivo[J].Anal Chem,2013,85(12):5843-5849.

    [37] Nakane Y,Tsukasaki Y,Sakata T,et al.Aqueous synthesis of glutathione-coated PbS quantum dots with tunable emission for non-invasive fluorescence imaging in the second near-infrared biological window (1000-1400 nm)[J].Chem Commun,2013,49(69):7584-7586.

    [38] Chen HY,Cui SS,Tu ZZ,et al.In vivo monitoring of organ-selective Distribution of CdHgTe/SiO2Nanoparticles in mouse model[J].J Fluoresc,2012,22(2):699-706.

    [39] Fatehi D,Baral T N,Abulrob A.In vivo imaging of brain cancer using epidermal growth factor single domain antibody bioconjugated to near-infrared quantum dots[J].J Nanosci Nanotechno,2014,14(7):5355-5362.

    [40] Fang M,Peng C W,Yuan J P,et al.Coevolution of the tumor microenvironment revealed by quantum dot-based multiplexed imaging of hepatocellular carcinoma[J].Future Oncol,2013,9(7):1029-1037.

    [41] Smith B R,Cheng Z,De A,et al.Real-time intravital imaging of RGD-quantum dot binding to luminal endothelium in mouse tumor neovasculature[J].Nano lett,2008,8(9):2599-2606.

    [42] Hu R,Yong KT,Roy I,et al.Functionalized near-infrared quantum dots for in vivo tumor vasculature imaging[J].Nanotechnology,2010,21(14):145105-145114.

    [43] Mulder WJ,Strijkers GJ,Nicolay K,et al.Quantum dots for multimodal molecular imaging of angiogenesis[J].Angiogenesis,2010,13( 2):131-134.

    [44] Kim S,Lim YT,Soltesz EG,et al.Near-infrared fluorescent type II quantum dots for sentinel lymph node mapping[J].Nat Biotechnol,2004,22:93-97.

    [45] Si C,Zhang Y,Lv X,et al.In vivo lymph node mapping by Cadmium Tellurium quantum dots in rats[J].J Surg Res,2014,192(2):305-311.

    [46] Wu Q,Chu M.Self-illuminating quantum dots for highly sensitive in vivo real-time luminescent mapping of sentinel lymph nodes[J].Int Nanomed,2012,7:3433-3443.

    [47] Li C,Zhang Y,Wang M,et al.In vivo real-time visualization of tissue blood flow and angiogenesis using Ag2S quantum dots in the NIR-II window[J].Biomaterials,2014,35(1):393-400.

    [48] Saitoh Y,Terada N,Saitoh S,et al.Histochemical analyses and quantum dot imaging of microvascular blood flow with pulmonary edema in living mouse lungs by “in vivo cryotechnique”[J].Histochem Cell Biol,2012,137(2):137-151.

    [49] Tam A L,Gupta N,Zhang Z,et al.Quantum dots trace lymphatic drainage from the mouse eye[J].Nanotechnology,2011,22(42):425101-425106.

    [50] Harush-Frenkel O,Altschuler Y,Benita S.Nanoparticle-cell interactions:drug delivery implications[J].Crit Rev Ther Drug Carrier Syst,2008,25:485-544.

    [51] Wen C J,Sung CT,Aljuffali IA,et al.Nanocomposite liposomes containing quantum dots and anticancer drugs for bioimaging and therapeutic delivery:a comparison of cationic,PEGylated and deformable liposomes[J].Nanotechnology,2013,24(32):325101.

    [52] Xu W,Liu L,Brown N J,et al.Quantum Dot-Conjugated Anti-GRP78 scFv Inhibits Cancer Growth in Mice[J].Molecules,2012,17(1):796-808.

    [53] Rejinold N S,Baby T,Nair S V,et al.Paclitaxel Loaded Fibrinogen Coated CdTe/ZnTe Core Shell Nanoparticles for Targeted Imaging and Drug Delivery to Breast Cancer Cells[J].J Biomed Nanotechnol,2013,9(10):1657-1671.

    [54] Chakravarthy KV,Davidson BA,Helinsk JD,et al.Doxorubicin-conjugated quantum dots to target alveolar macrophages and inflammation[J].Nanomedicine,2011,7(1):88-96.

    [55] Jeyadevi R,Sivasudha T,Rameshkumar A,et al.Enhancement of anti arthritic effect of quercetin using thioglycolic acid-capped cadmium telluride quantum dots as nanocarrier in adjuvant induced arthritic Wistar rats[J].Colloids Surf B Biointerfaces,2013,112:255-263.

    [56] Li J M,Zhao M X,Su H,et al.Multifunctional quantum-dot-based siRNA delivery for HPV18 E6 gene silence and intracellular imaging[J].Biomaterials,2011,32(31):7978-7987.

    [57] Jung J J,Solanki A,Memoli KA,et al.Selective inhibition of human brain tumor cell proliferation via multifunctional quantum dot-based siRNA delivery[J].Angew Chem Int Ed Engl,2010,49(1):103-107.

    功能化量子點(diǎn)在生物分析,生物成像和靶向運(yùn)輸中的應(yīng)用

    賀冬秀,王丹霞,全文捷,喻翠云

    (南華大學(xué)藥物藥理研究所藥學(xué)系,湖南 衡陽 421001)

    賀冬秀,博士,副教授,碩士生導(dǎo)師。主要研究方向?yàn)樯锓治觥⒎肿佑跋衽c分子探針。主持完成和在研湖南省自然科學(xué)基金項(xiàng)目、湖南省中醫(yī)藥管理局重點(diǎn)課題等課題。在《中國(guó)科學(xué)》、《J Pharm Biomed Anal》等期刊發(fā)表科研論文20余篇。

    量子點(diǎn)是一類具有優(yōu)良光學(xué)特性的熒光納米材料。量子點(diǎn)與靶向配體結(jié)合形成功能化量子點(diǎn)。功能化量子點(diǎn)被認(rèn)為是潛在的、新穎的分子探針,適合于一系列生物醫(yī)學(xué)研究。近年來,功能化量子點(diǎn)在生物醫(yī)學(xué)的應(yīng)用和研究領(lǐng)域,特別是在生物分析,生物成像和靶向運(yùn)輸?shù)确矫姘l(fā)揮著重要作用。

    功能化量子點(diǎn); 應(yīng)用; 生物分析; 生物成像; 靶向運(yùn)輸

    10.15972/j.cnki.43-1509/r.2015.05.001

    date:2015-08-30;

    date2015-9-11

    SupportedFundingNational Natural Science Foundation of China (81471777,81102409) and Natural Science Foundation of Hunan province (13JJ6096).

    *Correspondingauthor1025165380@qq.com.

    Q599DocumentCodeA

    (此文編輯:秦旭平)

    猜你喜歡
    功能化生物醫(yī)學(xué)探針
    芻議“生物醫(yī)學(xué)作為文化”的研究進(jìn)路——兼論《作為文化的生物醫(yī)學(xué)》
    靈長(zhǎng)類生物醫(yī)學(xué)前沿探索中的倫理思考
    國(guó)外生物醫(yī)學(xué)文獻(xiàn)獲取的技術(shù)工具:述評(píng)與啟示
    多通道Taqman-探針熒光定量PCR鑒定MRSA方法的建立
    LED光源在生物醫(yī)學(xué)中的應(yīng)用分析
    石墨烯及其功能化復(fù)合材料制備研究
    BOPIM-dma作為BSA Site Ⅰ特異性探針的研究及其應(yīng)用
    透射電子顯微鏡中的掃描探針裝置
    功能化三聯(lián)吡啶衍生物的合成及其對(duì)Fe2+識(shí)別研究
    石墨烯的制備、功能化及在化學(xué)中的應(yīng)用
    河南科技(2014年11期)2014-02-27 14:09:49
    日韩 亚洲 欧美在线| 22中文网久久字幕| 午夜激情福利司机影院| 欧美精品国产亚洲| 久久99蜜桃精品久久| 亚洲国产高清在线一区二区三| 国产免费男女视频| 久久久久免费精品人妻一区二区| 丝袜喷水一区| 蜜桃久久精品国产亚洲av| 啦啦啦啦在线视频资源| 亚洲婷婷狠狠爱综合网| 97人妻精品一区二区三区麻豆| 久久久久久久亚洲中文字幕| 精品久久久久久久末码| 国产三级在线视频| 伦理电影大哥的女人| 国产 一区 欧美 日韩| 国产老妇伦熟女老妇高清| 欧美xxxx性猛交bbbb| 久久精品影院6| 成人国产麻豆网| 日韩精品青青久久久久久| 亚洲成人av在线免费| 99久久精品一区二区三区| 久久久久久久久久久丰满| 久热久热在线精品观看| 男人狂女人下面高潮的视频| 免费在线观看成人毛片| 成人午夜高清在线视频| 美女黄网站色视频| 亚洲欧洲国产日韩| 亚洲国产精品sss在线观看| 身体一侧抽搐| 免费av观看视频| 国产激情偷乱视频一区二区| 久久久久久久亚洲中文字幕| 午夜精品一区二区三区免费看| 日韩高清综合在线| 岛国在线免费视频观看| 中文字幕熟女人妻在线| 中国国产av一级| 精品熟女少妇av免费看| 老女人水多毛片| 亚洲美女搞黄在线观看| 能在线免费看毛片的网站| 日本五十路高清| 亚洲精品aⅴ在线观看| 99视频精品全部免费 在线| 少妇高潮的动态图| 久久鲁丝午夜福利片| 亚洲av电影不卡..在线观看| 女人十人毛片免费观看3o分钟| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 老司机福利观看| 热99re8久久精品国产| 一边摸一边抽搐一进一小说| 精品久久久久久久末码| 久久韩国三级中文字幕| 91久久精品国产一区二区成人| 超碰av人人做人人爽久久| 乱人视频在线观看| 18禁在线播放成人免费| 日本-黄色视频高清免费观看| 久久久久久久久久久丰满| 国内精品宾馆在线| 久久久久久国产a免费观看| 国产免费视频播放在线视频 | 成年女人看的毛片在线观看| 伦精品一区二区三区| 伦精品一区二区三区| 九草在线视频观看| 欧美最新免费一区二区三区| 网址你懂的国产日韩在线| 少妇高潮的动态图| 人体艺术视频欧美日本| 成人欧美大片| 中文字幕人妻熟人妻熟丝袜美| 中文乱码字字幕精品一区二区三区 | 亚洲国产精品成人综合色| 久久久成人免费电影| 亚洲自拍偷在线| 亚洲精品aⅴ在线观看| 亚洲色图av天堂| 国产伦在线观看视频一区| 麻豆一二三区av精品| 日韩一区二区视频免费看| 可以在线观看毛片的网站| 国产成人午夜福利电影在线观看| 欧美高清成人免费视频www| 国产亚洲精品av在线| 天天一区二区日本电影三级| 啦啦啦韩国在线观看视频| 国产一级毛片在线| 成人亚洲精品av一区二区| 国产在线一区二区三区精 | 中文字幕免费在线视频6| 国产美女午夜福利| 精品无人区乱码1区二区| 国产单亲对白刺激| 老司机影院成人| 国模一区二区三区四区视频| 国产精华一区二区三区| 国产亚洲av嫩草精品影院| 丰满少妇做爰视频| 国产精品精品国产色婷婷| 久久精品夜夜夜夜夜久久蜜豆| 神马国产精品三级电影在线观看| 国产精品一区二区性色av| 国产一级毛片七仙女欲春2| 欧美不卡视频在线免费观看| 国产亚洲精品av在线| 免费一级毛片在线播放高清视频| 久久久久久久久中文| 搞女人的毛片| 人人妻人人澡人人爽人人夜夜 | 长腿黑丝高跟| av播播在线观看一区| 午夜日本视频在线| 黄片wwwwww| 久久久久久久久大av| 日本午夜av视频| 最新中文字幕久久久久| 97人妻精品一区二区三区麻豆| 国产精品av视频在线免费观看| 国产一区亚洲一区在线观看| a级毛片免费高清观看在线播放| 我要搜黄色片| 国产精品久久久久久av不卡| 亚洲av免费高清在线观看| 国产美女午夜福利| 欧美性感艳星| 99九九线精品视频在线观看视频| 精品久久久久久久久亚洲| 插逼视频在线观看| 小蜜桃在线观看免费完整版高清| 99热这里只有是精品50| 天堂网av新在线| 尤物成人国产欧美一区二区三区| 男女那种视频在线观看| 国产欧美日韩精品一区二区| 国产免费男女视频| 国产av码专区亚洲av| 边亲边吃奶的免费视频| av在线观看视频网站免费| 色综合亚洲欧美另类图片| 久久精品国产自在天天线| 亚洲成人精品中文字幕电影| 夜夜看夜夜爽夜夜摸| 久久久久久久久久久免费av| 亚洲最大成人中文| 91狼人影院| 91狼人影院| 内射极品少妇av片p| 不卡视频在线观看欧美| 国产成人freesex在线| 亚洲国产精品合色在线| 欧美激情久久久久久爽电影| .国产精品久久| 亚洲精品国产av成人精品| 毛片一级片免费看久久久久| 亚洲国产精品成人久久小说| 久热久热在线精品观看| 国产精品麻豆人妻色哟哟久久 | 欧美成人午夜免费资源| 欧美极品一区二区三区四区| 午夜久久久久精精品| a级一级毛片免费在线观看| 天天一区二区日本电影三级| 国产老妇女一区| 身体一侧抽搐| 亚洲成人精品中文字幕电影| 国产精品,欧美在线| 淫秽高清视频在线观看| av在线播放精品| 最近中文字幕高清免费大全6| 天天躁日日操中文字幕| 熟女人妻精品中文字幕| 亚洲美女搞黄在线观看| 尤物成人国产欧美一区二区三区| 老司机福利观看| 亚洲国产精品久久男人天堂| 国产一区有黄有色的免费视频 | 成人三级黄色视频| 成人国产麻豆网| 久久久久久国产a免费观看| 丝袜美腿在线中文| 久久精品夜色国产| 国产又黄又爽又无遮挡在线| 高清毛片免费看| 亚洲人成网站高清观看| 成人综合一区亚洲| a级一级毛片免费在线观看| 欧美+日韩+精品| 在线天堂最新版资源| 亚洲中文字幕一区二区三区有码在线看| 日本免费一区二区三区高清不卡| 久久婷婷人人爽人人干人人爱| 中文字幕熟女人妻在线| 毛片女人毛片| 欧美丝袜亚洲另类| videos熟女内射| av在线亚洲专区| 熟女电影av网| 国产私拍福利视频在线观看| 国产精品爽爽va在线观看网站| 日日摸夜夜添夜夜爱| 非洲黑人性xxxx精品又粗又长| 日韩欧美精品免费久久| 插阴视频在线观看视频| 婷婷色综合大香蕉| 国产极品精品免费视频能看的| 亚洲欧美日韩东京热| 久久久欧美国产精品| 日韩一区二区视频免费看| 人人妻人人澡人人爽人人夜夜 | 日韩一区二区三区影片| 国产av一区在线观看免费| 国产伦在线观看视频一区| 亚洲中文字幕日韩| 久久99蜜桃精品久久| 精品午夜福利在线看| 成人午夜高清在线视频| 久久精品夜色国产| 亚洲国产精品国产精品| 国产色婷婷99| 美女被艹到高潮喷水动态| 国产精品乱码一区二三区的特点| 国产精品乱码一区二三区的特点| 久久鲁丝午夜福利片| 高清午夜精品一区二区三区| 久久久久久九九精品二区国产| 欧美日韩在线观看h| 99热网站在线观看| 久久久久久久久久黄片| 久久综合国产亚洲精品| 国产在视频线精品| 国产精品国产三级国产专区5o | 亚洲电影在线观看av| 成人三级黄色视频| 色综合站精品国产| 亚洲精品国产av成人精品| 蜜桃久久精品国产亚洲av| 欧美+日韩+精品| 全区人妻精品视频| 人人妻人人澡欧美一区二区| 国产黄a三级三级三级人| 国模一区二区三区四区视频| 18禁动态无遮挡网站| 97超碰精品成人国产| h日本视频在线播放| 在线观看av片永久免费下载| 免费电影在线观看免费观看| 欧美成人a在线观看| 超碰97精品在线观看| 97超碰精品成人国产| 国产精品久久久久久久电影| 色噜噜av男人的天堂激情| 青青草视频在线视频观看| 国产精品久久久久久精品电影小说 | 国产一区二区三区av在线| 亚洲国产精品成人综合色| 一个人免费在线观看电影| 18禁裸乳无遮挡免费网站照片| 免费黄色在线免费观看| 国产精品麻豆人妻色哟哟久久 | 亚洲不卡免费看| 国产精品乱码一区二三区的特点| av播播在线观看一区| 欧美一区二区国产精品久久精品| av在线播放精品| 亚洲欧美日韩高清专用| 国产单亲对白刺激| 国产探花在线观看一区二区| 国产白丝娇喘喷水9色精品| 国产亚洲5aaaaa淫片| 亚洲自偷自拍三级| 六月丁香七月| 国产一级毛片在线| 亚洲成av人片在线播放无| 国产爱豆传媒在线观看| av又黄又爽大尺度在线免费看 | 午夜精品在线福利| 欧美成人精品欧美一级黄| 91狼人影院| av在线观看视频网站免费| 亚洲精品国产成人久久av| 狂野欧美白嫩少妇大欣赏| 干丝袜人妻中文字幕| 欧美激情国产日韩精品一区| 亚洲欧美日韩东京热| 久久99精品国语久久久| 国产真实伦视频高清在线观看| 97人妻精品一区二区三区麻豆| 国内揄拍国产精品人妻在线| 丰满人妻一区二区三区视频av| 国产精品精品国产色婷婷| 一边摸一边抽搐一进一小说| 欧美高清性xxxxhd video| 成人高潮视频无遮挡免费网站| 亚洲成人精品中文字幕电影| 一级毛片久久久久久久久女| 免费在线观看成人毛片| 久久久久久久久中文| 亚洲精品乱码久久久久久按摩| 精品午夜福利在线看| 亚洲五月天丁香| 女人被狂操c到高潮| 免费人成在线观看视频色| 欧美最新免费一区二区三区| 国产 一区精品| 乱人视频在线观看| 国产乱来视频区| 一级毛片aaaaaa免费看小| 成人一区二区视频在线观看| 国产精品不卡视频一区二区| 日韩在线高清观看一区二区三区| 国产午夜福利久久久久久| 成人国产麻豆网| 搡老妇女老女人老熟妇| 精品无人区乱码1区二区| 黄色欧美视频在线观看| 国产精品久久久久久久电影| 色综合亚洲欧美另类图片| 精品久久久久久久末码| av线在线观看网站| 亚洲经典国产精华液单| 精品一区二区免费观看| 插阴视频在线观看视频| 国产精品麻豆人妻色哟哟久久 | 国产精品一区二区三区四区免费观看| 午夜a级毛片| 国产免费视频播放在线视频 | 搡老妇女老女人老熟妇| 乱码一卡2卡4卡精品| 男人舔奶头视频| 狠狠狠狠99中文字幕| 久久久久久久国产电影| 亚洲中文字幕日韩| 欧美性感艳星| videos熟女内射| 人人妻人人澡欧美一区二区| 久久午夜福利片| 青春草视频在线免费观看| 婷婷色综合大香蕉| 丰满少妇做爰视频| 国产欧美日韩精品一区二区| 日韩欧美精品v在线| 精品久久久久久久末码| 国产激情偷乱视频一区二区| 欧美bdsm另类| 在线免费十八禁| 一个人看的www免费观看视频| 国产精品人妻久久久影院| 国产精品久久视频播放| 久久人妻av系列| 国产爱豆传媒在线观看| 听说在线观看完整版免费高清| 麻豆av噜噜一区二区三区| 国产成人freesex在线| 我的女老师完整版在线观看| 人妻系列 视频| 亚洲中文字幕日韩| 我要看日韩黄色一级片| 午夜精品国产一区二区电影 | 精品久久久久久久久亚洲| 亚洲五月天丁香| 少妇的逼水好多| 七月丁香在线播放| 特大巨黑吊av在线直播| 永久网站在线| 久久综合国产亚洲精品| 亚洲美女搞黄在线观看| 国产毛片a区久久久久| 99久久中文字幕三级久久日本| 在线免费十八禁| 国产午夜精品论理片| 看非洲黑人一级黄片| 能在线免费看毛片的网站| 国产色爽女视频免费观看| 亚洲精品aⅴ在线观看| 免费大片18禁| 亚洲人成网站在线播| 小说图片视频综合网站| 床上黄色一级片| 搞女人的毛片| 男女下面进入的视频免费午夜| 国产精品久久视频播放| 免费人成在线观看视频色| 日本五十路高清| 嫩草影院入口| 精品人妻一区二区三区麻豆| 精品国产一区二区三区久久久樱花 | 亚洲精品影视一区二区三区av| 久久精品熟女亚洲av麻豆精品 | 久久久欧美国产精品| 亚洲欧美精品专区久久| 一区二区三区四区激情视频| 精品99又大又爽又粗少妇毛片| 免费观看在线日韩| 久久久久久大精品| 成人亚洲精品av一区二区| 日本免费在线观看一区| 淫秽高清视频在线观看| 亚洲久久久久久中文字幕| 午夜福利网站1000一区二区三区| 亚洲精品色激情综合| 国产精品一二三区在线看| 亚洲在久久综合| 亚洲美女视频黄频| 国产精品熟女久久久久浪| 中国美白少妇内射xxxbb| 国产精品av视频在线免费观看| 能在线免费看毛片的网站| 国产精品野战在线观看| 婷婷色麻豆天堂久久 | 99久久精品一区二区三区| 2022亚洲国产成人精品| 一个人观看的视频www高清免费观看| 成人综合一区亚洲| 91午夜精品亚洲一区二区三区| 免费观看无遮挡的男女| 亚洲国产看品久久| 国产 一区精品| 又黄又粗又硬又大视频| 精品人妻在线不人妻| 亚洲色图 男人天堂 中文字幕 | 黄网站色视频无遮挡免费观看| 久久久久久久久久成人| 99热网站在线观看| 水蜜桃什么品种好| 国产成人精品福利久久| 久久久国产一区二区| 丝袜在线中文字幕| 最近中文字幕2019免费版| 一本色道久久久久久精品综合| av女优亚洲男人天堂| 亚洲国产精品999| 人人妻人人澡人人看| 大香蕉97超碰在线| 人妻 亚洲 视频| 搡女人真爽免费视频火全软件| 下体分泌物呈黄色| 久久久久久久久久成人| 日韩三级伦理在线观看| 色婷婷久久久亚洲欧美| 中国美白少妇内射xxxbb| 又大又黄又爽视频免费| 热99国产精品久久久久久7| 宅男免费午夜| 免费播放大片免费观看视频在线观看| 国产在视频线精品| 热99久久久久精品小说推荐| 欧美bdsm另类| 日本欧美国产在线视频| 中国美白少妇内射xxxbb| 免费在线观看黄色视频的| 亚洲色图综合在线观看| 欧美3d第一页| 久久99一区二区三区| 亚洲精品av麻豆狂野| 考比视频在线观看| 少妇人妻 视频| 又黄又粗又硬又大视频| 日韩在线高清观看一区二区三区| 少妇人妻 视频| 秋霞在线观看毛片| 欧美日韩一区二区视频在线观看视频在线| 久久热在线av| 国产成人精品一,二区| 国产黄频视频在线观看| 一区二区三区乱码不卡18| 日韩成人伦理影院| 18禁裸乳无遮挡动漫免费视频| 啦啦啦啦在线视频资源| 精品熟女少妇av免费看| 午夜福利视频精品| 久久久精品免费免费高清| 亚洲国产av影院在线观看| 在线免费观看不下载黄p国产| 免费高清在线观看日韩| 久久影院123| 男人添女人高潮全过程视频| 日韩伦理黄色片| 免费黄色在线免费观看| 免费高清在线观看日韩| 男女高潮啪啪啪动态图| 又黄又爽又刺激的免费视频.| 亚洲精品视频女| 一级毛片我不卡| 久久精品国产亚洲av涩爱| 18禁裸乳无遮挡动漫免费视频| 亚洲国产欧美日韩在线播放| 伊人亚洲综合成人网| 国产免费一区二区三区四区乱码| 秋霞伦理黄片| 精品一区二区三区四区五区乱码 | 69精品国产乱码久久久| www日本在线高清视频| 不卡视频在线观看欧美| 久久人人爽人人爽人人片va| 国产欧美日韩一区二区三区在线| 天天操日日干夜夜撸| av卡一久久| 国产又色又爽无遮挡免| 亚洲av.av天堂| 高清毛片免费看| 精品福利永久在线观看| 精品少妇内射三级| a级片在线免费高清观看视频| 少妇人妻 视频| 亚洲国产色片| 黑丝袜美女国产一区| 免费大片18禁| 少妇的逼水好多| 亚洲国产欧美在线一区| 乱人伦中国视频| 日本午夜av视频| 麻豆乱淫一区二区| 亚洲av欧美aⅴ国产| 欧美日韩国产mv在线观看视频| 成年人免费黄色播放视频| 91久久精品国产一区二区三区| 午夜福利视频在线观看免费| 波多野结衣一区麻豆| 欧美xxxx性猛交bbbb| 中文字幕另类日韩欧美亚洲嫩草| 久久97久久精品| 国产伦理片在线播放av一区| 亚洲欧洲日产国产| 涩涩av久久男人的天堂| 国产 一区精品| 欧美xxxx性猛交bbbb| 国产精品.久久久| 免费大片18禁| 80岁老熟妇乱子伦牲交| 一本—道久久a久久精品蜜桃钙片| 国产深夜福利视频在线观看| 日本色播在线视频| 激情视频va一区二区三区| 国产成人精品无人区| 99久久精品国产国产毛片| 老司机影院毛片| 91精品伊人久久大香线蕉| 国产一区二区三区综合在线观看 | 亚洲精品国产av蜜桃| 2022亚洲国产成人精品| 久久久久精品性色| 国产福利在线免费观看视频| 中文字幕av电影在线播放| 国产精品不卡视频一区二区| 亚洲精品色激情综合| 免费黄网站久久成人精品| 国产黄色免费在线视频| 中文乱码字字幕精品一区二区三区| 香蕉丝袜av| 毛片一级片免费看久久久久| 久久久精品免费免费高清| 一本—道久久a久久精品蜜桃钙片| 免费黄网站久久成人精品| 国产一区二区三区av在线| 一二三四在线观看免费中文在 | 亚洲色图 男人天堂 中文字幕 | 精品一区二区三卡| 一级毛片 在线播放| 欧美成人午夜免费资源| 最黄视频免费看| 999精品在线视频| 中文欧美无线码| a级毛色黄片| 久久久亚洲精品成人影院| 热99国产精品久久久久久7| 熟女电影av网| 99九九在线精品视频| 成人亚洲精品一区在线观看| 亚洲,一卡二卡三卡| 日本黄色日本黄色录像| 天堂8中文在线网| 久久av网站| 青春草亚洲视频在线观看| 国产午夜精品一二区理论片| 男女边吃奶边做爰视频| 久久亚洲国产成人精品v| 啦啦啦中文免费视频观看日本| 国产白丝娇喘喷水9色精品| 一本久久精品| av.在线天堂| 亚洲欧美一区二区三区国产| 久久精品国产亚洲av涩爱| 国产视频首页在线观看| 亚洲精华国产精华液的使用体验| 九色成人免费人妻av| 国产日韩欧美在线精品| xxx大片免费视频| 国产色婷婷99| 精品午夜福利在线看| 亚洲国产成人一精品久久久| 少妇人妻 视频| 日韩制服丝袜自拍偷拍| 国产一区二区在线观看日韩| 九九爱精品视频在线观看| 亚洲国产av新网站| 精品亚洲成a人片在线观看| 少妇的丰满在线观看| 青春草视频在线免费观看| 日本猛色少妇xxxxx猛交久久| 亚洲一级一片aⅴ在线观看| 亚洲国产毛片av蜜桃av| 精品久久蜜臀av无| 成人综合一区亚洲| 色哟哟·www| 考比视频在线观看| 伦理电影免费视频| 亚洲国产精品999| 一二三四中文在线观看免费高清|