董 純,周慧慧,麥康森,徐 瑋,何 艮
(中國(guó)海洋大學(xué)水產(chǎn)學(xué)院農(nóng)業(yè)部水產(chǎn)動(dòng)物營(yíng)養(yǎng)與飼料重點(diǎn)實(shí)驗(yàn)室,山東 青島 266003)
?
復(fù)合蛋白源替代魚(yú)粉對(duì)大菱鲆生長(zhǎng)、體組成和表觀消化率的影響*
董 純,周慧慧,麥康森,徐 瑋,何 艮**
(中國(guó)海洋大學(xué)水產(chǎn)學(xué)院農(nóng)業(yè)部水產(chǎn)動(dòng)物營(yíng)養(yǎng)與飼料重點(diǎn)實(shí)驗(yàn)室,山東 青島 266003)
本實(shí)驗(yàn)旨在研究谷朊粉、寵物級(jí)雞肉粉、脫脂肉骨粉、豆粕和玉米蛋白粉復(fù)合替代0%(對(duì)照組,CON)、35%(FM35)、50%(FM50)、65%(FM65)、80%(FM80)魚(yú)粉對(duì)大菱鲆(Scophthalmusmaximus)生長(zhǎng)、體組成和表觀消化率的影響。設(shè)計(jì)5組等氮等能(粗蛋白52%,總能19kJ/g)的飼料,養(yǎng)殖魚(yú)初重(8.63±0.01)g,養(yǎng)殖周期9周。結(jié)果顯示,替代組體末重、增重率和特定生長(zhǎng)率顯著低于CON(P<0.05),而攝食率和成活率各處理組之間沒(méi)有顯著變化(P>0.05)。替代組飼料效率和蛋白質(zhì)效率隨著替代水平的升高而降低,F(xiàn)M65和FM80飼料效率和FM80蛋白質(zhì)效率顯著低于CON(P<0.05)。復(fù)合蛋白替代魚(yú)粉對(duì)魚(yú)體水分、粗蛋白和粗脂肪沒(méi)有顯著影響(P>0.05),但替代組魚(yú)體灰分顯著高于CON(P<0.05)。除FM35干物質(zhì)表觀消化率與CON沒(méi)有顯著差異(P>0.05),其他替代組的干物質(zhì)和粗蛋白表觀消化率均顯著低于CON(P<0.05)。研究表明,該比例復(fù)合蛋白源替代魚(yú)粉水平應(yīng)不超過(guò)35%。
大菱鲆;魚(yú)粉;復(fù)合蛋白;生長(zhǎng);體組成;表觀消化率
大菱鲆(Scophthalmusmaximus)肉質(zhì)鮮美,在中國(guó)北方廣泛養(yǎng)殖,是一種重要的商業(yè)肉食性魚(yú)類,主要投喂高蛋白商業(yè)飼料[1-2]。魚(yú)粉蛋白含量高、氨基酸平衡、適口性好、抗?fàn)I養(yǎng)因子少,含有一些未知促生長(zhǎng)因子,是大菱鲆商業(yè)飼料的首選蛋白源[3]。但隨著野生漁業(yè)資源的不斷減少,養(yǎng)殖業(yè)規(guī)模的不斷擴(kuò)大,魚(yú)粉資源供不應(yīng)求,價(jià)格持續(xù)上漲。因此,尋求新型高效蛋白源替代魚(yú)粉成為水產(chǎn)動(dòng)物營(yíng)養(yǎng)與飼料學(xué)的研究重點(diǎn)。
目前常用新型蛋白源主要是植物蛋白源如豆粕、玉米蛋白粉、花生粕等。植物蛋白源資源豐富、價(jià)格低廉,是一種理想的蛋白源,但抗?fàn)I養(yǎng)因子[4]、氨基酸不平衡[5]等因素限制其廣泛應(yīng)用,如豆粕替代魚(yú)粉水平大于20%就會(huì)顯著降低黑海比目魚(yú)(Scophthalmusmaeoticus)的生長(zhǎng)和營(yíng)養(yǎng)利用[6]。動(dòng)物蛋白源如雞肉粉、肉骨粉、血粉等,富含游離氨基酸、?;撬帷ⅨZ肌肽等[7],這些水溶性小分子含氮化合物具有促攝食作用,可以改善飼料的味道[8],魚(yú)粉替代率較高,如寵物級(jí)雞肉粉替代60%魚(yú)粉對(duì)軍曹魚(yú)(Rachycentroncanadum)的生長(zhǎng)沒(méi)有顯著影響[9],肉骨粉替代45%魚(yú)粉而不影響大黃魚(yú)(PseudosciaenacroceaRichardson)的生長(zhǎng)[10]。復(fù)合蛋白源是將2種以上的植物蛋白源和(或)動(dòng)物蛋白源以一定的配比混合,由于可以平衡營(yíng)養(yǎng)物、補(bǔ)充氨基酸、掩蓋差的適口性[11-13],近年來(lái)在新型蛋白源的研究中廣受關(guān)注,如發(fā)酵豆粕和魷魚(yú)副產(chǎn)物替代36%魚(yú)粉對(duì)牙鲆(Paralichthysolivaceus)的生長(zhǎng)不造成影響[14],混合植物蛋白替代39%魚(yú)粉,對(duì)大菱鲆生長(zhǎng)無(wú)顯著影響[15]。
本研究選擇適口性好的復(fù)合蛋白源谷朊粉、寵物級(jí)雞肉粉、脫脂肉骨粉、豆粕和玉米蛋白粉,依照氨基酸平衡的原則設(shè)計(jì)配方(1:1:4:1:3),以不同水平替代魚(yú)粉,研究該配比復(fù)合蛋白源對(duì)大菱鲆生長(zhǎng)、體組成和表觀消化率的影響,為大菱鲆新型蛋白源的開(kāi)發(fā)研究提供參考。
1.1 飼料原料和飼料配方
實(shí)驗(yàn)用蛋白源為紅魚(yú)粉、谷朊粉、寵物級(jí)雞肉粉、脫脂肉骨粉、豆粕和玉米蛋白粉,脂肪源為魚(yú)油和棕櫚油,糖源為小麥粉。其中肉骨粉脂肪較高,易發(fā)生氧化酸敗,因此對(duì)其進(jìn)行脫脂。原料的營(yíng)養(yǎng)和必需氨基酸組成見(jiàn)表1。
實(shí)驗(yàn)設(shè)計(jì)5組等氮等能(粗蛋白52%,總能19kJ/g)的飼料,以62%魚(yú)粉組作為對(duì)照(CON),谷朊粉、寵物級(jí)雞肉粉、脫脂肉骨粉、豆粕和玉米蛋白粉(1:1:4:1:3)復(fù)合替代35%(FM35)、50%(FM50)、65%(FM65)、80%(FM80)魚(yú)粉。根據(jù)魚(yú)粉對(duì)照組必需氨基酸組成,添加晶體氨基酸L-組氨酸、L-賴氨酸和DL-蛋氨酸平衡各處理組必需氨基酸。添加微晶纖維素平衡能量。具體飼料配方見(jiàn)表2。
制作飼料時(shí),首先將所有原料粉碎后過(guò)80目篩,依配方表(見(jiàn)表2)從小到大逐一混勻,再將魚(yú)油、棕櫚油和大豆卵磷脂搓散攪拌均勻后加到原料中,所有原料與油徹底混勻,然后加水搓均勻。用雙螺桿制粒機(jī)(F-26(Ⅱ),華南理工大學(xué))制粒,45℃烘箱干燥12h,最后用塑料袋裝好密封保存于-20℃冰箱備用。
表1 飼料原料營(yíng)養(yǎng)和必需氨基酸組成(干物質(zhì))Table 1 Nutrition and essential amino acid composition of dietary ingredient (dry matter) /%
Note:①Nutrient composition;②Brown fishmeal;③Wheat gluten meal;④Pet food-grade poultry by-product meal;⑤Defatted meat and bone meal;⑥Soybean meal;⑦Corn gluten meal;⑧Wheat flour
表2 實(shí)驗(yàn)飼料配方和主要營(yíng)養(yǎng)成分(干物質(zhì))Table 2 Formulation and proximate chemical composition of the tested diets (dry matter)
續(xù)表2
原料Ingredients處理組TreatmentsCONFM35FM50FM65FM80棕櫚油Palmoil3.753.963.704.004.60微晶纖維素Microcrystallinecellulose0.000.001.301.831.17大豆卵磷脂Soybeanlecithin2.002.002.002.002.00氯化膽堿Cholinechloride0.250.250.250.250.25誘食劑Attrancta0.500.500.500.500.50維生素預(yù)混料Vitaminpremixb0.500.500.500.500.50礦物質(zhì)預(yù)混料Mineralpremixc1.001.001.001.001.00磷酸二氫鈣Ca(H2PO4)20.300.300.300.300.30乙氧基喹啉Ethoxyquin0.050.050.050.050.05丙酸鈣Calciumpropionate0.050.050.050.050.05三氧化二釔Y2O30.100.100.100.100.10總量Total100.00100.00100.00100.00100.00營(yíng)養(yǎng)組成Nutrientcomposition水分Moisture3.353.052.753.043.66粗蛋白Crudeprotein52.3750.2251.7751.1751.32粗脂肪Crudelipid12.5613.9114.8915.8916.77灰分Ash11.4013.4814.0214.9614.77總能量Grossenergyd/kJ·g-119.3619.2918.9618.9119.07
注:a誘食劑:甜菜堿:二甲基-丙酸噻亭:甘氨酸:丙氨酸:5-磷酸肌苷=4:2:2:1:1。b維生素預(yù)混料(mg/kg):維生素A,32;維生素D,5;維生素E,240;維生素K,10;維生素B1,25;維生素B2,45;維生素B6,20;維生素B12,10;泛酸鈣,60;煙酸,200;葉酸,20;生物素,60;肌醇,800;維生素C磷酸酯,2000;微晶纖維素,1473。c礦物質(zhì)預(yù)混料(mg/kg):MgSO4·7H2O,1200;CuSO4·5H2O;10;FeSO4·H2O,80;ZnSO4·H2O,50;MnSO4·H2O,45;CoCl2·6H2O(1%),50;Na2SeO3(1%),20;碘酸鈣,60;沸石粉,8485。d能量通過(guò)蛋白質(zhì)、脂肪和糖類的平均產(chǎn)熱量計(jì)算得出,產(chǎn)熱量分別為23.6,39.5和17.2 kJ/g。糖類物質(zhì)為100-(蛋白質(zhì)+脂肪+灰分+水分)。aAttractant:betaine:dimethyl-propiothetin:glycine: alanine:5-phosphate inosine = 4:2:2:1:1.bVitamin premix(mg/kg diet): retinal palmitate, 32; cholecalciferol, 5; DL-ɑ-tocopherol acetate, 240; menadione, 10; thiamin-HCl, 25; riboflavin, 45; pyridoxine-HCl, 20; cyanocobalamin, 10; D-calcium pantothenate, 60; amine nicotinic acid, 200; folic acid, 20; biotin, 60; mesoinositol, 800; ascorbyl polyphosphate(contained 35% ascorbic acid) , 2000; microcrystalline cellulose, 1473.cMineral premix(mg/kg diet): MgSO4·7H2O, 1200; CuSO4·5H2O, 10; FeSO4·H2O, 80; ZnSO4·H2O, 50; MnSO4·H2O, 45; CoCl2·6H2O(1%), 50; Na2SeO3(1%), 20; calcium iodine, 60; zoelite, 8485.dGross energy calculated using combustion values for protein, lipid and carbohydrate of 23.6, 39.5 and 17.2 kJ·g-1, respectively. Carbohydrate was calculated by the difference: 100-(protein + lipid + ash + moisture).
1.2 實(shí)驗(yàn)用魚(yú)和實(shí)驗(yàn)條件
實(shí)驗(yàn)大菱鲆幼魚(yú)購(gòu)買于萊州養(yǎng)殖廠(山東煙臺(tái))。養(yǎng)殖實(shí)驗(yàn)在山東海陽(yáng)黃海水產(chǎn)有限公司進(jìn)行,實(shí)驗(yàn)開(kāi)始前,魚(yú)暫養(yǎng)1周以適應(yīng)養(yǎng)殖環(huán)境,期間投喂商業(yè)飼料。馴化結(jié)束后,禁食24h,然后挑選規(guī)格均一、體格健壯的大菱鲆幼魚(yú)(初重(8.63±0.01)g)隨機(jī)分配到15個(gè)216 L纖維玻璃缸中,每個(gè)處理3個(gè)重復(fù),每個(gè)重復(fù)30尾魚(yú)。實(shí)驗(yàn)用海水經(jīng)水泵持續(xù)抽送到過(guò)濾池中,經(jīng)沙濾以大約1.5 L/min的速度流到實(shí)驗(yàn)桶。養(yǎng)殖9周期間,每天于07:00和19:00飽食投喂,每次攝食0.5h后吸污、換水以保證水質(zhì)。整個(gè)養(yǎng)殖期間,持續(xù)曝氣,水溫控制在19~22℃,pH=7.5~8.0,鹽度30~33。
1.3 樣品收集和分析
實(shí)驗(yàn)開(kāi)始前,隨機(jī)收集20尾初始魚(yú)保存于-20℃冰箱以備全魚(yú)分析。養(yǎng)殖實(shí)驗(yàn)結(jié)束時(shí),停喂24h,記錄每桶實(shí)驗(yàn)魚(yú)的尾數(shù)和體重,每桶隨機(jī)選擇5尾作為全魚(yú)分析,保存于-20℃。從每桶中隨機(jī)選3尾實(shí)驗(yàn)魚(yú),測(cè)量體長(zhǎng)并稱重以計(jì)算肥滿度,之后取出全肝稱重計(jì)算肝體比。
實(shí)驗(yàn)原料、飼料和實(shí)驗(yàn)魚(yú)在105℃烘箱中烘至恒重計(jì)算水分含量;采用凱氏定氮法檢測(cè)樣品粗蛋白含量;采用索氏抽提法檢測(cè)粗脂肪含量;采用馬福爐在550℃環(huán)境下灼燒12h計(jì)算灰分含量。
實(shí)驗(yàn)飼料中添加1%的三氧化二釔(Y2O3)作為指示劑測(cè)定干物質(zhì)和粗蛋白表觀消化率。實(shí)驗(yàn)進(jìn)行4周后,用虹吸法收集糞便,保存于-20℃。待收集充足的糞便后,按上述方法測(cè)定糞便中的干物質(zhì)和粗蛋白。采用Frukawa和Tsukabatra的方法測(cè)定飼料和糞便中釔的含量,即用高氯酸消解后,使用電感耦合等離子體原子發(fā)射光譜儀(ICP-OES,Vista-mpx,Varian,美國(guó))分析飼料和糞便中的釔含量。
1.4 計(jì)算和統(tǒng)計(jì)方法
存活率(Survival rate,SR)=終末尾數(shù)/初始尾數(shù)×100%。
增重率(Weight gain rate,WGR)=(魚(yú)體末重-魚(yú)體初重)/魚(yú)體初重×100%。
特定生長(zhǎng)率(Specific growth rate,SGR)=(ln(魚(yú)體末重)-ln(魚(yú)體初重))/養(yǎng)殖天數(shù)×100%。
攝食率(Feed intake,F(xiàn)I)=(攝食飼料量/((魚(yú)體初重+魚(yú)體末重)/2))/養(yǎng)殖天數(shù)×100%。
飼料效率(Feed efficiency ratio,F(xiàn)ER)=魚(yú)體增重/攝食飼料量×100%。
蛋白質(zhì)效率(Protein efficiency ratio,PER)=魚(yú)體增重/攝入蛋白量×100%。
肥滿度(Condition factor,CF)=魚(yú)體重(g)/魚(yú)體長(zhǎng)(cm)3×100%。
肝體比(Hepatosomatic index,HSI)=肝重/體重×100%。
表觀消化率(Apparent digestibility coefficients,ADC)=(1-(飼料中釔含量%/糞便中釔含量)×(糞便營(yíng)養(yǎng)物/飼料營(yíng)養(yǎng)物))×100%。
1.5 數(shù)據(jù)統(tǒng)計(jì)與分析
使用軟件SPSS 17.0對(duì)所得數(shù)據(jù)進(jìn)行單因素方差分析(One-way ANOVA),若差異顯著,則進(jìn)行Tukey 多重比較(Tukey HSD test),顯著水平為P<0.05。實(shí)驗(yàn)所得數(shù)據(jù)表示為平均值±標(biāo)準(zhǔn)誤(mean ±S.E.,n=3)。
2.1 復(fù)合蛋白替代魚(yú)粉對(duì)大菱鲆幼魚(yú)生長(zhǎng)性能和飼料利用的影響
復(fù)合蛋白替代組與全魚(yú)粉對(duì)照組相比,體末重顯著降低(P<0.05),其中,F(xiàn)M35、FM50和FM65之間沒(méi)有顯著差異(P>0.05)。增重率和特定生長(zhǎng)率的變化趨勢(shì)與體末重相同。攝食率和成活率各處理組之間沒(méi)有顯著變化(P>0.05)。當(dāng)復(fù)合蛋白替代魚(yú)粉水平不超過(guò)50%時(shí),對(duì)大菱鲆幼魚(yú)的飼料效率和蛋白質(zhì)效率影響不顯著(P>0.05)。具體數(shù)據(jù)見(jiàn)表3。
表3 復(fù)合蛋白替代魚(yú)粉對(duì)大菱鲆幼魚(yú)生長(zhǎng)性能和飼料利用的影響Table 3 Effect of replacement of fishmeal by compound proteins on growth parameters and feed utilization of juvenile turbot
注:數(shù)據(jù)為平均值±標(biāo)準(zhǔn)誤,n=3;同一行標(biāo)有不同的上標(biāo)表示顯著性差異(P<0.05)。Values show with mean ± standard error,n=3. Values in the same row with different small letter superscript mean significant difference(P<0.05).
2.2 復(fù)合蛋白替代魚(yú)粉對(duì)大菱鲆幼魚(yú)體組成和形體指標(biāo)的影響
根據(jù)表4可知,該復(fù)合蛋白替代魚(yú)粉對(duì)大菱鲆魚(yú)體水分、粗蛋白和粗脂肪沒(méi)有顯著影響(P>0.05),但粗蛋白有先上升后下降的趨勢(shì)?;曳趾侩S復(fù)合蛋白替代水平的增加而升高,各替代組灰分均顯著高于對(duì)照組(P<0.05)。替代對(duì)魚(yú)體肥滿度和肝體比沒(méi)有影響,各處理組之間沒(méi)有顯著差異(P>0.05)。
表4 復(fù)合蛋白替代魚(yú)粉對(duì)大菱鲆幼魚(yú)體組成(濕重)和形體指標(biāo)的影響Table 4 Effect of replacement of fishmeal by compound proteins on proximate composition (wet weight) of the whole body and somatic parameters of juvenile turbot /%
注:數(shù)據(jù)為平均值±標(biāo)準(zhǔn)誤,n=3;同一行標(biāo)有不同的上標(biāo)表示顯著性差異(P<0.05)。Values show with mean ± standard error,n=3; Values in the same row with different small letter superscript mean significant difference(P<0.05).1初始魚(yú)沒(méi)有進(jìn)行統(tǒng)計(jì)分析。1Initial values are not included in the statistical analysis.
2.3 復(fù)合蛋白替代魚(yú)粉對(duì)飼料干物質(zhì)和粗蛋白表觀消化率的影響
表5顯示,該復(fù)合蛋白替代魚(yú)粉顯著影響粗蛋白表觀消化率,隨著替代水平的增加,粗蛋白表觀消化率顯著降低(P<0.05),F(xiàn)M35和FM50顯著低于對(duì)照組(P<0.05),顯著高于FM65和FM80(P<0.05)。只有FM35替代組的干物質(zhì)表觀消化率與對(duì)照組相比沒(méi)有顯著變化(P>0.05),其他替代組均顯著低于對(duì)照組(P<0.05)。
表5 飼料干物質(zhì)和粗蛋白的表觀消化率(ADC)Table 5 Apparent digestibility coefficients (ADC) for dry matter and crude protein of the test diets /%
注:數(shù)據(jù)為平均值±標(biāo)準(zhǔn)誤,n=3;同一行標(biāo)有不同的上標(biāo)表示顯著性差異(P<0.05)。 Values show with mean ± standard error,n=3. Values in the same row with different small letter superscript mean significant difference(P<0.05).
本實(shí)驗(yàn)條件下,復(fù)合蛋白源替代不同水平的魚(yú)粉對(duì)大菱鲆攝食率沒(méi)有顯著影響,這與之前魚(yú)粉替代的部分研究結(jié)果一致[6,16],但與Fournier等的研究結(jié)果不同,隨著植物蛋白替代魚(yú)粉水平的增加,大菱鲆攝食率顯著降低[17]。本實(shí)驗(yàn)較好的攝食率結(jié)果說(shuō)明復(fù)合蛋白源或誘食劑提高了飼料適口性。研究顯示,在沒(méi)有誘食劑的情況下,土豆?jié)饪s蛋白替代50%魚(yú)粉,與全魚(yú)粉對(duì)照組相比,虹鱒(Oncorhynchusmykiss)攝食率顯著下降,然而即使添加促攝食物質(zhì)貽貝粉或氨基酸混合物(1丙氨酸:1甘氨酸:1甜菜堿),攝食率也并未升高,誘食物并未改善虹鱒飼料適口性[18]。Silva-Neto等發(fā)現(xiàn)添加商業(yè)誘食劑或螺旋藻促攝食物的魚(yú)粉替代組與投喂商業(yè)飼料和沒(méi)有添加誘食物的替代組相比,凡納濱對(duì)蝦(Litopenaeusvannamei)的攝食均沒(méi)有顯著升高[19]。這說(shuō)明誘食劑只是在一定程度上改善飼料適口性,當(dāng)魚(yú)粉替代水平增加,替代組適口性差的缺點(diǎn)隨之突出,即使添加誘食劑,飼料適口性依然下降。另有研究指出,塞內(nèi)加爾鰨(Soleasenegalensis)能有效利用植物蛋白飼料,但其生長(zhǎng)和營(yíng)養(yǎng)利用取決于蛋白源混合物的選擇,而非替代水平[20]。因此,高比例替代魚(yú)粉關(guān)鍵在于替代蛋白源的選擇和其適口性。本實(shí)驗(yàn)復(fù)合蛋白源是根據(jù)前期適口性實(shí)驗(yàn)做出的選擇,攝食率結(jié)果也進(jìn)一步證實(shí)該復(fù)合蛋白源對(duì)大菱鲆有著較好的適口性,80%魚(yú)粉替代組的攝食率依然沒(méi)有顯著降低。然而該復(fù)合蛋白源替代35%魚(yú)粉顯著降低大菱鲆體末重、增重率和特定生長(zhǎng)率。因此,就本實(shí)驗(yàn)而言,大菱鲆生長(zhǎng)降低與該復(fù)合蛋白的適口性關(guān)系不大,較低的蛋白利用率可能是導(dǎo)致大菱鲆生長(zhǎng)緩慢的主要原因。
有研究表明,谷朊粉替代67%魚(yú)粉而不影響大菱鲆生長(zhǎng)[21]。豆粕和谷朊粉100%替代魚(yú)粉對(duì)西伯利亞鱘的生長(zhǎng)沒(méi)有顯著影響[22]。在理想蛋白模式下,寵物級(jí)雞肉粉100%替代魚(yú)粉,對(duì)雜交條紋鱸(Moronechrysops♀ ×M.saxatilis♂)的生長(zhǎng)影響不顯著[23]。占本實(shí)驗(yàn)復(fù)合蛋白比重較大的植物蛋白源玉米蛋白粉替代魚(yú)粉33%,對(duì)大菱鲆的生長(zhǎng)和飼料效率也沒(méi)有造成負(fù)面影響[24]。然而本實(shí)驗(yàn)條件下復(fù)合蛋白源替代水平低于以上蛋白源單一替代,這可能是由于各組分之間沒(méi)有起到補(bǔ)充營(yíng)養(yǎng)物,提高蛋白利用等作用,反而掩蓋了谷朊粉、寵物級(jí)雞肉粉高蛋白、適口性好的優(yōu)點(diǎn)[25-26],導(dǎo)致替代魚(yú)粉35%大菱鲆生長(zhǎng)顯著降低。首先,復(fù)合蛋白源替代組較低水平的消化率可能是導(dǎo)致大菱鲆低生長(zhǎng)性能的主要因素,除了FM35替代組的干物質(zhì)表觀消化率與對(duì)照組沒(méi)有顯著差異,其他替代組的干物質(zhì)和粗蛋白表觀消化率均顯著低于對(duì)照組。有文獻(xiàn)報(bào)道,單寧不僅降低飼料適口性,而且影響蛋白質(zhì)消化率[27]。而復(fù)合蛋白源中的豆粕含有單寧、植酸、胰蛋白酶抑制因子、凝集素等[4],這些抗?fàn)I養(yǎng)因子降低蛋白的吸收利用,而肉食性魚(yú)類的生長(zhǎng)需要高蛋白[1,28-29],大菱鲆得不到生長(zhǎng)所需蛋白質(zhì)而生長(zhǎng)緩慢。此外,飼料灰分含量與蛋白質(zhì)消化率存在負(fù)相關(guān)關(guān)系[30-31],占復(fù)合蛋白比重最大的脫脂肉骨粉灰分含量高。因此,高比例的脫脂肉骨粉可能導(dǎo)致蛋白質(zhì)表觀消化率較低,從而影響到大菱鲆幼魚(yú)的生長(zhǎng)。玉米蛋白粉的偏酸性也會(huì)降低蛋白質(zhì)消化率[32]。同時(shí),復(fù)合蛋白源質(zhì)量和糞便收集方法的不同也會(huì)不同程度的影響蛋白質(zhì)消化率[33-34]。
關(guān)于蛋白源替代魚(yú)粉對(duì)水生動(dòng)物體成分的影響,不同的實(shí)驗(yàn)得到的結(jié)果不一樣。發(fā)酵豆粕和魷魚(yú)副產(chǎn)物復(fù)合替代魚(yú)粉,牙鲆魚(yú)體成分沒(méi)有顯著變化[14]?;旌蟿?dòng)物蛋白替代魚(yú)粉75%甚至100%,對(duì)西伯利亞鱘的體組成也都沒(méi)有產(chǎn)生顯著影響[35]。隨著復(fù)合植物蛋白替代魚(yú)粉水平的增加,大菱鲆魚(yú)體粗蛋白和灰分降低,粗脂肪和水分升高[17]。而本實(shí)驗(yàn)動(dòng)植物復(fù)合蛋白源替代魚(yú)粉,對(duì)大菱鲆體水分、粗蛋白和粗脂肪沒(méi)有顯著影響,但粗蛋白有先升高后下降的趨勢(shì)??赡苡捎诟弑壤?、高灰分脫脂肉骨粉的存在,隨替代水平的增加,魚(yú)體灰分顯著升高。
綜上,本實(shí)驗(yàn)條件下,復(fù)合蛋白源谷朊粉、寵物級(jí)雞肉粉、脫脂肉骨粉、豆粕和玉米蛋白粉(1:1:4:1:3)對(duì)大菱鲆有較好的適口性,不影響各替代水平的攝食率。而35%魚(yú)粉替代組大菱鲆生長(zhǎng)顯著降低,所以以大菱鲆生長(zhǎng)性能作為評(píng)價(jià)指標(biāo),該復(fù)合蛋白源替代魚(yú)粉水平應(yīng)低于35%。推測(cè)主要是因?yàn)檩^低的干物質(zhì)和蛋白質(zhì)表觀消化率,大菱鲆對(duì)飼料蛋白質(zhì)沒(méi)有充分吸收利用所導(dǎo)致。因此,為達(dá)到利用蛋白源優(yōu)點(diǎn),降低缺點(diǎn)的目的,復(fù)合蛋白源配比的選擇不僅要注重飼料適口性的改善,而且還應(yīng)提高各蛋白源的消化吸收,總體提高魚(yú)粉替代水平。
[1] Kroeckel S, Harjes A G E, Roth I, et al. When a turbot catches a fly: Evaluation of a pre-pupae meal of the Black Soldier Fly (Hermetiaillucens) as fish meal substitute-growth performance and chitin degradation in juvenile turbot (Psettamaxima) [J]. Aquaculture, 2012, (364-365): 345-352.
[2] Turker A, Yigit M, Ergun S, et al. Potential of poultry by-product meal as a substitute for fishmeal in diets for Black Sea TurbotScophthlmusMaeoticus: growth and nutrient utilization in winter [J]. The Israeli Jounal of Aquaculture-Bamidgeh, 2005, 57(1): 49-61.
[3] Bonaldo A, Parma L, Mandrioli L, et al. Increasing dietary plant proteins affects growth performance and ammonia excretion but not digestibility and gut histology in turbot (Psettamaxima) juveniles [J]. Aquaculture, 2011, 318(1): 101-108.
[4] Francis G, Makkar H P S, Becker K. Antinutritional factors present in plant-derived alternate fish feed ingredients and their effects in fish [J]. Aquaculture, 2001, 199(3): 197-227.
[5] Hansen A C, Rosenlund G, Karlsen ?, et al. Total replacement of fish meal with plant proteins in diets for Atlantic cod (GadusmorhuaL.) I-effects on growth and protein retention [J]. Aquaculture, 2007, 272(1): 599-611.
[6] Ergun S, Yigit M, Turker A, et al. Incorporation of soybean meal and hazelnut meal in diets for Black Sea turbot (Scophthalmusmaeoticus) [J]. The Israeli Jounal of Aquaculture-Bamidgeh, 2008, 60(1): 27-36.
[7] Aksnes A, Hope B, Albrektsen S. Size-fractionated fish hydrolysate as feed ingredient for rainbow trout (Oncorhynchusmykiss) fed high plant protein diets. II: flesh quality, absorption, retention and fillet levels of taurine and anserine [J]. Aquaculture, 2006, 261: 318-326.
[8] Fuke S, Konosu S. Taste-active components in some foods: a review of Japanese research [J]. Physiology and Behavior, 1991, 49(5): 863-868.
[9] Zhou Q C, Zhao J, Li P, et al. Evaluation of poultry by-product meal in commercial diets for juvenile cobia (Rachycentroncanadum) [J]. Aquaculture, 2011, (322-323): 122-127.
[10] Ai Q, Mai K, Tan B, et al. Replacement of fish meal by meat and bone meal in diets for large yellow croaker,Pseudosciaenacrocea[J]. Aquaculture, 2006, 260(1): 255-263.
[11] Kader M A, Koshio S. Effect of composite mixture of seafood by-products and soybean proteins in replacement of fishmeal on the performance of red sea bream,Pagrusmajor[J]. Aquaculture, 2012, 368-369: 95-102.
[12] Guo J, Wang Y, Bureau D. Inclusion of rendered animal ingredients as fishmeal substitutes in practical diets for cuneate drum,Nibeamiichthioides(Chu, Lo et Wu) [J]. Aquaculture Nutrition, 2007, 13(2): 81-87.
[13] Tidwell J H, Coyle S D, Bright L A, et al. Evaluation of plant and animal source proteins for replacement of fish meal in practical diets for the largemouth bassMicropterussalmoides[J]. Journal of the World Aquaculture Society, 2005, 36(4): 454-463.
[14] Kader A, Koshio S, Ishikawa M, et al. Can fermented soybean meal and squid by-product blend be used as fishmeal replacements for Japanese flounder (Paralichthysolivaceus) [J]. Aquaculture Research, 2012, 43: 1427-1438.
[15] Bonaldo A, Parma L, Mandrioli L, et al. Increasing dietary plant proteins affects growth performance and ammonia excretion but not digestibility and gut histology in turbot (Psettamaxima) juveniles [J]. Aquaculture, 2011, 318: 101-108.
[16] Cheng Z, Ai Q, Mai K, et al. Effects of dietary canola meal on growth performance, digestion and metabolism of Japanese seabass,Lateolabraxjaponicus[J]. Aquaculture, 2010, 305(1): 102-108.
[17] Fournier V, Huelvan C, Desbruyeres E. Incorporation of a mixture of plant feedstuffs as substitute for fish meal in diets of juvenile turbot (Psettamaxima) [J]. Aquaculture, 2004, 236(1): 451-465.
[18] Tusche K, Berends K, Wuertz S, et al. Evaluation of feed attractants in potato protein concentrate based diets for rainbow trout (Oncorhynchusmykiss) [J]. Aquaculture, 2011, 321(1-2): 54-60.
[19] Silva Neto J F, Nunes A J P, Sabry Neto H, et al. Spirulina meal has acted as a strong feeding attractant for Litopenaeus vannamei at a very low dietary inclusion level [J]. Aquaculture Research, 2012, 43(3): 430-437.
[20] Cabral E, Bacelar M, Batista S, et al. Replacement of fishmeal by increasing levels of plant protein blends in diets for Senegalese sole (Soleasenegalensis) juveniles [J]. Aquaculture, 2011, 322-323: 74-81.
[21] Dietz C, Kroeckel S, Schulz C, et al. Energy requirement for maintenance and efficiency of energy utilization for growth in juvenile turbot (Psettamaxima, L.): The effect of strain and replacement of dietary fish meal by wheat gluten [J]. Aquaculture, 2012, 358-359: 98-107.
[22] Yun B, Xue M, Wang J, et al. Fishmeal can be totally replaced by plant protein blend at two protein levels in diets of juvenile Siberian sturgeon,AcipenserbaeriiBrandt [J]. Aquaculture Nutrition, 2014, 20(1): 69-78.
[23] Gaylord T G, Rawles S D. The modification of poultry by-product meal for use in hybrid striped bassMoronechrysops×M.saxatilisDiets [J]. Journal of the World Aquaculture Society, 2005, 36(3): 363-374.
[24] Regost C, Arzel J, Kaushik S. Partial or total replacement of fish meal by corn gluten meal in diet for turbot (Psettamaxima) [J]. Aquaculture, 1999, 180(1): 99-117.
[25] Tibaldi E, Tulli F, Piccolo G, et al. Wheat gluten as a partial substitute for fish meal protein in sea bass (D.labrax) diets [J]. Italian Journal of Animal Science, 2011, 2(1): 613-615.
[26] Rawles S, Riche M, Gaylord T, et al. Evaluation of poultry by-product meal in commercial diets for hybrid striped bass (Moronechrysops♀×M.saxatilis♂) in recirculated tank production [J]. Aquaculture, 2006, 259(1): 377-389.
[27] McCurdy S, March B. Processing of canola meal for incorporation in trout and salmon diets [J]. Journal of the American Oil Chemists Society, 1992, 69(3): 213-220.
[28] Hevroy E M, El-Mowafi A, Taylor R, et al. Effects of a high plant protein diet on the somatotropic system and cholecystokinin in Atlantic salmon (SalmosalarL.) [J]. Comp Biochem Physiol A Mol Integr Physiol, 2008, 151(4): 621-627.
[29] Bromley P. Effect of dietary protein, lipid and energy content on the growth of turbot (ScophthalmusmaximusL.) [J]. Aquaculture, 1980, 19(4): 359-369.
[30] Kureshy N, Davis D A, Arnold C. Partial replacement of fish meal with meat and bone meal, flash dried poultry by-product meal, and enzyme digested poultry by-product meal in practical diets for juvenile red drum [J]. North American Journal of Aquaculture, 2000, 62(4): 266-272.
[31] 王裕玉, 石野, 楊雨虹, 等. 肉骨粉在水產(chǎn)飼料中的應(yīng)用 [J]. 中國(guó)飼料, 2012(2): 32-35.
[32] Masumoto T, Ruchimat T, Ito Y, et al. Amino acid availability values for several protein sources for yellowtail (Seriolaquinqueradiata) [J]. Aquaculture, 1996, 146(1): 109-119.
[33] Cabral E, Bacelar M, Batista S, et al. Replacement of fishmeal by increasing levels of plant protein blends in diets for Senegalese sole (Soleasenegalensis) juveniles [J]. Aquaculture, 2011, 322: 74-81.
[34] Tibbetts S M, Milley J E, Lall S P. Apparent protein and energy digestibility of common and alternative feed ingredients by Atlantic cod,Gadusmorhua(Linnaeus, 1758) [J]. Aquaculture, 2006, 261(4): 1314-1327.
[35] Xue M, Yun B, Wang J, et al. Performance, body compositions, input and output of nitrogen and phosphorus in Siberian sturgeon,AcipenserbaeriiBrandt, as affected by dietary animal protein blend replacing fishmeal and protein levels [J]. Aquaculture Nutrition, 2012, 18(5): 493-501.
責(zé)任編輯 朱寶象
Replacement of Fishmeal in Juvenile Turbot Diets with Compound Proteins: Effects on Growth Performance, Whole Body Composition and Apparent Digestibility Coefficient
DONG Chun, ZHOU Hui-Hui, MAI Kang-Sen, XU Wei, HE Gen
(The Key Laboratory of Aquaculture Nutrition and Feeds of Ministry of Agriculture, Ocean University of China, Qingdao 266003, China)
A 9-week feeding trial was conducted to determine the effect of a mixture of wheat gluten meal, pet-food grade poultry by-product meal, defatted meat and bone meal, soybean meal and corn gluten meal as a partial replacement of fishmeal in juvenile turbot (Scophthalmusmaximus) diets on its growth performance, whole body composition and apparent digestibility coefficient. The fish initially weighed (8.63±0.01)g. Five isonitrogenous (52% crude protein) and isoenergetic (19kJ/g gross energy) diets were formulated by replacing 0 (CON), 35% (FM35), 50% (FM50), 65% (FM65) and 80% (FM80) fishmeal, respectively. Results indicated that the final body weight, weight gain and specific growth rate were significantly lower than those of CON (P<0.05). Feed intake and survival rate of turbot had no significant difference among tested diets (P>0.05). Feed efficiency rate and protein efficiency rate of tested diets decreased with the increase of replacement level. Feed efficiency rate of FM65 and FM80 and protein efficiency rate of FM80 were significantly lower than those of CON (P<0.05). The blend proteins substituted fishmeal had no influence on moisture, crude protein and crude lipid (P>0.05). However, the ash content of all treatments was significantly higher than that of CON (P<0.05). The apparent digestibility coefficient of dry matter of FM35 had no significant difference from that of CON (P>0.05). In addition, other replacement diets significantly decreased in the apparent digestibility coefficient of dry matter and protein (P<0.05). The results showed that compound proteins reduced the growth performance, whole body composition and apparent digestibility coefficient of juve-nile turbot. Based on these findings, the level of fishmeal substitution with compound proteins should be less than 35%.
turbot; fishmeal; compound protein; growth; whole body composition; apparent digestibility coefficient
公益性(農(nóng)業(yè))行業(yè)科研專項(xiàng)(201303053)資助
2014-03-02;
2014-04-30
董 純(1986-),女,碩士生,研究方向:水生動(dòng)物生理學(xué)。
** 通訊作者: E-mail:hegen@ouc.edu.cn
S963.3
A
1672-5174(2015)04-027-08
10.16441/j.cnki.hdxb.20140049