• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看

      ?

      分類討論思想精讀

      2015-05-30 08:35:56劉斌
      高中生學(xué)習(xí)·高三版 2015年3期
      關(guān)鍵詞:底數(shù)單調(diào)形狀

      劉斌

      分類討論思想的本質(zhì)是“化整為零,積零為整”.用分類討論的思維策略解數(shù)學(xué)問題的操作過程:明確討論的對象和動(dòng)機(jī)→確定分類的標(biāo)準(zhǔn)→逐類進(jìn)行討論→歸納綜合結(jié)論→檢驗(yàn)分類是否完備(即分類對象彼此交集為空集,并集為全集).做到“確定對象的全體,明確分類的標(biāo)準(zhǔn),分類不重復(fù)、不遺漏”的分析討論.

      由數(shù)學(xué)概念、性質(zhì)、運(yùn)算引起的分類討論

      (1)由數(shù)學(xué)概念引起的討論要正確理解概念的內(nèi)涵與外延,合理進(jìn)行分類. (2)運(yùn)算引起的分類討論有很多,如除法運(yùn)算中除數(shù)不為零,偶次方根為非負(fù),對數(shù)運(yùn)算中真數(shù)與底數(shù)的要求,指數(shù)運(yùn)算中底數(shù)的要求,不等式兩邊同乘以實(shí)數(shù)[a],三角函數(shù)的定義域,去絕對值時(shí)的討論及分段函數(shù)的討論等.

      例1 當(dāng)[x∈[-2,1]]時(shí),不等式[ax3-x2+4x+3≥0]恒成立,則實(shí)數(shù)[a]的取值范圍是( )

      A.[-5,-3] B. [[-6,-98]]

      C.[-6,-2] D.[-4,-3]

      解析 (1)當(dāng)[-2≤x<0]時(shí),不等式可轉(zhuǎn)化為[a≤][x2-4x-3x3],

      令[f(x)=x2-4x-3x3(-2≤x<0)],

      則[f(x)=][-x2+8x+9x4]=[-(x-9)(x+1)x4],

      故函數(shù)[f(x)]在[-2,-1]上單調(diào)遞減,在(-1,0)上單調(diào)遞增.

      此時(shí)有[a≤fmin(x)=f(-1)=][1+4-3-1]=-2.

      (2)當(dāng)[x=0]時(shí),不等式恒成立.

      (3)當(dāng)[0

      令[g(x)=x2-4x-3x3(0

      則[g′(x)=-x2+8x+9x4].

      故函數(shù)[g(x)]在(0,1]上單調(diào)遞增,此時(shí)有[a≥gmax(x)=g(1)=1-4-31]=-6.

      綜上,[-6≤a≤-2].

      答案 C

      由圖形位置或形狀引起的討論

      求解有關(guān)幾何圖形問題時(shí),由于幾何元素的形狀、位置變化的不確定性,所以需要根據(jù)圖形的特征進(jìn)行分類討論.一般由圖形的位置或形狀變化引發(fā)的討論包括:二次函數(shù)對稱軸位置的變化;函數(shù)問題中區(qū)間的變化;函數(shù)圖象形狀的變化;直線由斜率引起的位置變化;圓錐曲線由焦點(diǎn)引起的位置變化或由離心率引起的形狀變化.

      例2 已知變量[x,y]滿足的不等式組[x≥0,y≥2x,kx-y+1≥0]表示的是一個(gè)直角三角形圍成的平面區(qū)域,則實(shí)數(shù)[k]等于( )

      A.-[12] B. [12]

      C.0 D.-[12]或0

      解析 不等式組[x≥0,y≥2x,kx-y+1≥0]表示的可行域如圖(陰影部分)所示.

      由圖可知若不等式組[x≥0,y≥2x,kx-y+1≥0]表示的平面區(qū)域是直角三角形,只有直線[y=kx+1]與直線[x=0]垂直(如圖①)或直線[y=kx+1]與直線[y=2x]垂直(如圖②)時(shí),平面區(qū)域才是直角三角形.

      [① ②]

      由圖形可知,斜率[k]的值為0或-[12].

      答案 D

      由參數(shù)引起的分類討論

      一般地,遇到題目中含有參數(shù)的問題,常常結(jié)合參數(shù)的意義和對結(jié)果的影響進(jìn)行分類討論. 此種題目為含參型,應(yīng)全面分析參數(shù)變化引起結(jié)論的變化情況,參數(shù)有幾何意義時(shí)還要適當(dāng)?shù)剡\(yùn)用數(shù)形結(jié)合思想,分類要做到標(biāo)準(zhǔn)明確,不重不漏.

      例3 已知函數(shù)[f(x)=ex-ax2-bx-1],其中[a,b∈R],[e=]2.71828…為自然對數(shù)的底數(shù).設(shè)[g(x)]是函數(shù)[f(x)]的導(dǎo)函數(shù),求函數(shù)[g(x)]在區(qū)間[0,1]上的最小值.

      解析 由[f(x)=ex-ax2-bx-1]得,

      [g(x)=f(x)=ex-2ax-b].

      所以[g(x)=ex-2a].

      因此,當(dāng)[x∈[0,1]]時(shí),[g(x)∈[1-2a,e-2a]].

      (1)當(dāng)[a≤12]時(shí),[g(x)]≥0,

      所以[g(x)]在[0,1]上單調(diào)遞增,

      因此[g(x)]在[0,1]上的最小值是[g(0)=1-b].

      (2)當(dāng)[a≥e2]時(shí),[g(x)]≤0,

      所以[g(x)]在[0,1]上單調(diào)遞減,

      因此[g(x)]在[0,1]上的最小值是[g(1)=e-2a-b].

      (3)當(dāng)[12

      所以函數(shù)[g(x)]在區(qū)間[[0,ln(2a)]]上單調(diào)遞減,在區(qū)間[(ln(2a),1]]上單調(diào)遞增.

      于是,[g(x)]在[0,1]上的最小值是

      [g(ln(2a))=2a-2aln(2a)-b.]

      綜上所述,當(dāng)[a≤12]時(shí),[g(x)]在[0,1]上的最小值是[g(0)=1-b].

      當(dāng)[12

      當(dāng)[a≥e2]時(shí),[g(x)]在[0,1]上的最小值是[g(1)=e-2a-b].

      常見的分類討論問題

      (1)集合:注意集合中空集的討論.

      (2)函數(shù):對數(shù)函數(shù)或指數(shù)函數(shù)中的底數(shù)[a],一般應(yīng)分[a>1]和[0

      (3)數(shù)列:由[Sn]求[an]時(shí)分[n=1]和[n>1]討論;等比數(shù)列中分公比[q=1]和[q≠1]討論.

      (4)三角函數(shù):角的象限及函數(shù)值范圍的討論.

      (5)不等式:解不等式時(shí)對參數(shù)的討論,基本不等式相等條件是否滿足的討論.

      (6)立體幾何:點(diǎn)線面及圖形位置關(guān)系的不確定性引起的討論.

      (7)平面解析幾何:直線點(diǎn)斜式中[k]分存在和不存在,直線截距式中分[b=0]和[b≠0]討論;軌跡方程中含參數(shù)時(shí)曲線類型及形狀的討論.

      (8)排列、組合、概率:分類計(jì)數(shù)問題.

      猜你喜歡
      底數(shù)單調(diào)形狀
      挖藕 假如悲傷有形狀……
      冪的大小比較方法技巧
      同底數(shù)冪的乘法
      如何比較不同底數(shù)的對數(shù)函數(shù)式的大小
      數(shù)列的單調(diào)性
      數(shù)列的單調(diào)性
      比較底數(shù)不同的兩個(gè)對數(shù)式大小的方法
      對數(shù)函數(shù)單調(diào)性的應(yīng)用知多少
      你的形狀
      看到的是什么形狀
      论坛| 越西县| 大邑县| 西城区| 五指山市| 来宾市| 康乐县| 商城县| 盐山县| 拜城县| 阳信县| 北安市| 长白| 石楼县| 西青区| 马尔康县| 仁布县| 乐清市| 金秀| 山西省| 阿城市| 哈尔滨市| 江安县| 车险| 长寿区| 黔南| 英山县| 石泉县| 泰顺县| 潼南县| 泉州市| 封开县| 林周县| 区。| 拜城县| 新郑市| 丰都县| 肇源县| 扬州市| 温州市| 凌云县|