• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看

      ?

      回避分類討論提高解題速度

      2015-05-30 08:35:56華騰飛
      高中生學習·高三版 2015年3期
      關鍵詞:原點方程組交點

      華騰飛

      分類討論有時會導致解題過程的繁瑣化,為此我們在重視分類討論的思想方法應用的基礎上,也要注意克服動輒加以討論的思維定勢,對于蘊含著分類討論因素的數學問題,應當首先作一番深入的探究,根據題目條件的特征,靈活選用一定的解題策略,充分挖掘數學問題中潛在的特殊性,盡力打破常規(guī),盡量簡化或避免不必要的討論,從而提高解題速度.下面通過舉例分析,談談如何避免分類討論的幾種優(yōu)化策略.

      深挖隱含,避免討論

      例1 解方程組[|x2-2|+|y-2|=6, ①|x2-2|=2y-4. ②]

      分析 若按常規(guī)解法應根據絕對值的定義,分類討論絕對值內式子的符號來解方程組,非常繁瑣.如果注意到②式隱含的重要的信息:[y-2≥0],利用這個隱含條件,則可以避免分類討論.

      解 原方程組可化為[|x2-2|+y-2=6,|x2-2|=2y-4,]

      消去[|x2-2|]得[y=4],

      ∴[x2-2=±4], 解得[x=+6].

      因此原方程組的解為[x=6,y=4,]或[x=-6,y=4.]

      消除參數,免除討論

      例2 設[00]且[a≠1],試比較[|loga(1-x)|]與[|loga(1+x)|]的大小.

      分析 由于[a]是討論的因素,如果能消除[a],則可以免除討論.為此作商,再利用換底公式收效明顯.

      解 ∵[|loga(1-x)||loga(1+x)|=|log(1+x)(1-x)|=-log(1+x)(1-x)]

      [=log(1+x)11-x>log(1+x)(1+x)=1],

      ∴[|loga(1-x)|>|loga(1+x)|].

      反客為主,規(guī)避討論

      例3 設對所有的實數[x],不等式[x2log24(a+1)a]+ [2xlog22aa+1]+[log2(a+1)24a2]>0恒成立,求實數[a]的取值范圍.

      分析 若根據二次不等式恒成立的條件列式計算,不可避免地要進行分類討論.

      解 如果變換視角,把[a]視為主元,把不等式變形為:[3x2+(x2-2x+2)log2a+12a>0].

      ∵[x2-2x+2=(x-1)2+1>0],

      ∴l(xiāng)og2[a+12a]>-[3x2(x-1)2+1].

      又[-3x2(x-1)2+1]<0恒成立,

      ∴只須log2[a+12a]>0,即[a+12a]> 1,進而求得[0

      反面考慮,簡化討論

      例4 如果二次函數[y=mx2+(m-3)x+1]的圖象與[x]軸的交點至少有一個在原點右側,試求[m]的取值范圍.

      分析 從正面求解,需要分四種情況討論,運算量大. 若從反面考慮,即考慮兩個交點都在原點左側時[m]的取值范圍.

      解 由一元二次方程[mx2+(m-3)x+1=0]有兩負根得:

      [△=(m-3)2-4m≥0,3-mm<0,1m>0,]

      解得[m≥9], 其反面為[m<9].

      再考慮△≥0與[m]≠0的條件,可得[m]≤1且[m]≠0.

      巧用公式,去除討論

      例5 已知[cotα=m],[α∈(π, 2π)],求[cosα]的值.

      分析 若選用公式[tanα=1cotα], [cosα=][±11+tan2α]來求,則必須將[α∈(π, 2π)]分成[α∈(π,][3π2])和α∈([3π2], 2π)來討論[cosα]及[m]的符號. 若根據[α∈(π,2π)]的范圍,直接選用恰當的平方關系式,則可有效地避開討論.

      解 ∵[α∈(π, 2π)],∴[sinα<0].

      ∴[sinα=-11+cot2α=-11+m2],

      故[cosα=cotα·sinα=-m1+m2].

      靈活代換,免于討論

      例6 解不等式[x1+x2+1-x21+x2]>0.

      分析 常規(guī)解法要先把原不等式等價變形為:[x1+x2>x2-1],然后再按照[x]的不同取值范圍進行分類討論,這是非常復雜的.如果注意到原不等式的結構特征,采用三角代換,則可免于討論.

      解 令[x=tanθ(-π2<θ<π2]),

      則原不等式可化為[tanθ·cosθ+cos2θ>0],

      即[2sin2θ-sinθ-1<0],解之得:[-12

      從而[-π6<θ<π2], 有[tanθ>-33].

      故原不等式的解為[{x|x>-33}].

      數形結合,避免討論

      例7 當[x∈[0,2]]時,函數[f(x)=(x-1)log23a-][4log3a+][x-3]的值恒為正,求[a]的取值范圍.

      分析 對于本題,若按常規(guī)解法應用代數的方法進行討論,比較冗長.若結合圖形考慮,則可避免討論.

      解 對函數整理得[f(x)=(1+log23a)x-][(log23a+4log3a][+3)],顯然函數[f(x)]是一次函數,其圖象是直線,且直線的斜率為正,如圖所示.

      欲要證當[x∈[0,2]]時,[f(x)>0],只須直線與[x]軸的交點在原點左方,即直線在[x]軸上的截距:[ log23a+4log3a+31+log23a]<0,解此不等式得[a]的取值范圍為[127

      整體化歸,回避討論

      例8 函數[y=ax]在[0, 1]上的最大值與最小值的和為3,則[a]= .

      分析 此題的常規(guī)思維是對底數分[01]兩種情況進行討論,從而確定函數[y=ax]的單調性,然后再分別求出[y=ax]在[0, 1]上的最大值與最小值后求[a]值.若從整體思維出發(fā),單調函數在閉區(qū)間上的最值總是在端點處達到,則可回避討論,直接求解.

      解 由題設得[ymax+ymin=a0+a1=1+a=3],故[a=2].

      引參換元,回避討論

      例9 解不等式[2x+5>x+1].

      分析 借助換元,避開有限制條件的運算,從而可回避討論.對于該題只要避開了平方運算,則無需分類討論,因此可采用換元法.

      解 令[t=2x+5],則[x=t2-52],于是原不等式等價于[t≥0,t>t2-52+1.]解之得,[0≤t<3].即0≤[2x+5]<3,故原不等式的解集為[{x|-2.5≤x<2}].

      猜你喜歡
      原點方程組交點
      深入學習“二元一次方程組”
      《二元一次方程組》鞏固練習
      Book Pilot 飛行選書師,讓書重新回到原點
      現代蘇州(2019年16期)2019-09-27 09:31:02
      一類次臨界Bose-Einstein凝聚型方程組的漸近收斂行為和相位分離
      閱讀理解
      重返歷史“原點”的旅程
      借助函數圖像討論含參數方程解的情況
      在原點震蕩的擾動Schr?dinger-Poisson系統的無窮多個解
      試析高中數學中橢圓與雙曲線交點的問題
      青年時代(2017年3期)2017-02-17 01:40:47
      關于原點對稱的不規(guī)則Gabor框架的構造
      玛沁县| 乌鲁木齐县| 鄂伦春自治旗| 崇礼县| 新沂市| 漯河市| 中超| 梅州市| 梁山县| 松溪县| 峡江县| 普洱| 乾安县| 白朗县| 巴林左旗| 沈阳市| 镇原县| 清涧县| 九寨沟县| 东乡县| 波密县| 五峰| 郧西县| 化隆| 新乡市| 安图县| 七台河市| 沂南县| 犍为县| 武乡县| 武功县| 行唐县| 宜川县| 北海市| 潜江市| 三门峡市| 侯马市| 永泰县| 湘潭县| 恭城| 麟游县|