張 培, 劉曉俊
(上海理工大學理學院,上海 200093)
涉及高階導數(shù)的例外函數(shù)亞純函數(shù)正規(guī)性
張 培, 劉曉俊
(上海理工大學理學院,上海 200093)
利用亞純函數(shù)值分布理論與正規(guī)理論的一些基本概念、研究方法以及研究成果,并以顧永興的定理為基礎(chǔ),討論函數(shù)族中任意函數(shù)的高階零點不取固定函數(shù)的這類亞純函數(shù)的正規(guī)問題,最后得到如下正規(guī)定則:設(shè)F是單位圓盤內(nèi)的一族亞純函數(shù),k為一個正整數(shù),且k≥2,A為一有窮正數(shù),h(z)是全純函數(shù),其中h(z)≠0,如果對任意的f∈F,f的零點重級至少為k,且f的極點重級至少為3;并且滿足當f(z)=0時,必有f(k)(z)≠h(z),則F在區(qū)域內(nèi)是正規(guī)的.
亞純函數(shù);高階導數(shù);例外函數(shù);正規(guī)族
1959年Hayman[1]證明了如下的Picard型定理:
定理1 設(shè)F為復平面C上的亞純函數(shù),k是正整數(shù),若f≠0,且f(k)≠1,則f≡常數(shù).
相應地,1979年顧永興[2-3]證明了對應的正規(guī)
[1] Hayman W K.Piacad values of meromorphic functions and their derivatives[J].Annals of Mathematics,1959,70:9-42.
[2] 顧永興,龐學誠,方明亮.正規(guī)族理論及其應用[M].北京:科學出版社,2007.
[3] 童曉麗,劉曉俊.零點位于直線上的亞純函數(shù)的正規(guī)定則[J].上海理工大學學報,2014,36(4):362-365.
[4] 楊樂.正規(guī)族與微分多項式[J].中國科學A輯,1983,14(1):21-32.
[5] Bergweiler W,Eremenko A.On the singularities of the inverse to a meromerphic function of finite order[J]. Revista Matemática Iberoamericana,1995,11(2): 355-373.
[6] Drasin D.Normal families and the Nevanlinna theory [J].Acta Mathematica,1969,122(1):231-263.
[7] Pang X C,Zalcman L.Normal families and shared values[J].Bulletin London Mathematical Society,2000,32(3):325-331.
[8] 葉亞盛.涉及導數(shù)的亞純函數(shù)正規(guī)族[J].上海機械學院學報,1988,10(3):59-66.
[9] Nevanlinna R.Eindeutige analytische funktionen[M]. Heidelberg:Springer-Verlag,1953.
[10] 葉亞盛.一個涉及極點重數(shù)的亞純函數(shù)正規(guī)定則[J].上海理工大學學報,2007,29(3):265-267.
[11] Xu J F,Zhang X B.The zeros of q-shift difference polynomials of meromorphic functions[J].Advances in Difference Equations,2012,2012:200.
(編輯:丁紅藝)
Criterion of Normality Concerning Meromorphic Functions of Exceptional Function of Higher Derivative
ZHANGPei, LIU Xiaojun
(College of Science,University of Shanghai for Science and Technology,Shanghai 200093,China)
By using some fundamental knowledge,research methods and research results about the theories of value distribution and normal family for meromorphic functions and based on Gu’s theorem,a criterion of normality concerning meromorphic functions whose higher zeros are not fixed functions was provided,and is described as follows:let k≥2 be an integer and F be a family of meromorphic functions on a unit discΔ,all the zeros of every f which belongs to F have multiplicity at least k and all the poles have multiplicity at least 3,h(z)be a holomorphic functions,and h(z)≠0,and assume that the following two conditions thatA is a positive number,and f(k)(z)≠h(z)hold for every f∈F,then F is normal inΔ.
meromorphic functions;higher derivative;exceptional function;normal families
O 174.52
A的k階導數(shù)不取固定函數(shù)h(z),即
1007-6735(2015)02-0140-04
10.13255/j.cnki.ju sst.2015.02.008
2014-01-17
國家自然科學基金青年基金資助項目(11401381)
張 培(1990-),女,碩士研究生.研究方向:復分析.E-mail:dadada.zp1990@163.com
劉曉俊(1982-),男,副教授.研究方向:復分析.E-mail:xiaojunliu2007@hotmail.com