• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看

      ?

      非線性系統(tǒng)沖激響應(yīng)快速檢測(cè)方法的研究

      2015-06-27 09:36:52郭慶胡良紅徐翠鋒
      關(guān)鍵詞:沖激響應(yīng)掃頻正弦

      郭慶,胡良紅,徐翠鋒

      (桂林電子科技大學(xué)電子工程與自動(dòng)化學(xué)院,廣西桂林541004)

      非線性系統(tǒng)沖激響應(yīng)快速檢測(cè)方法的研究

      郭慶,胡良紅,徐翠鋒

      (桂林電子科技大學(xué)電子工程與自動(dòng)化學(xué)院,廣西桂林541004)

      針對(duì)室內(nèi)聲學(xué)非線性系統(tǒng)室內(nèi)沖激響應(yīng)快速檢測(cè)的問(wèn)題,提出了一種基于連續(xù)指數(shù)正弦掃頻信號(hào)綜合檢測(cè)的方法。通過(guò)簡(jiǎn)要介紹非線性系統(tǒng)Volterra模型后,著重闡述了作為激勵(lì)信號(hào)的連續(xù)指數(shù)正弦掃頻信號(hào)和實(shí)現(xiàn)非線性系統(tǒng)沖激響應(yīng)快速檢測(cè)的基本原理和相關(guān)技術(shù)。最后,通過(guò)一個(gè)應(yīng)用實(shí)例驗(yàn)證了該方法的可行性和快速性。

      非線性系統(tǒng);沖激響應(yīng);連續(xù)指數(shù)掃頻信號(hào);快速檢測(cè)

      0 引言

      在傳統(tǒng)的室內(nèi)聲學(xué)沖激響應(yīng)測(cè)量中,一般采用周期性脈沖[1]和最大長(zhǎng)度序列[1-2]兩種檢測(cè)方法。然而,周期性脈沖測(cè)量不但測(cè)試時(shí)間長(zhǎng)、信噪比差,而且由于激勵(lì)能量低而不能輸出非線性失真;而最大長(zhǎng)度序列測(cè)量雖然改善了其信噪比,然而,其要求系統(tǒng)必須有良好的線性。因此,傳統(tǒng)的方法無(wú)法分離非線性系統(tǒng)的線性與非線性響應(yīng),基于以上的問(wèn)題,本文提出了一種基于非線性系統(tǒng)的Volterra數(shù)學(xué)模型,采用連續(xù)指數(shù)正弦掃頻信號(hào)作為激勵(lì)信號(hào),利用Hilbert-Huang變換技術(shù)和相關(guān)的逆濾波器技術(shù)實(shí)現(xiàn)快速簡(jiǎn)捷的解決方法。

      1 非線性系統(tǒng)的數(shù)學(xué)模型

      室內(nèi)聲學(xué)系統(tǒng)一般可認(rèn)為信號(hào)先經(jīng)過(guò)一個(gè)非線性系統(tǒng),然后再在一個(gè)線性系統(tǒng)中傳輸,其原理框圖如圖1所示。

      對(duì)于一個(gè)無(wú)記憶的非線性系統(tǒng)的特征可由N階Volterra核函數(shù)[3]KN(t)表示,非線性的系統(tǒng)響應(yīng)如式(1)所示:

      Farina[4-5]指出該模型下的非線性系統(tǒng)的全局響應(yīng)可以由一個(gè)高斯白噪聲n(t)加上一系列的沖激響應(yīng)hi(t)(hi(t)=ki(t)?h(t))和相應(yīng)不同功率的輸入信號(hào)做卷積的結(jié)果組成。該模型下的全局響應(yīng)如式(2)所示:

      在實(shí)際應(yīng)用中,這樣的系統(tǒng)不失一般性。然而,實(shí)踐中測(cè)量這種系統(tǒng)的各階沖激響應(yīng)函數(shù)hi(t)往往又是非常耗時(shí)、困難和復(fù)雜的。下面將介紹一種通過(guò)采用特定的激勵(lì)信號(hào)測(cè)量和相關(guān)的技術(shù)處理,快速獲取系統(tǒng)各階沖激響應(yīng)分布的方法。

      2 系統(tǒng)信號(hào)源的選擇和沖激響應(yīng)實(shí)現(xiàn)的相關(guān)技術(shù)

      2.1 激勵(lì)信號(hào)的選擇

      在測(cè)量方法中,既希望測(cè)量較寬的頻帶,又希望測(cè)量時(shí)間盡可能短,并且還希望在測(cè)量的頻率范圍內(nèi)得到更為精確的結(jié)果。在傳統(tǒng)的測(cè)量中,主要選擇線性正弦掃頻信號(hào)和離散指數(shù)掃頻信號(hào)兩種信號(hào)作為激勵(lì)信號(hào)。線性正弦掃頻信號(hào)作為激勵(lì)信號(hào),其頻率呈線性連續(xù)變化,在22 Hz~22 kHz的頻率范圍下測(cè)試,測(cè)試時(shí)間大概需要15 s;為縮短測(cè)量時(shí)間,S.Temme等[6]提出了離散指數(shù)掃頻信號(hào),該信號(hào)頻率點(diǎn)以指數(shù)比率增長(zhǎng),該信號(hào)是以犧牲測(cè)量精度為代價(jià),換取更短的測(cè)量時(shí)間,但是,在精度為1/24倍頻程下測(cè)試,測(cè)量時(shí)間也需要十多秒。

      圖1 非線性系統(tǒng)基本原理框圖

      為了解決以上兩種信號(hào)在時(shí)間和精度上的問(wèn)題,本文采用連續(xù)指數(shù)正弦掃頻信號(hào)作為激勵(lì)信號(hào)。該激勵(lì)信號(hào)的形式如式(3)所示:

      其中,A為信號(hào)的幅度,θ(t)為信號(hào)的瞬時(shí)相位,T為信號(hào)掃頻的總時(shí)間,w1和w2分別為信號(hào)的起始頻率和終止頻率。

      該激勵(lì)信號(hào)隨著時(shí)間的變化,其頻率呈指數(shù)連續(xù)增長(zhǎng),在1 s內(nèi)從起始頻率20 Hz到終止頻率20 kHz的測(cè)量結(jié)果如圖2所示。

      圖2 連續(xù)指數(shù)掃頻信號(hào)特點(diǎn)

      由圖2(a)可知,該激勵(lì)信號(hào)能在較短時(shí)間內(nèi)連續(xù)測(cè)試頻率點(diǎn),因此,得到的測(cè)量頻率更精確。結(jié)合圖2(b)和(c)可知,激勵(lì)信號(hào)隨著頻率的增加,能量降低。如圖2(c)所示,激勵(lì)信號(hào)的頻譜是一個(gè)粉紅譜,下文將介紹根據(jù)這樣的一個(gè)頻譜進(jìn)行的幅度調(diào)制。另外,該激勵(lì)信號(hào)還有一個(gè)重要的特點(diǎn),如下式(4)所示。

      由上式可知,激勵(lì)信號(hào)某時(shí)刻頻率的N倍,等于該激勵(lì)信號(hào)頻率延時(shí)Δt對(duì)應(yīng)的頻率,即Δt表示了N次諧波出現(xiàn)的時(shí)刻與基波之間的時(shí)間間隔。此時(shí)間間隔只與激勵(lì)信號(hào)的起始頻率、終止頻率、掃頻總時(shí)間和N有關(guān)。因此,由式(5)可以確定某時(shí)刻頻率的N次諧波出現(xiàn)的時(shí)刻。

      2.2 沖激響應(yīng)實(shí)現(xiàn)的基本原理

      為了能夠?qū)崿F(xiàn)快速檢測(cè)系統(tǒng)各階沖激響應(yīng),需要構(gòu)造一個(gè)逆濾波器x′(t),它應(yīng)滿足與激勵(lì)信號(hào)相卷積后,其結(jié)果為狄拉克函數(shù)δ(t)。再結(jié)合第1節(jié)非線性系統(tǒng)的描述,在連續(xù)指數(shù)正弦掃頻激勵(lì)下,非線性系統(tǒng)的沖激響應(yīng)函數(shù)形式如式(6)所示:

      其中,hi(t)表示第i階的沖激響應(yīng),Δti表示第i階的沖激響應(yīng)與第1階沖激響應(yīng)(即線性響應(yīng))之間的時(shí)間間隔,即上節(jié)介紹中的Δt。由式(6)可知,由于連續(xù)指數(shù)掃頻信號(hào)和特定的逆濾波器的引入,一個(gè)復(fù)雜的非線性系統(tǒng)的線性沖激響應(yīng)和各階非線性沖激響應(yīng)以Δti的時(shí)間間隔被分開(kāi)。另外,從某種意義上來(lái)說(shuō)這一特定的逆濾波器也是后續(xù)系統(tǒng)另一種形式上的激勵(lì)信號(hào),下一節(jié)將介紹這一特定的逆濾波器。

      2.3 沖激響應(yīng)實(shí)現(xiàn)的相關(guān)技術(shù)——逆濾波器的實(shí)現(xiàn)

      由上節(jié)可知,逆濾波器的創(chuàng)建基于非線性失真響應(yīng)和激勵(lì)信號(hào)。另外,考慮實(shí)際測(cè)量中,信號(hào)總是因果的,因此,還要求逆濾波器應(yīng)是一個(gè)因果的、穩(wěn)定的信號(hào)。根據(jù)參考文獻(xiàn)[7]中對(duì)創(chuàng)建逆濾波器的各種技術(shù)的分析,采用最簡(jiǎn)單的最小二乘法技術(shù)求解逆濾波器。建立最小二乘法方程如式(7)所示:

      其中,[R]矩陣為托普利茲矩陣,{g}為逆濾波器方程向量,{k}為系統(tǒng)響應(yīng)函數(shù)方程向量。

      另外,由于測(cè)量系統(tǒng)采用連續(xù)指數(shù)掃頻信號(hào)作為激勵(lì)信號(hào),根據(jù)上節(jié)介紹的逆濾波器和激勵(lì)信號(hào)的關(guān)系,再結(jié)合上文介紹的連續(xù)指數(shù)掃頻信號(hào)隨著頻率的增加,能量不斷降低的情況,為補(bǔ)償其在低頻和高頻時(shí)能量的不一致,需要對(duì)逆濾波器進(jìn)行幅度調(diào)制。采用Hilbert-Huang變換技術(shù)對(duì)激勵(lì)信號(hào)的頻譜幅值進(jìn)行分析研究,根據(jù)其幅度包絡(luò)的特點(diǎn)在時(shí)域上對(duì)逆濾波器進(jìn)行包絡(luò)調(diào)制。下面對(duì)連續(xù)指數(shù)正弦掃頻信號(hào)的頻譜進(jìn)行分析。

      對(duì)非線性、非平穩(wěn)的連續(xù)指數(shù)掃頻激勵(lì)信號(hào)進(jìn)行Hilbert-Huang變換,設(shè)激勵(lì)信號(hào)x(t)時(shí)域上的解析信號(hào)Zx(t)和頻譜Zx(f)分別為:

      其中,H[x(t)]是x(t)的希爾伯特變換,ax(t)和θx(t)分別為激勵(lì)信號(hào)的瞬時(shí)幅值和瞬時(shí)相位,Ax(f)為激勵(lì)信號(hào)頻譜的幅值。

      設(shè)激勵(lì)信號(hào)的時(shí)域幅值ax(t)=1,由2.1節(jié)介紹的激勵(lì)信號(hào)的瞬時(shí)相位,對(duì)其進(jìn)行兩次求導(dǎo),再結(jié)合參考文獻(xiàn)[8]中公式:

      可得激勵(lì)信號(hào)的頻譜幅值為:i

      其中,fi為激勵(lì)信號(hào)的瞬時(shí)頻率,連續(xù)正弦掃頻信號(hào)頻域的幅度沿頻率分布的情況如圖3所示。

      圖3 譜

      結(jié)合圖3和式(11)可知,激勵(lì)信號(hào)的頻譜幅值是一個(gè)粉紅譜,Ax(f)正比于,頻率越低,激勵(lì)信號(hào)幅值越大。從能量的角度來(lái)看,激勵(lì)信號(hào)的能量從低頻向高頻不斷衰減,與2.1節(jié)中圖2(c)介紹的激勵(lì)信號(hào)的頻譜幅值變化相一致。

      根據(jù)激勵(lì)信號(hào)頻譜幅值隨頻率變化的特點(diǎn),在時(shí)域上對(duì)逆濾波器進(jìn)行幅度調(diào)制,求得的逆濾波器時(shí)域波形圖和頻譜如圖4所示。

      圖4 逆濾波器特點(diǎn)

      3 應(yīng)用實(shí)例

      為了驗(yàn)證上述方法的有效性和快速性,將其用于揚(yáng)聲器系統(tǒng)的沖激響應(yīng)測(cè)量。揚(yáng)聲器系統(tǒng)測(cè)試基本框圖如圖5所示。

      圖5 揚(yáng)聲器系統(tǒng)基本框圖

      計(jì)算機(jī)產(chǎn)生激勵(lì)信號(hào)經(jīng)功放后加載到具有非線性特性的揚(yáng)聲器,揚(yáng)聲器產(chǎn)生的聲場(chǎng)隨后經(jīng)過(guò)空間線性傳播由傳送器接收,接收到的信號(hào)經(jīng)陰極輸出器輸入計(jì)算機(jī),計(jì)算機(jī)讀取其數(shù)據(jù),然后進(jìn)行分析、處理。

      采用起始頻率為20 Hz、終止頻率為20 kHz、掃頻時(shí)間為1 s的連續(xù)指數(shù)掃頻信號(hào)作為激勵(lì)信號(hào)對(duì)揚(yáng)聲器系統(tǒng)進(jìn)行測(cè)試,將系統(tǒng)響應(yīng)結(jié)果與上述的逆濾波器進(jìn)行卷積后,經(jīng)數(shù)據(jù)處理,得到的揚(yáng)聲器系統(tǒng)的各階沖激響應(yīng)測(cè)量結(jié)果如圖6所示。

      圖6 揚(yáng)聲器系統(tǒng)各階沖激響應(yīng)圖

      圖7(a)是連續(xù)指數(shù)正弦掃頻信號(hào)激勵(lì)法下的沖激響應(yīng)測(cè)量結(jié)果圖,圖7(b)和(c)分別為最大長(zhǎng)度序列法和周期性脈沖法在室內(nèi)揚(yáng)聲器系統(tǒng)下測(cè)量的沖激響應(yīng)結(jié)果圖[9]。結(jié)合圖6、圖7和參考文獻(xiàn)[9]可知,連續(xù)指數(shù)正弦掃頻信號(hào)激勵(lì)法的最大特點(diǎn)是能夠?qū)崿F(xiàn)對(duì)非線性系統(tǒng)各階沖激響應(yīng)的快速檢測(cè),而最大長(zhǎng)度序列法和周期性脈沖法無(wú)法將非線性系統(tǒng)中的線性與非線性響應(yīng)部分分離開(kāi)來(lái)。

      圖7 不同測(cè)量方法獲得的沖激響應(yīng)圖

      由上述可知,圖6中從右邊開(kāi)始最高幅值的是1階沖激響應(yīng)即線性響應(yīng),依次向左分別為2階、3階、4階等更高階的沖激響應(yīng)。它們以Δti的時(shí)間間隔依次被分隔開(kāi)來(lái),其中Δti可由上述推導(dǎo)的式(5)所求得,實(shí)現(xiàn)了對(duì)非線性系統(tǒng)各階沖激響應(yīng)的快速檢測(cè)。

      此外,從圖6測(cè)量結(jié)果中可看出,系統(tǒng)響應(yīng)的噪聲在首尾處較大,這是由于激勵(lì)信號(hào)在首尾處由于信號(hào)幅度的突變而產(chǎn)生高頻能量造成的,為改善系統(tǒng)在首尾處產(chǎn)生的噪聲,可以對(duì)激勵(lì)信號(hào)進(jìn)行加窗處理。

      4 結(jié)論

      本文從理論上對(duì)室內(nèi)聲學(xué)非線性系統(tǒng)和作為激勵(lì)信號(hào)的連續(xù)指數(shù)正弦掃頻信號(hào)、逆濾波器的特性進(jìn)行了分析研究,通過(guò)運(yùn)用上述方法對(duì)具有非線性特性的揚(yáng)聲器系統(tǒng)進(jìn)行實(shí)際測(cè)試,揚(yáng)聲器系統(tǒng)的線性沖激響應(yīng)和各階非線性沖激響應(yīng)被快速地測(cè)量出來(lái),實(shí)現(xiàn)了對(duì)非線性系統(tǒng)各階沖激響應(yīng)的快速檢測(cè)。

      [1]MULLER S,MASSARINI P.Transfer function measurement with sweeps[J].Journal of the Audio Engineering Society,2001,49(6):443-471.

      [2]VANDERKOOY J.Aspects of MLS measuring systems[C]. Convention of the Audio Engineering Society,1994:219-231.

      [3]SCHETZEN M.The volterra and wiener theories of nonlinear systems[M].New York:Wiley,1980.

      [4]FARINA A.Simultaneous measurement of impulse response and distortion with a swept-sine technique[C].108th Convention of the Audio Engineering Society,2000:19-22.

      [5]ARMELLONI E,F(xiàn)ARINA A,BELLINI A.Non-linear convolution:a new approach for the naturalization of distorting systems[C].110th Convention of the Audio Engineering Society,2001:12-15.

      [6]STEVE T,Brunet pascal enhancements for loose particle detection in loudspeakers[C].116th Convention of the Audio Engineering Society,2004:8-11.

      [7]FARINA A,RIGHINI F.Software implementation of an MLS analyzer,with tools for convolution,naturalization and inverse filtering[C].103th Convention of the Audio Engineering Society,1997:26-29.

      [8]COHEN L.Instantaneous frequency and group delay of a filtered signal[J].J.Franklin Inst,2000,337(5):329-346.

      [9]BART S G,JACQUES E J,DOMINIQUE A.Comparison of different impulse response measurement techniques[J].Journal of the Audio Engineering Society,2002,28(6):153-157.

      A fast method to detect impulse response of nonlinear system

      Guo Qing,Hu Lianghong,Xu Cuifeng
      (School of Electronic Engineering and Automation,Guilin University of Electronic Technology,Guilin 541004,China)

      A fast method for detection of impulse response of nonlinear system in the anechoic based on continuous exponential sine sweep signal is presented in this paper.Firstly,nonlinear system model in Volterra series is briefly described.Secondly,the continuous sine sweep signal and the basic principles and related technologies for rapid detection of impulse response of nonlinear systems are emphasized.Finally,the feasibility and rapidity of this method is proved by the test of system.

      nonlinear system;impulse response;continuous exponential sine sweep signal;rapid detection

      TP271+.6

      :A

      :1674-7720(2015)07-0079-04

      2014-12-10)

      郭慶(1962-),男,本科,教授,主要研究方向:嵌入式測(cè)控系統(tǒng)、微弱信號(hào)檢測(cè)、虛擬儀器技術(shù)。

      胡良紅(1988-),女,碩士研究生,主要研究方向:信號(hào)處理。

      徐翠鋒(1977-),通訊作者,女,研究生,講師,主要研究方向:嵌入式測(cè)控系統(tǒng)、信號(hào)處理,E-mail:xcf4100@guet.edu.cn。

      猜你喜歡
      沖激響應(yīng)掃頻正弦
      沖激響應(yīng)時(shí)域測(cè)量電路設(shè)計(jì)與應(yīng)用
      例說(shuō)正弦定理的七大應(yīng)用
      基于稀疏系統(tǒng)辨識(shí)的改進(jìn)的零吸引LMS算法*
      正弦、余弦定理的應(yīng)用
      正弦掃頻速率對(duì)結(jié)構(gòu)響應(yīng)的影響分析
      運(yùn)動(dòng)中人體信道數(shù)學(xué)模型研究
      “美”在二倍角正弦公式中的應(yīng)用
      寬帶高速掃頻信號(hào)源的高精度功率控制設(shè)計(jì)
      帶電等效阻抗掃頻測(cè)試的互感器繞組及外絕緣隱患快速識(shí)別新技術(shù)的應(yīng)用研究
      電子制作(2017年8期)2017-06-05 09:36:15
      一種線性掃頻干擾信號(hào)的參數(shù)估計(jì)方法
      霍州市| 永丰县| 金溪县| 河北区| 新干县| 沂水县| 黔西县| 上虞市| 乌鲁木齐市| 阳泉市| 海安县| 浏阳市| 察雅县| 金平| 津南区| 龙岩市| 株洲县| 石渠县| 曲靖市| 乌兰察布市| 黄龙县| 庆元县| 嘉善县| 阿尔山市| 交城县| 喀喇沁旗| 满城县| 任丘市| 平乡县| 曲松县| 徐汇区| 隆化县| 大竹县| 华容县| 老河口市| 金门县| 扬州市| 秀山| 汝南县| 高平市| 济源市|