姜玉柳,龔曉武,呼肖娜,周娜
(石河子大學化學化工學院/新疆兵團化工綠色過程重點實驗室,石河子 832003)
我國是農(nóng)業(yè)大國,玉米是三大糧食作物之一。據(jù)統(tǒng)計,每年玉米總產(chǎn)量在1.1-1.3億t,可以副產(chǎn)玉米芯約0.4億t左右[1]。目前,絕大部分玉米芯被作為農(nóng)家燃料燒掉,造成很大浪費。玉米芯中的主要成分包括纖維素、半纖維素和木質(zhì)素等,其中纖維素和半纖維素的含量約占70%-80%。纖維素和半纖
由圖5可以看出:(1)玉米芯原料的表面較為光滑,紋理清晰可見,纖維素束緊密排列在一起,無定形的半纖維素鑲嵌在其中(圖5a)。(2)在H2SO4/Fe2(SO4)3中水解后,無定形的半纖維素基本消失,纖維素的結(jié)構(gòu)也受到破壞,原有整齊、緊密的長鏈結(jié)構(gòu)被打亂、切斷,結(jié)構(gòu)變得松散,表面還出現(xiàn)了一些小孔(圖5b)。表明通過在H2SO4/Fe2(SO4)3中的預(yù)處理,可以將大部分半纖維素和纖維素水解生成可發(fā)酵糖。
(1)單獨采用H2SO4或Fe2(SO4)3催化玉米芯水解產(chǎn)糖時,總糖產(chǎn)率均低于40%;而將H2SO4、Fe2(SO4)3混合后催化玉米芯水解時,兩者交互作用顯著,總糖產(chǎn)率高于在2種單催化劑中水解的總糖產(chǎn)率之和。
(2)建立了 H2SO4濃度、Fe2(SO4)3濃度、反應(yīng)溫度和反應(yīng)時間影響總糖產(chǎn)率的數(shù)學模型,得到H2SO4/Fe2(SO4)3催化玉米芯水解的最佳工藝條件為:H2SO4濃度為 0.7 mol/L,F(xiàn)e2(SO4)3濃度為 2.0 mol/L,反應(yīng)溫度為150℃,時間為47 min,總糖產(chǎn)率最高,為79.98%。另外,驗證實驗結(jié)果與模型方程的預(yù)測值非常接近,表明預(yù)測模型在本實驗的研究范圍內(nèi)合理、有效。
(3)上述結(jié)論為玉米芯的高值化利用提供應(yīng)用研究的依據(jù)。
[1] 謝楠,齊崴,蘇榮欣,等.酸水解法分離玉米芯中五碳糖和六碳糖的動力學[J].化學反應(yīng)工程與工藝,2013,29(2):181-187.XIE Nan,QIWei,SU Rongxin,et al.Kinetics of dilute acid hydrolysis of corn cob for pentose and hexose separation[J].Chemical Reaction Engineering and Technology,2013,29(2):181-187.
[2]Bak J S,Ko J K,Han Y H,et al.Improved enzymatic hydrolysis yield of rice straw using electron beam irradiation pretreatment[J].Bioresource Technology,2009,100(3):1285-1290.
[3]Binder J B,Raines R T.Fermentable sugars by chemical hydrolysis of biomass[J].PNAS,2010,107(10):4516-4521.
[4]Onwudili J A.Influence of reaction conditions on the composition of liquid products from two-stage catalytic hydrothermal processing of lignin[J].Bioresource Technology,2015,187:60-69.
[5] 曲音波.木質(zhì)纖維素降解酶與生物煉制[M].北京:化學工業(yè)出版社,2011:6-15.
[6]Uppugundla N,Sousa L C,Chundawat S P S,et al.A comparative study of ethanol production using dilute acid,ionic liquid and AFEX pretreated corn stover[J].Biotechnology for Biofuels,2014,7:72-85.
[7]Jeevan P,Nelson R,Rena A E.Optimization studies on acid hydrolysis of corn cob hemicelluosic hydrolysate for microbial production of xylitol[J].Journal of Microbiology and Biotechnology Research,2011,1(4):114-123.
[8]Wang X,Liu X,Wang G.Two-stage hydrolysis of invasive algal feedstock for ethanol fermentation[J].Journal of Integrative Plant Biology,2011,53(3):246-252.
[9]Amarasekara A S,Ebede C C.Zinc chloride mediated degradation of cellulose at 200°C and identification of the products[J].Bioresource Technology,2009,100(21):5301-5304.
[10]Kawamoto H,Yamamoto D,Saka S.Influence of neutral inorganic chlorides on primary and secondary char formation from cellulose[J].Journal of Wood Science,2008,54(3):242-246.
[11]Liu L,Sun J,Li M,et al.Enhanced enzymatic hydrolysis and structural features of corn stover by FeCl3pretreatment[J].Bioresource Technology,2009,100(23):5853-5858.
[12]Nguyen Q A,Tucker M P.Dilute acid/metal salt hydrolysis of lignocellulosics:United States,6423145[P].2002-07-23.
[13]顏涌捷,任錚偉.纖維素連續(xù)催化水解研究[J].太陽能學報,1999,20(1):55-58.YAN Yongjie,REN Zhengwei.Continuous catalytic hydrolysis of cellulose[J].Acta Energiae Solaris Sinica,1999,20(1):55-58.
[14]Zhou N,Zhang Y,Wu X,et al.Hydrolysis of Chlorella biomass for fermentable sugars in the presence of HCl and MgCl2[J].Bioresource Technology,2011,102(21):10158-10161.
[15]宋安東,任天寶,張玲玲,等.玉米秸稈分批補料獲得高還原糖濃度酶解液的條件優(yōu)化[J].生物工程學報,2011,27(3):393-397.SONG Andong,REN Tianbao,ZHANG Lingling,et al.Optimization of corn stover hydrolysis by fed-batch process[J].Chinese Journal of Biotechnology,2011,27(3):393-397.
[16]Tang X,Zhong W,Zhuang D,et al.Bagasse wet-stored with the hypochlorite bleaching waste water[J].Applied Mechanics and Materials,2013,295-298:198-201.