• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看

      ?

      免疫磁分離技術(shù)在食源性單增李斯特菌檢測中應(yīng)用的研究進(jìn)展

      2015-10-24 06:13:34黃小林許恒毅熊勇華
      食品工業(yè)科技 2015年8期
      關(guān)鍵詞:單增檢測時(shí)間食源性

      毛 燕,黃小林,許恒毅,熊勇華

      (南昌大學(xué)食品科學(xué)與技術(shù)國家重點(diǎn)實(shí)驗(yàn)室,江西南昌330047)

      免疫磁分離技術(shù)在食源性單增李斯特菌檢測中應(yīng)用的研究進(jìn)展

      毛 燕,黃小林,許恒毅,熊勇華*

      (南昌大學(xué)食品科學(xué)與技術(shù)國家重點(diǎn)實(shí)驗(yàn)室,江西南昌330047)

      食源性單增李斯特菌是李斯特菌屬中的唯一能引起人類疾病的病原菌,致死率30%~70%,并嚴(yán)重威脅著人類健康。早期快速準(zhǔn)確地檢測出食品中可能污染的單增李斯特菌對(duì)于減少死亡率非常重要,因此亟需建立一些快速、靈敏和高特異性的檢測方法?,F(xiàn)有單增李斯特菌的檢測方法對(duì)未經(jīng)前增菌的食品樣本檢測靈敏度較低,限制了這些方法直接用于食品樣本中單增李斯特菌的快速檢測。免疫磁分離是一種可以短時(shí)間內(nèi)高效富集樣本中目的菌的技術(shù),與常用的檢測方法結(jié)合,可以縮短檢測周期,提高檢測靈敏度。本文綜述了免疫磁分離技術(shù)在食源性單核細(xì)胞增生性李斯特檢測中應(yīng)用的研究進(jìn)展。

      單增李斯特菌,免疫磁分離技術(shù),檢測

      單增李斯特菌(Listeria monocytogenes)是兼性厭氧的革蘭氏陽性短桿菌,是李斯特菌屬中唯一一種能引起人類和動(dòng)物疾病的病原菌,感染后臨床表現(xiàn)為腦膜炎、敗血癥、胃腸炎和流產(chǎn)等,死亡率較高[1-2]。1981年,加拿大首次報(bào)道了L.monocytogenes引起的食物中毒事件,隨后在歐美其他國家也相繼出現(xiàn)對(duì)此類事件的報(bào)道[3]。2011年美國有147人因食用了被L.monocytogenes污染的甜瓜而染病,其中33人死亡,1人流產(chǎn)[4]。因此,早期快速檢測出食品中可能污染的L.monocytogenes對(duì)于預(yù)防由L.monocytogenes引起的食物中毒尤為重要。目前用于L.monocytogenes的檢測方法主要包括基于前增菌、選擇性平板分離以及生理生化鑒定的傳統(tǒng)檢測方法及基于免疫學(xué)和分子生物學(xué)的檢測方法。然而,上述檢測方法都需要對(duì)目的菌進(jìn)行預(yù)增菌,以達(dá)到檢測方法所需的最低檢測濃度。但預(yù)增菌過程耗時(shí)較長,難以實(shí)現(xiàn)早期快速檢測。近幾年免疫磁分離技術(shù)(Immunomagnetic separation,IMS)被廣泛應(yīng)用于食源性致病菌的富集和分離。該技術(shù)可以對(duì)目的菌進(jìn)行特異性捕獲并在磁場下進(jìn)行分離,從而達(dá)到較高的富集效率,縮短預(yù)增菌時(shí)間。此外,可以將目的菌從復(fù)雜的食品基質(zhì)中分離出來,有效地消除了食品基質(zhì)對(duì)后續(xù)檢測的干擾。本文綜述了免疫磁分離技術(shù)在食源性單增李斯特菌檢測中應(yīng)用的研究進(jìn)展。

      1 免疫磁分離技術(shù)(IMS)

      免疫磁分離技術(shù)是70年代中期發(fā)展起來的一項(xiàng)免疫學(xué)技術(shù),已被廣泛應(yīng)用于蛋白純化、微生物富集和細(xì)胞純化等方面。其原理是通過抗體(或抗原)包被磁珠,與目標(biāo)抗原(或抗體)發(fā)生特異性免疫學(xué)反應(yīng),在外加磁場作用下將目標(biāo)物從復(fù)雜的樣本基質(zhì)中分離出來。因此,免疫磁分離技術(shù)既具備了固相化試劑特有的優(yōu)點(diǎn)(如較好的穩(wěn)定性),又具備了免疫學(xué)反應(yīng)的高度專一性。相對(duì)于傳統(tǒng)細(xì)菌分離方法,免疫磁分離技術(shù)是一種利用抗體偶聯(lián)于磁性粒子表面快速高效且特異性濃縮目的菌的新方法。使用該技術(shù)可以濃縮目的菌以達(dá)到檢測方法的最低濃度,從而使目的菌不經(jīng)預(yù)增菌被快速檢出,最大程度降低致病菌污染引起的危害。目前,該技術(shù)與相關(guān)后續(xù)檢測方法結(jié)合被廣泛用于L.monocytogenes的檢測,見圖1。表1詳細(xì)比較了結(jié)合IMS的檢測方法在食源性致病菌檢測中應(yīng)用的優(yōu)缺點(diǎn)。

      圖1 IMS與其它技術(shù)結(jié)合用于檢測單增李斯特菌Fig.1 IMS combined with other techniques for detecting Listeria monocytogenes

      2 結(jié)合IMS的檢測技術(shù)用于檢測單增李斯特菌

      2.1 IMS-顯色培養(yǎng)基

      顯色培養(yǎng)基是利用微生物自身代謝產(chǎn)生的酶與相應(yīng)顯色底物反應(yīng)顯色的原理來檢測微生物的新型培養(yǎng)基,利用顯色培養(yǎng)基進(jìn)行微生物的篩選分離,其反應(yīng)的靈敏度和特異性遠(yuǎn)優(yōu)于傳統(tǒng)培養(yǎng)基。Wadud等[23]通過IMS結(jié)合ALOA顯色培養(yǎng)基檢測方便食品中污染的L.monocytogenes。檢測時(shí)間為4d,最低檢測限為1CFU/25g。同時(shí)Wen等[24]將IMS與顯色培養(yǎng)基進(jìn)行結(jié)合,對(duì)牛奶樣本中的L.monocytogenes進(jìn)行檢測,檢測時(shí)間30h,最低檢測限達(dá)到0.7CFU/m L。兩種方法結(jié)合檢測時(shí)間較長,但檢測靈敏度高。

      2.2 IMS與PCR技術(shù)的結(jié)合

      聚合酶鏈?zhǔn)椒磻?yīng)(polymerase chain reaction,PCR)是一種可在體外快速擴(kuò)增特定基因或DNA序列的技術(shù),可短時(shí)間內(nèi)獲得數(shù)百萬個(gè)特異DNA序列拷貝。該方法簡單快速、靈敏度高、實(shí)用性強(qiáng)并能實(shí)現(xiàn)自動(dòng)化,在基因工程研究、分子生物學(xué)研究以及對(duì)遺傳病、惡性腫瘤和傳染病的研究中得到廣泛應(yīng)用。近年來,隨著IMS技術(shù)的逐漸成熟,其結(jié)合PCR技術(shù)也受到了廣泛的關(guān)注。IMS結(jié)合PCR技術(shù)巧妙地將二者的優(yōu)點(diǎn)結(jié)合在一起。即PCR方法良好的特異性與免疫磁珠良好的敏感性互相彌補(bǔ),可提高PCR方法的靈敏度和特異性;此外,IMS通過抗體(或抗原)包被的免疫磁珠特異性地結(jié)合目標(biāo)抗原或抗體,在外加磁場的作用下,將目標(biāo)物從復(fù)雜的食品基質(zhì)中分離出來,可有效地去除反應(yīng)體系中對(duì)PCR具有抑制作用的抑制因子。IMS還可以起到濃縮目標(biāo)物,縮短檢測周期的作用。

      2.2.1 IMS-PCR 一般PCR僅應(yīng)用一對(duì)引物,通過PCR擴(kuò)增產(chǎn)生一個(gè)核酸片段,可用于單一致病因子的鑒定。Hudson等[25]使用IMS分離火腿樣本中污染的L.monocytogenes,結(jié)合常規(guī)PCR檢測,結(jié)果發(fā)現(xiàn),每1g樣本中可檢測出1.1個(gè)細(xì)菌,檢測時(shí)間僅需24h。Wang等[26]通過IMS富集蘋果汁中的A licyclobacillus acidoterrestris,結(jié)合常規(guī)PCR檢測,得到最低檢測限為2×101CFU/m L,且檢測時(shí)間為3~4h。Moreira等[27]使用IMS-PCR技術(shù)分離檢測豬肉和雞肉樣本中污染的S.typhimurium,結(jié)果發(fā)現(xiàn),最低檢測限為1~10CFU/25g,檢測時(shí)間為27h。

      2.2.2 IMS-RT-PCR 實(shí)時(shí)熒光定量PCR技術(shù)是在PCR反應(yīng)體系中加入熒光染料或熒光探針,利用熒光信號(hào)積累實(shí)時(shí)監(jiān)測整個(gè)PCR反應(yīng)進(jìn)程,通過標(biāo)準(zhǔn)曲線對(duì)未知模板進(jìn)行定量分析,具有操作簡便、快速高效、高通量及高敏感性等特點(diǎn)。此外,RT-PCR檢測的是熒光信號(hào)的改變,省去凝膠電泳程序,避免實(shí)驗(yàn)過程中接觸致癌物質(zhì),且縮短檢測周期。IMS結(jié)合RT-PCR可用于L.monocytogenes定性及定量檢測,其檢測靈敏度較高。Yang等[28]將IMS與實(shí)時(shí)PCR技術(shù)結(jié)合用于檢測牛奶樣本中的L.monocytogenes,結(jié)果發(fā)現(xiàn),檢測靈敏度達(dá)102CFU/0.5m L。該研究還發(fā)現(xiàn)在103~107CFU/0.5m L范圍內(nèi),由IMS結(jié)合實(shí)時(shí)PCR檢測所得的菌落數(shù)比平板計(jì)數(shù)所得的菌落數(shù)高出1.5~7倍,表明通過IMS與實(shí)時(shí)PCR結(jié)合可提高樣品中L.monocytogenes的檢測靈敏度。同時(shí)這兩種方法的結(jié)合在其他細(xì)菌的檢測中也有應(yīng)用。Ha等[29]通過IMS結(jié)合實(shí)時(shí)PCR檢測植物和土壤樣本中的Ralstonia solanacearum R3Bv2,結(jié)果發(fā)現(xiàn),其最低檢測限低于500個(gè)細(xì)菌/m L,且檢測時(shí)間縮短到幾小時(shí)。Li等[30]使用IMS結(jié)合實(shí)時(shí)PCR檢測六種食品樣本中Salmonella spp.,結(jié)果發(fā)現(xiàn),有3h前增菌過程的檢測限為0.6CFU/m L,而無前增菌過程的最低檢測限也達(dá)到了60CFU/m L。

      2.2.3 IMS-mPCR 多重PCR(multiplex PCR,mPCR),又稱多重引物PCR或復(fù)合PCR,是在同一PCR反應(yīng)體系里加上兩對(duì)或兩對(duì)以上引物,同時(shí)擴(kuò)增出多個(gè)核酸片段的PCR反應(yīng),其反應(yīng)原理、操作過程和反應(yīng)試劑與常規(guī)PCR相同。多重PCR可用于多種致病菌的同時(shí)檢測或鑒定,即在同一PCR反應(yīng)管中同時(shí)加上多對(duì)特異性引物,進(jìn)行擴(kuò)增,可特異性的檢測并鑒定出致病菌種類。Yang等[31]將IMS與mPCR技術(shù)結(jié)合檢測加標(biāo)的生菜、西紅柿和碎牛肉中三種不同的細(xì)菌,結(jié)果發(fā)現(xiàn),S.typhimurium、E.coli O157∶H7和L.monocytogenes的最低檢測限分別為5.1×103、7.5×103CFU/g和8.4× 103CFU/g。Wang等[32]將IMS與mPCR結(jié)合同時(shí)定量檢測牛肉樣本中的E.coli O157∶H7、Salmonella和Shigella,結(jié)果發(fā)現(xiàn),最低檢測限分別為105、103CFU/g和104CFU/g。

      表1 結(jié)合IMS的檢測方法在食源性致病菌檢測中應(yīng)用的比較Table 1 Comparision for IMS combining with other technologies for the detection of foodborne pathogen

      2.3 IMS-流式細(xì)胞術(shù)

      流式細(xì)胞術(shù)(flow cytometry,F(xiàn)CM)是一種在功能水平上對(duì)單細(xì)胞或其他生物粒子進(jìn)行定量分析和分選的檢測手段,通過檢測標(biāo)記的熒光信號(hào),實(shí)現(xiàn)逐一和高速的細(xì)胞定量分析或分選的技術(shù)。FCM具有進(jìn)行多參數(shù)分析、速度快等優(yōu)點(diǎn),是一種綜合性方法。Kyoko等[33]將IMS與FCM技術(shù)結(jié)合分離檢測食品樣本中L.monocytogenes,結(jié)果發(fā)現(xiàn),該方法的檢測范圍達(dá)102~108CFU/m L,且檢測時(shí)間僅需1m in。

      2.4 IMS-免疫傳感器

      免疫傳感器的出現(xiàn)和發(fā)展正在促使免疫檢測手段朝電器化、自動(dòng)化、簡便化和快速化方向發(fā)展??乖c抗體的結(jié)合具有很高的特異性,從而減少了非特異性干擾,實(shí)時(shí)檢測抗原抗體的反應(yīng),進(jìn)行定量檢測,即在抗原抗體反應(yīng)的同時(shí)將反應(yīng)連續(xù)記錄下來,以便進(jìn)行動(dòng)態(tài)分析。IMS與免疫傳感器相結(jié)合,可以提高靈敏度,降低檢測限;減少分析時(shí)間;簡化分析過程。Marcelo等[34]結(jié)合IMS與光纖免疫傳感器在熱狗中快速檢測L.monocytogenes和L.innocua,結(jié)果發(fā)現(xiàn),檢測靈敏度為3×102CFU/m L。這兩種方法的結(jié)合,對(duì)檢測L.monocytogenes具有高效特異性,且可以在較低濃度下進(jìn)行檢測。

      2.5 IMS-免疫熒光技術(shù)

      免疫熒光技術(shù)(immunofluorescence technique)是在免疫學(xué)、生物化學(xué)以及顯微鏡技術(shù)的基礎(chǔ)上發(fā)展起來的一項(xiàng)檢測技術(shù),用熒光標(biāo)記的抗體或抗原與待測樣品中相應(yīng)的抗原或抗體進(jìn)行結(jié)合,在顯微鏡下檢測熒光強(qiáng)度,并對(duì)樣品進(jìn)行分析的方法。它把顯微鏡技術(shù)的精確性和免疫學(xué)檢測的特異性、敏感性有機(jī)地結(jié)合。該方法特異性強(qiáng)、靈敏度高。作為一種快速檢測方法,目前廣泛應(yīng)用于致病菌的檢測。將IMS與免疫熒光檢測技術(shù)進(jìn)行結(jié)合檢測致病菌,能極大的縮短檢測時(shí)間,提高檢測靈敏度。Cho等[35]將IMS與免疫熒光檢測技術(shù)相結(jié)合,分別檢測菠菜中的E.coli O157∶H 7、雞肉中的S.typhimurium和牛奶中的L.monocytogenes,結(jié)果發(fā)現(xiàn),這兩種方法的結(jié)合極大的縮短了檢測時(shí)間僅需2h,及低于5CFU/m L的高檢測靈敏度。Wang等[36]將IMS與免疫熒光技術(shù)結(jié)合同時(shí)檢測三種食源性致病菌(S.typhimurium,E.coli O157∶H 7,L.monocytogenes),檢測時(shí)間低于2h,檢測靈敏度低于20~50CFU/m L。

      3 總結(jié)與展望

      目前常用的L.monocytogenes的檢測方法已有很多,大部分方法都需要對(duì)目標(biāo)菌進(jìn)行預(yù)增菌,使其達(dá)到檢測方法所需的最低檢測濃度。如何在食品基質(zhì)中快速高效特異地分離出數(shù)量極少的食源性L.monocytogenes,實(shí)現(xiàn)對(duì)目標(biāo)菌高特異性和高靈敏度的檢測,是食品安全領(lǐng)域一個(gè)亟待突破的環(huán)節(jié)。

      IMS技術(shù)在食源性致病菌檢測中,作為一種可以短時(shí)高效富集基質(zhì)中目的菌的技術(shù),在一定程度上可以代替前增菌的過程。將IMS與各種常用的檢測方法進(jìn)行結(jié)合,可以達(dá)到縮短檢測周期,提高靈敏度,增強(qiáng)特異性等作用,其優(yōu)勢(shì)不斷體現(xiàn),已被廣泛應(yīng)用于食源性致病菌的分離檢測。但是,仍然還有許多值得改進(jìn)的地方,例如IMS結(jié)合PCR技術(shù)的優(yōu)化條件復(fù)雜,且優(yōu)化獲得的程序不具有通用性,其適用性被大大地限制;IMS與免疫學(xué)方法以及流式細(xì)胞術(shù)結(jié)合存在著儀器價(jià)格昂貴,操作要求高,實(shí)驗(yàn)材料制備復(fù)雜等問題。此外,在較復(fù)雜的食品基質(zhì)中,IMS因磁場強(qiáng)度影響磁分離速度,分離效率以及IMS過程中磁性粒子對(duì)細(xì)菌體存在的潛在毒性等缺點(diǎn)也需要進(jìn)一步研究[37]。另一方面,IMS結(jié)合其他的方法,如:拉曼增強(qiáng)[38-39]、免疫層析法[40]和免疫比濁法[41]等用于檢測常見致病菌已有研究,然而針對(duì)L.monocytogenes的檢測仍未報(bào)道,需要研究者們進(jìn)一步探討。

      [1]ShoukatS,Malik SV S,RawoolDB,etal.A study on detection of pathogenic Listeria monocytogenes in ovine's of kashmir region faving abortion or history of abortion[J].Proceedings of the National Academy of Sciences,India Section B:Biological Sciences,2014,84(2):311-316.

      [2]Guha S,Klees M,Wang X,et al.Influence of planktonic and sessile Listeria monocytogenes on Caenorhabditis elegans[J]. Archives of Microbiology,2013,195(1):19-26.

      [3]李翠云.單核細(xì)胞李斯特菌研究近況[J].中國熱帶醫(yī)學(xué),2010,10(1):120-122.

      [4]Lomonaco S,Verghese B,Gerner-Smidt P,et al.Novel epidemic clones of Listeria monocytogenes,United States,2011[J].Emerging Infectious Diseases,2013,19(1):147-150.

      [5]Frece J,Markov K.Comparison of conventional and molecular methods for the routine confirmation of Listeria monocytogenes in milk products produced domestically in Croatia[J].Journal of Dairy Research,2010,77(1):112-116.

      [6]JeníkováG,PazlarováJ,DemnerováK.Detection of Salmonella in food samples by the combination of immunomagnetic separation and PCR assay[J].International Microbiology,2010,3(4):225-229.

      [7]Tram L L T,Cao C,H?gberg J,et al.Isolation and detection of Campylobacter jejuni from chicken fecal samples by immunomagnetic separation-PCR[J].Food Control,2012,24(1):23-28.

      [8]Zheng Q,Mik?-Krajnik M,Yang Y,et al.Real-time PCR method combined with immunomagnetic separation for detecting healthy and heat-injured Salmonella Typhimurium on raw duck wings[J].International Journal of Food Microbiology,2014,186:6-13.

      [9]Cheng J,Zeng J,Liu L,et al.The establishment of a noval method of nano-immunomagnetic separation and real-time PCR for detecting Vibrio choleraes from seafood[J].Chinese Journal of Preventive Medicine,2014,48(2):133-137.

      [10]Walcher G,Stessl B,Wagner M,et al.Evaluation of paramagnetic beads coated with recombinant Listeria phage endolysin-derived cell-wall-binding domain proteins for separation of Listeria monocytogenes from raw milk in combination with culture-based and real-time polymerase chain reaction based quantification[J].Foodborne Pathogens and Disease,2010,7(9):1019-1024.

      [11]Koo O K,Aroonnual A,Bhunia A K.Human heat-shock protein 60 receptor-coated paramagnetic beads show improved capture of Listeria monocytogenes in the presence of other Listeria in food[J].Journal of Applied Microbiology,2011,111(1):93-104.

      [12]Ozalp V C,Bayramoglu G,Arica M Y,et al.Design of a core-shell type immuno-magnetic separation system andmultiplex PCR for rapid detection of pathogens from food samples[J]. AppliedMicrobiologyand Biotechnology,2013,97(21):9541-9551.

      [13]Wang L,Li P,Yang Y,et al.Development of an immunomagnetic separation-propidium monoazide-polymerase chain reaction assay with internal amplification control for rapid and sensitive detection of viable Escherichia coli O157∶H7 in milk[J].International Dairy Journal,2014,34(2):280-286.

      [14]Ma K,Deng Y,BaiY,etal.Rapid and simultaneous detection of Salmonella,Shigella,and Staphylococcus aureus in fresh pork using amultiplex real-time PCR assay based on immunomagnetic separation[J].Food Control,2014,42:87-93.

      [15]Ikeda M,Yamaguchi N,Nasu M.Rapid on-chip flow cytometric detection of Listeria monocytogenes inmilk[J].Journal of Health Science,2009,55(5):851-856.

      [16]Keserue H A,Baumgartner A,F(xiàn)elleisen R,et al.Rapid detection of total and viable Legionella pneumophila in tap water by immunomagnetic separation,double fluorescent staining and flow cytometry[J].Microbial Biotechnology,2012,5(6):753-763.

      [17]Füchslin H P,K?tzsch S,Keserue H A,et al.Rapid and quantitative detection of Legionella pneumophila applying immunomagnetic separation and flow cytometry[J].Cytometry Part A,2010,77(3):264-274.

      [18]Shen Z Q,Wang J F,Qiu Z G,et al.QCM immunosensor detection of Escherichia coli O157∶H7 based on beacon immunomagnetic nanoparticles and catalytic growth of colloidal gold[J].Biosensors and Bioelectronics,2011,26(7):3376-3381.

      [19]Park M K,Oh JH.Immunomagnetic bead separation coupled with a dithiobis-succinimidyl propionate(DSP)-modified immunosensor to detect Listeria monocytogenes in chicken skin[J].Journal of the Electrochemical Society,2014,161(12):B237-B242.

      [20]Kanayeva D A,Wang R,Rhoads D,etal.Efficient separation and sensitive detection of Listeria monocytogenes using an impedance immunosensor based on magnetic nanoparticles,a microfluidic chip,and an interdigitated microelectrode[J].Journal of Food Protection?,2012,75(11):1951-1959.

      [21]Lee W,Kwon D,Chung B,et al.Ultra-rapid detection of pathogenic bacteria using a 3D Iimmunomagnetic flow assay[J]. Analytical Chemistry,2014,86(13):6683-6688.

      [22]Cavaiuolo M,Paramithiotis S,Drosinos E H,et al. Development and optimization of an ELISA based method to detect Listeria monocytogenes and Escherichia coli O157 in fresh vegetables[J].Analytical Methods,2013,5(18):4622-4627.

      [23]Wadud Shaila,Carlos G Leon-Velarde,Nathan Larson,etal. Evaluation of immunomagnetic separation in combination with ALOA Listeria chromogenic agar for the isolation and identification of Listeria monocytogenes in ready-to-eat foods[J].Journal of Microbiological Methods,2010,81(2):153-159.

      [24]聞一鳴,李志清,童吉宇,等.免疫磁珠富集技術(shù)聯(lián)合選擇性培養(yǎng)基快速檢測單增李斯特菌[J].Chinese Journal of Biotechnology,2013,29(5):672-680.

      [25]Hudson JA,Lake R J,Savill M G,et al.Rapid detection of Listeria monocytogenes in ham samples using immunomagnetic separation followed by polymerase chain reaction[J].Journal of Applied Microbiology,2001,90(4):614-621.

      [26]Wang Z,Wang J,Yue T,et al.Immunomagnetic separation combined with polymerase chain reaction for the detection of Alicyclo bacillus acidoterrestris in apple juice[J].PloS One,2013,8(12):e82376.

      [27]Moreira?N,Concei??o FR,Concei??o RdCS,etal.Detection of Salmonella Typhimurium in rawmeatsusing in-house prepared monoclonal antibody coated magnetic beads and PCR assay of the fimA gene[J].Journalof Immunoassay and Immunochemistry,2007,29(1):58-69.

      [28]Yang H,Qu L,Wimbrow AN,et al.Rapid detection of Listeria monocytogenes by nanoparticle-based immunomagnetic separation and real-time PCR[J].International Journal of Food Microbiology,2007,118(2):132-138.

      [29]Ha Y,Kim JS,Denny TP,etal.A rapid,sensitive assay for Ralstonia solanacearum race 3 biovar 2 in plant and soil samples using magnetic beads and real-time PCR[J].Plant Disease,2012,96(2):258-264

      [30]Li A,Zhang H,Zhang X,et al.Rapid separation and immunoassay for low levels of Salmonella in foods using magnetosome-antibody complex and real-time fluorescence quantitative PCR[J].Journal of Separation Science,2010,33(21):3437-3443.

      [31]Yang Y,Xu F,Xu H.et al.Magnetic nano-beads based separation combined with propidium monoazide treatment and multiplex PCR assay for simultaneous detection of viable Salmonella Typhimurium,Escherichia coli O157∶H7 and Listeria monocytogenes in food products[J].Food Microbiol,2013,34(2):418-424.

      [32]Wang L,Li Y,Mustapha A.Rapid and simultaneous quantitation of Escherichia coli O157∶H7,Salmonella,and Shigella in ground beef by multiplex real-time PCR and immunomagnetic separation[J].Journal of Food Protection,2007,70(6):1366-1372.

      [33]Hibi K,Abe A,Ohashi E,et al.Combination of immunomagnetic separation with flow cytometry for detection of Listeria monocytogenes[J].Analytica Chimica Acta,2006,573:158-163.

      [34]Mendon?a M,Conrad N L,Concei??o F R,et al.Highly specific fiber optic immunosensor coupled with immunomagnetic separation for detection of low levels of Listeria monocytogenes and L.ivanovii[J].BMCMicrobiology,2012,12(1):275.

      [35]Cho I H,Mauer L,Irudayaraj J.In-situ fluorescent immunomagnetic multiplex detection of foodborne pathogens in very low numbers[J].Biosensors and Bioelectronics,2014,57:143-148.

      [36]Wang H,Li Y,Wang A,et al.Rapid,sensitive,and simultaneous detection of three foodborne pathogens using magnetic nanobead-based immunoseparation and quantum dotbased multiplex immunoassay[J].Journal of Food Protection,2011,74(12):2039-2047.

      [37]黃小林,許恒毅,熊勇華,等.磁性納米材料在食源性致病菌分離中應(yīng)用的研究進(jìn)展[J].食品科學(xué),2014,35(11):280-285.

      [38]Sundaram J,Park B,Kwon Y,etal.Surface enhanced raman scattering(SERS) with biopolymer encapsulated silver nanosubstrates for rapid detection of foodborne pathogens[J]. International Journalof Food Microbiology,2013,167(1):67-73.

      [39]Banerjee P.Development of a single assay comprising nanoimmunomagnetic separation of Escherichia coli O157∶H7 from apple juice followed by surface enhanced raman scattering based detection[C].2014 Annual Meeting Iafp,2014.

      [40]鐘珍.免疫層析法結(jié)合免疫磁分離技術(shù)在大腸桿菌檢測中的應(yīng)用[D].廣州:暨南大學(xué),2010.

      [41]肖敏,易勇,毛旭虎,等.免疫磁分離及免疫比濁分析對(duì)福氏志賀菌的自動(dòng)快速定量檢測[J].免疫學(xué)雜志,2009(3):341-345.

      Research advance on immunomagnetic separation for detection of foodborne Listeria monocytogenes

      MAO Yan,HUANG Xiao-lin,XU Heng-yi,XIONG Yong-hua*
      (State Key Laboratory of Food Science and Technology,Nanchang University,Nanchang 330047,China)

      Listeria monocytogenes was the only human foodborne pathogen of Listeria,which was responsiblefor listeriosis with high mortality rate of 30% to 70%. Early prevention for L. monocytogenes was of the utmostimportance to reduce the disease mortality. Therefore,it was required to achieve the detection methods withrapidity,sensitivity and high specificity. Detection sensitivity of existing detection methods for L. monocytogeneswas low in food samples without pre-enrichment,limiting these methods directly used for rapid detection ofL. monocytogenes. Immunomagnetic separation was a technology which could efficiently enrich target bacteriain the sample within short time. This technology combined with commonly used detection methods could shortenthe detection period and improve the detection sensitivity. Recent advance of the application of immunomagneticseparation technology for the detection of foodborne L. monocytogenes was reviewed in this paper.

      Listeria monocytogenes;immunomagnetic separation;detection

      TS207.4

      A

      1002-0306(2015)08-0351-05

      10.13386/j.issn1002-0306.2015.08.065

      2014-06-19

      毛燕(1990-),女,碩士研究生,研究方向:免疫磁分離。

      *通訊作者:熊勇華(1970-),男,博士,研究員,研究方向:食品生物技術(shù)。

      國家自然科學(xué)基金資助項(xiàng)目(81201691,31271863);“十二五”國家科技支撐計(jì)劃項(xiàng)目(2011BAK10B06);高等學(xué)校博士學(xué)科點(diǎn)專項(xiàng)科研基金(20123601120005);江西省教育廳基金資助項(xiàng)目(GJJ13093)。

      猜你喜歡
      單增檢測時(shí)間食源性
      冰箱囤貨要警惕這個(gè)“搗蛋分子”
      秋冬季高發(fā)食源性疾病的危害與預(yù)防
      中老年保健(2022年1期)2022-08-17 06:14:22
      冰箱里的“殺手”
      黨員文摘(2022年1期)2022-04-03 21:37:19
      論食品安全與食源性疾病的控制
      夏季食品安全頭號(hào)殺手——食源性疾病
      中老年保健(2021年6期)2021-08-24 06:54:00
      對(duì)兩種細(xì)菌鑒定法在血液檢驗(yàn)中的應(yīng)用效果進(jìn)行分析
      新型溶血素與傳統(tǒng)溶血素在臨床血常規(guī)檢驗(yàn)中的應(yīng)用研究
      ABL90血?dú)夥治鰞x在急診科的應(yīng)用研究
      基于PasteurMLST網(wǎng)站分析中國單增李斯特菌克隆復(fù)合體的多樣性
      不同檢測時(shí)長對(duì)粉煤灰砌塊放射性檢測結(jié)果的影響
      中山市| 武城县| 上林县| 嘉鱼县| 福州市| 绥江县| 阿荣旗| 大厂| 正安县| 读书| 平果县| 兴城市| 井研县| 伊通| 桃园县| 科尔| 郓城县| 措勤县| 龙胜| 宁南县| 林周县| 雷山县| 仁怀市| 锦屏县| 华蓥市| 邵阳县| 马公市| 大方县| 景洪市| 宣汉县| 岳阳县| 互助| 廉江市| 横山县| 澄迈县| 蓝山县| 云浮市| 惠州市| 临邑县| 蕲春县| 揭阳市|