王彬彬武承鳳張方信馬強(qiáng)
·國家基金研究進(jìn)展綜述·
自噬介導(dǎo)腫瘤多藥耐藥的研究進(jìn)展*
王彬彬①②武承鳳①②張方信①馬強(qiáng)①
多藥耐藥(multidrug resistance,MDR)的出現(xiàn)限制了化療藥物的臨床應(yīng)用及療效,已成為化療成功的最大障礙。MDR的發(fā)生機(jī)制復(fù)雜多樣,主要有三磷酸腺苷結(jié)合盒膜轉(zhuǎn)運(yùn)蛋白家族、抗凋亡或DNA修復(fù)增強(qiáng)、藥物靶點(diǎn)或代謝酶改變、微小RNA、腫瘤干細(xì)胞及自噬等。自噬通過形成自噬溶酶體降解細(xì)胞質(zhì)中損傷的細(xì)胞器及蛋白質(zhì)并循環(huán)利用代謝產(chǎn)物,具有維持細(xì)胞內(nèi)環(huán)境穩(wěn)定及機(jī)體平衡的重要意義。近來研究發(fā)現(xiàn),自噬與MDR的病理生理進(jìn)程密切相關(guān)。本文就自噬與MDR的相互作用及其分子機(jī)制進(jìn)行綜述,希望從自噬水平了解MDR的發(fā)生進(jìn)程,為治療MDR提供新思路。
自噬 腫瘤 多藥耐藥
腫瘤治療后的復(fù)發(fā)已經(jīng)成為臨床上常見的問題,其中的原因包括腫瘤細(xì)胞產(chǎn)生多藥耐藥(multi?drug resistance,MDR)現(xiàn)象。MDR是腫瘤細(xì)胞通過各種策略以逃避抗癌藥物的細(xì)胞毒作用,而且耐藥性與腫瘤細(xì)胞種類及化療藥物的結(jié)構(gòu)及其作用機(jī)理密切相關(guān)[1]。雖然對于腫瘤靶向藥物治療的認(rèn)識尚不完善,但開發(fā)低毒性并克服MDR的新型抗癌制劑是腫瘤學(xué)研究的主要目標(biāo)[2]。目前已有多種機(jī)制來描述和解釋在哺乳動物細(xì)胞中的多藥耐藥現(xiàn)象[3]。
自噬是機(jī)體出現(xiàn)應(yīng)激、損傷、缺氧等病理生理反應(yīng)后的一種調(diào)控嚴(yán)謹(jǐn)?shù)募?xì)胞代謝過程和自我保護(hù)機(jī)制。自噬在腫瘤細(xì)胞發(fā)生過程中的作用復(fù)雜,很多研究集中于腫瘤進(jìn)展及治療中的自噬作用,并闡明如何調(diào)整自噬來治療腫瘤[2-3]。
1.1自噬定義及分類
自噬是一種進(jìn)化上保守的過程,主要涉及溶酶體酶降解已受損細(xì)胞器和蛋白質(zhì)的代謝來維持細(xì)胞穩(wěn)態(tài)。在應(yīng)激條件下可誘導(dǎo)高水平的自噬,通常在細(xì)胞死亡時(shí)自噬水平高表達(dá),因此認(rèn)為自噬可充當(dāng)細(xì)胞死亡的執(zhí)行者[4]。自噬作為一種細(xì)胞死亡的機(jī)制一直備受爭議,在特定的環(huán)境中自噬可以促進(jìn)細(xì)胞死亡。由于不同信號通路之間的廣泛交通,導(dǎo)致了自噬促進(jìn)細(xì)胞死亡的復(fù)雜性[5]。在哺乳動物細(xì)胞中自噬主要分為3大類型:巨自噬、小自噬和分子伴侶介導(dǎo)的自噬,而研究最多的是巨自噬(簡稱自
噬)。自噬的特殊形式是膜運(yùn)輸(圖1)[6],首先在細(xì)胞質(zhì)內(nèi)形成一個(gè)芽形的隔離膜,然后延伸并螯合細(xì)胞器和大分子,將其稱為前自噬結(jié)構(gòu);當(dāng)其形成一個(gè)完整的封閉雙層膜結(jié)構(gòu)時(shí)稱為自噬體;自噬體經(jīng)過一系列的成熟事件后與溶酶體融合,在溶酶體水解酶的作用下降解所包含的物質(zhì),消化形成的氨基酸、脂肪酸和核苷酸再被循環(huán)利用,合成細(xì)胞所需的大分子[2]。自噬體膜的來源可以是內(nèi)質(zhì)網(wǎng)(ER)、線粒體和高爾基體,目前尚不清楚哪個(gè)是主要來源[7]。
1.2自噬調(diào)控機(jī)制
多種自噬相關(guān)基因(autophagy-related genes,ATG)參與自噬的形成過程。主要包括為5個(gè)階段(圖1):1)自噬的起始階段,主要由UNC-51樣激酶-1(UNC-51-like kinase-1,ULK-1)的磷酸化激酶復(fù)合物(包括ULK-1、ATG3和ATG17)觸發(fā),而且當(dāng)細(xì)胞損傷或存在功能障礙時(shí),自噬通過哺乳動物雷帕霉素靶蛋白(mammalian target of rapamycin 1,mTOR 1)復(fù)合物激活;2)活化的ULK-1復(fù)合物激活磷脂酰肌醇-4,5-二磷酸3-激酶(phosphatidylinositol-4,5-bisphosphate 3-kinase,PI3K)復(fù)合物(包括PI3K、Be?clin-1、ATG14L和Ambra1),形成一個(gè)雙膜的自噬囊泡;3)自噬囊泡在ATG12-ATG5-ATG16L-1和微管相關(guān)蛋白輕鏈3(microtubule-associated protein light chain 3,MAP-LC3)-磷脂(phosphatidylethanolamine,PE)復(fù)合體兩個(gè)泛素樣結(jié)合系統(tǒng)的幫助下逐步延伸和閉合,逐漸發(fā)展成熟形成自噬體;4)一個(gè)成熟的自噬體外膜與溶酶體融合形成自噬溶酶體;5)自噬降解階段,自噬溶酶體體內(nèi)包裹的線粒體和蛋白質(zhì)被SQSTM1/p62選擇性識別;SQSTM1/p62蛋白包含LC3作用區(qū)域和泛素相關(guān)結(jié)構(gòu)域,最終通過自噬選擇性降解泛素化物質(zhì);自噬通過調(diào)節(jié)SQSTM1/p62蛋白調(diào)控抗氧化應(yīng)激、炎癥反應(yīng)、細(xì)胞生長和凋亡[4-8]。
1.3引起自噬的主要因素
1.3.1營養(yǎng)物質(zhì)缺乏當(dāng)細(xì)胞營養(yǎng)物質(zhì)缺乏不足以支持新陳代謝時(shí),細(xì)胞內(nèi)增高的鈣離子濃度激活調(diào)鈣素,活化鈣/鈣調(diào)蛋白依賴性蛋白激酶激酶?,并激活PI3K、ATG3和ATG5而誘導(dǎo)自噬[9]。調(diào)鈣素還通過激活死亡相關(guān)蛋白激酶促進(jìn)Beclin-1的磷酸化,進(jìn)而激活Beclin-1誘導(dǎo)自噬[10]。
1.3.2缺氧在缺氧條件下,活化的缺氧誘導(dǎo)因子通過Beclin-1/Bcl-2/Bcl-xL復(fù)合體激活蛋白相互作用蛋白3(protein-interacting protein 3,BNIP3)/ BNIP3L;活化的BNIP3/BNIP3L通過結(jié)合Bcl-2/BclxL誘導(dǎo)Beclin-1分離[11],促進(jìn)自噬的活化。另外,缺氧誘導(dǎo)因子還通過miRNA-210下調(diào)Bcl-2的表達(dá)增強(qiáng)自噬活性,降低腫瘤細(xì)胞對輻射的敏感性[12]。
圖1 自噬調(diào)控機(jī)制Figure 1Mechanism of autophagy regulation
1.3.3細(xì)胞毒性增加在細(xì)胞毒性的威脅下,p53作為轉(zhuǎn)錄因子被激活,并促進(jìn)自噬相關(guān)轉(zhuǎn)錄因子Ses?trin 1/2、結(jié)節(jié)性硬化癥的基因1/2和5'單磷酸腺苷活化蛋白激酶β1/β2的激活,進(jìn)一步抑制mTOR信號通路激活自噬[13];然而在正常條件下,細(xì)胞質(zhì)中無活性的p53通過ARF轉(zhuǎn)錄因子抑制自噬[14]。
MDR是由于腫瘤細(xì)胞群為了自我生存而抵抗多種藥物形成的一種自我保護(hù)機(jī)制,并且是目前聯(lián)合化療非常重要的一個(gè)問題,其已成為惡性腫瘤化療失敗的主要原因之一。腫瘤細(xì)胞通過改變質(zhì)膜上、細(xì)胞質(zhì)或細(xì)胞核內(nèi)功能結(jié)構(gòu)及作用機(jī)制降低對化療藥物的敏感性而形成MDR[15]。由于多種機(jī)制間的相互交通,使MDR變得更加復(fù)雜,但細(xì)胞中通常有一個(gè)主要機(jī)制發(fā)揮作用。MDR機(jī)制主要包括非細(xì)胞機(jī)制和細(xì)胞機(jī)制兩大類(圖2)[15]。
2.1非細(xì)胞機(jī)制
非細(xì)胞耐藥機(jī)制現(xiàn)象與某些實(shí)體瘤血管分布有關(guān)。實(shí)體瘤中,誘導(dǎo)腫瘤血管生成相關(guān)因子的結(jié)構(gòu)和功能出現(xiàn)異常,如血管內(nèi)皮生長因子和血管生成素的不平衡,導(dǎo)致血管形成缺乏,形成的缺血區(qū)域可對化療藥物起抵抗作用[16]。因此,腫瘤的血流量比較混亂,從而導(dǎo)致腫瘤細(xì)胞耐受缺氧和酸性環(huán)境,產(chǎn)生耐藥性[17]。
2.2細(xì)胞機(jī)制
在細(xì)胞中的MDR機(jī)制尚未研究清楚。常見的耐藥途徑主要有三磷酸腺苷結(jié)合盒(adenosine triphos?
phate-binding cassette,ABC)膜轉(zhuǎn)運(yùn)蛋白家族將藥物被主動運(yùn)輸?shù)郊?xì)胞外,由于細(xì)胞表面受體或轉(zhuǎn)運(yùn)體缺失導(dǎo)致藥物不能進(jìn)入細(xì)胞內(nèi)、抗凋亡、損傷DNA修復(fù)增強(qiáng)或DNA甲基化、藥物靶點(diǎn)或代謝酶改變、微小RNA(microRNA)突變、腫瘤干細(xì)胞過度增殖及自噬等多種調(diào)控方式[3,15,18],這些關(guān)鍵基因、蛋白在遺傳學(xué)上發(fā)生的突變是導(dǎo)致耐藥性的主要機(jī)制。其中自噬與腫瘤細(xì)胞對化療藥物的敏感程度密切相關(guān),自噬已成為腫瘤耐藥研究領(lǐng)域一個(gè)熱點(diǎn)。
圖2 MDR形成機(jī)制Figure 2Mechanism of MDR development
越來越多的證據(jù)表明,自噬在化療中起到顯著作用,化療藥物通過多種細(xì)胞相關(guān)信號通路參與自噬調(diào)控,有助于腫瘤細(xì)胞逃避其殺傷作用產(chǎn)生MDR[19-21]。但自噬參與MDR的形成過程機(jī)制復(fù)雜,需待進(jìn)一步研究。
3.1自噬相關(guān)基因參與MDR的形成
最近研究發(fā)現(xiàn),多種自噬相關(guān)基因參與急性髓系白血病、肺癌、胃癌、食管癌、骨肉瘤、卵巢癌等人類腫瘤細(xì)胞獲得MDR過程中扮演著重要角色[22-28]。Beclin-1基因的異位表達(dá)聯(lián)合mTOR抑制劑通過激活自噬水平抑制腫瘤細(xì)胞的生長[23]。ATG3、ATG5、ATG7、SQSTM1/p62基因的高表達(dá)與多藥耐藥蛋白密切相關(guān);當(dāng)抑制或敲出這些自噬相關(guān)基因后,可增加化療藥物的敏感性,提高化療效果[24-28]。因此,自噬相關(guān)基因可作為MDR形成的主要因素之一,但是具體相關(guān)機(jī)制尚不明確,有待進(jìn)一步研究。
3.2PI3K/Akt/mTOR信號通路雙重誘導(dǎo)自噬
PI3K/Akt/mTOR是腫瘤細(xì)胞生存的重要調(diào)節(jié)通路。因此,通過多種方法干預(yù)PI3K/Akt/mTOR的活性逆轉(zhuǎn)腫瘤細(xì)胞的耐藥性。NVP-BEZ235是一種新型的PI3K和mTOR雙重抑制劑,通過抑制這條信號通路的相關(guān)蛋白,增強(qiáng)自噬通量,阻滯細(xì)胞周期,抵抗實(shí)體瘤的耐藥性[29-30]。雙青蒿素也通過抑制mTOR的活化誘導(dǎo)保護(hù)性自噬,是卵巢癌細(xì)胞產(chǎn)生耐藥性[31]。另外,內(nèi)源性高遷移率族蛋白-1(high mobility group box-1,HMGB1)通過激活PI3K/Akt信號通路誘導(dǎo)保護(hù)性自噬促進(jìn)腫瘤細(xì)胞耐藥性[32-33]。因此,靶向PI3K/Akt/mTOR信號-自噬途徑是一種克服化療耐藥和增強(qiáng)抗癌敏感性的方法。
3.3p53的多型性誘導(dǎo)自噬
眾所周知,p53是腫瘤抑制基因之一,其突變與放化療的失敗而產(chǎn)生MDR密切相關(guān)。野生型及突變型p53通過自噬的雙重作用調(diào)節(jié)卵巢癌細(xì)胞的耐藥性。突變型p53采用自體吞噬殺滅耐藥的卵巢癌細(xì)胞,而野生型p53抑制自噬并逆轉(zhuǎn)MDR[34]。Amrein等[35]研究發(fā)現(xiàn),慢性淋巴細(xì)胞白血病細(xì)胞通過p53誘導(dǎo)保護(hù)性自噬,產(chǎn)生達(dá)沙替尼的耐藥性,而突變的p53可抑制自噬的發(fā)生。最近一項(xiàng)研究發(fā)現(xiàn),缺失或突變的p53通過誘導(dǎo)自噬增強(qiáng)結(jié)腸癌細(xì)胞對5-FU耐藥性,其機(jī)制可能是活化的JNK誘導(dǎo)Bcl-2磷酸化激活自噬相關(guān)信號通路而導(dǎo)致耐藥的發(fā)生[36]。以上結(jié)果表明p53可能參與自噬形成介導(dǎo)耐藥性的發(fā)生。
3.4MAPK信號轉(zhuǎn)導(dǎo)系統(tǒng)的激活誘導(dǎo)自噬
絲裂原活化蛋白激酶(mitogen-activated protein kinase,MAPK)是哺乳動物細(xì)胞內(nèi)廣泛存在的一類絲氨酸/蘇氨酸蛋白激酶,MAPK信號轉(zhuǎn)導(dǎo)通路是介導(dǎo)細(xì)胞外刺激到細(xì)胞內(nèi)反應(yīng)的重要信號轉(zhuǎn)導(dǎo)系統(tǒng),調(diào)節(jié)著細(xì)胞的增殖、分化、凋亡和細(xì)胞間相互作用。研究發(fā)現(xiàn),MAPK通路在腫瘤化療耐藥中發(fā)揮著重要的作用,抗腫瘤藥物能夠引起MAPK信號轉(zhuǎn)導(dǎo)系統(tǒng)的激活,誘導(dǎo)保護(hù)性自噬及MDR的產(chǎn)生[37-38]。
3.5ERK/NF-κB信號的活化誘導(dǎo)自噬
ERK信號通路是MAPK家族的重要成員,控制著細(xì)胞多個(gè)生理過程。NF-κB最初在免疫球蛋白kap?pa輕鏈增強(qiáng)因子中得以確認(rèn)的一種轉(zhuǎn)錄因子蛋白,可見于不同細(xì)胞的胞漿,為結(jié)構(gòu)上相關(guān)的家族蛋白。MAPK/ERK激酶的激酶1(MAPK/ERK kinase ki?nase,MEKK1)在ERK與NF-κB信號通路的相互關(guān)聯(lián)中起著中介作用。Zhang等[39]研究發(fā)現(xiàn),異黏蛋白(metadherin,MTDH)可能通過活化ERK/NF-κB信號通路及減少caspas-3降解,誘導(dǎo)宮頸癌細(xì)胞產(chǎn)生自噬參與MDR的形成。
3.6EGFR抑制自噬
表皮生長因子受體(epidermal growth factor re?ceptor,EGFR)是酪氨酸激酶受體,通過多種媒介物質(zhì)啟動繁雜信號通路,調(diào)節(jié)細(xì)胞內(nèi)環(huán)境穩(wěn)態(tài)。最近研究表明,EGFR通過結(jié)合Beclin-1導(dǎo)致多位點(diǎn)酪氨酸
磷酸化,降低Beclin1-PI3K的活性而抑制自噬,導(dǎo)致腫瘤細(xì)胞產(chǎn)生耐藥性;TKI是EGFR酪氨酸激酶的抑制,通過可擾亂酪氨酸磷酸化而恢復(fù)自噬,增強(qiáng)EG?FR突變化療的敏感性[40]。自噬抑制劑聯(lián)合TKI可通過EGFR靶點(diǎn)提高腫瘤治療的敏感性[41-42]。因此,結(jié)合傳統(tǒng)的化療策略,通過EGFR信號靶向抑制腫瘤耐藥的自噬水平,有希望提高腫瘤耐藥治療的療效。
3.7miRNA抑制自噬增強(qiáng)化療的敏感性
miRNA是內(nèi)源性非編碼RNA,主要負(fù)責(zé)靶基因的轉(zhuǎn)錄后的調(diào)節(jié),通過3'非翻譯區(qū)(3'UTR)的特定序列介導(dǎo)翻譯水平的調(diào)控[43]。通過研究miRNA調(diào)控腫瘤細(xì)胞耐藥性,探索miRNA在人類腫瘤治療中的潛能具有現(xiàn)實(shí)意義。不同種類的miRNA通過各種相關(guān)的靶基因或蛋白間接抑制自噬成熟障礙,誘導(dǎo)自噬性死亡,增強(qiáng)耐藥腫瘤細(xì)胞對化療藥物的敏感性,以提高化療療效[44-49]。另外,抑制miRNA的表達(dá)可上調(diào)自噬表達(dá),最終導(dǎo)致通過溶酶體途徑加速ABC轉(zhuǎn)運(yùn)蛋白的降解,從而逆轉(zhuǎn)乳腺癌細(xì)胞對多柔比星耐藥性[50]。miRNA、自噬和抗腫瘤治療三者之間的關(guān)系復(fù)雜,目前尚未得到很好的闡明,但是miRNA可能會成為化療耐藥的關(guān)鍵點(diǎn)。
MDR是一個(gè)復(fù)雜的、動態(tài)的和無形的現(xiàn)象,已成為癌癥治療成功的主要障礙。雖然關(guān)于自噬的促存活或抗癌的作用存在爭議,在體外和體內(nèi)的數(shù)據(jù)似乎更支持自噬促進(jìn)癌細(xì)胞對化療耐藥性的觀點(diǎn),而且抑制自噬可增強(qiáng)耐藥癌細(xì)胞對抗癌藥物的敏感性。自噬在MDR中的雙重機(jī)制仍待進(jìn)步一研究,自噬抑制劑與細(xì)胞毒性藥物的聯(lián)合應(yīng)用在癌癥治療中越來越受到重視。然而自噬抑制劑克服腫瘤耐藥的能力,以及如何調(diào)控腫瘤微環(huán)境仍存在許多問題。如,如何在癌癥治療中設(shè)法定量增強(qiáng)或抑制自噬?如何最大限度地將自噬抑制劑應(yīng)用于更嚴(yán)格的臨床研究中?如何研制新一代有效低毒的自噬抑制劑?這些問題都是今后研究自噬與MDR的方向,希望給癌癥患者提供一個(gè)有前途的治療策略。
[1]Sun YL,Patel A,Kumar P,et al.Role of ABC transporters in can?cer chemotherapy[J].Chin J Cancer,2012,31(2):51-57.
[2]Kumar P,Zhang DM,Degenhardt K,et al.Autophagy and trans?porter-based multi-drug resistance[J].Cells,2012,1(3):558-575.
[3]Wu Q,Yang Z,Nie Y,et al.Multi-drug resistance in cancer che?motherapeutics:mechanisms and lab approaches[J].Cancer Lett,2014,347(2):159-166.
[4]Yonekawa T,Thorburn A.Autophagy and cell death[J].Essays Biochem,2013,55:105-117.
[5]Gong JS,Kim GJ.The role of autophagy in the placenta as a regu? lator of cell death[J].Clin Exp Reprod Med,2014,41(3):97-107.
[6]Mizushima N,Komatsu M.Autophagy:renovation of cells and tissues[J].Cell,2011,147(4):728-741.
[7]Lavallard VJ,Gual P.Autophagy and non-alcoholic fatty liver disease[J].Biomed Res Int,2014,2014:120179.
[8]Mallat A,Lodder J,Teixeira-Clerc F,et al.Autophagy:a multi?faceted partner in liver fibrosis[J].Biomed Res Int,2014,2014:869390.
[9]Crawford SE,Hyser JM,Utama B,et al.Autophagy hijacked through viroporin-activated calcium/calmodulin-dependent ki?nase kinase-β signaling is required for rotavirus replication[J]. Proc Natl Acad Sci U S A,2012,109(50):E3405-E3413.
[10]Zalckvar E,Berissi H,Eisenstein M,et al.Phosphorylation of Be?clin 1 by DAP-kinase promotes autophagy by weakening its in?teractions with Bcl-2 and Bcl-XL[J].Autophagy,2009,5(5):720-722.
[11]Hu YL,DeLay M,Jahangiri A,et al.Hypoxia-induced autopha?gy promotes tumor cell survial and adaptation to antiangiogenic treatment in glioblastoma[J].Cancer Res,2012,72(7):1773-1783.
[12]Sun Y,Xing X,Liu Q,et al.Hypoxia-induced autophagy reduc?es radiosensitivity by the HIF-1α/miR-210/Bcl-2 pathway in colon cancer cells[J].Int J Oncol,2015,46(2):750-756.
[13]Budanov AV,Karin M.p53 target genes sestrin1 and sestrin2 connect genotoxic stress and mTOR signaling[J].Cell,2008,134(3):451-460.
[14]Abida WM,Gu W.p53-Dependent and p53-independent acti?vation ofautophagy by ARF[J].Cancer Res,2008,68(2):352-357.
[15]Saraswathy M,Gong S.Different strategies to overcome multi?drug resistance in cancer[J].Biotechnol Adv,2013,31(8):1397-1407.
[16]Yu JL,Coomber BL,Kerbel RS.A paradigm for therapy-in?duced microenvironmental changes in solid tumors leading to drugresistance[J].Differentiation,2002,70(9-10):599-609.
[17]Harguindey S,Arranz JL,Polo Orozco JD,et al.Cariporide and other new and powerful NHE1 inhibitors as potentially selective anticancerdrugs-anintegralmolecular/biochemical/metabolic/ clinical approachafter one hundred years of cancer research[J].J Transl Med,2013,11:282.
[18]Niero EL,Rocha-Sales B,Lauand C,et al.The multiple facets of drug resistance:one history,different approaches[J].J Exp Clin Cancer Res,2014,33:37.
[19]Zeng X,Zhao H,Li Y,et al.Targeting Hedgehog signaling path?way and autophagy overcome drug resistance of BCR-ABL-positive chronic myeloid leukemia[J].Autophagy,2015,11(2):355-372.
[20]Lefort S,Joffre C,Kieffer Y,et al.Inhibition of autophagy as a new means of improving chemotherapy efficiency in high-LC3B triple-negative breast cancers[J].Autophagy,2014,10(12):2122-2142.
[21]Chen S,Jiang YZ,Huang L,et al.The residual tumor autophagy marker LC3B serves as a prognostic marker in local advanced breast cancer after neoadiuvant chemotherapy[J].Clin Cancer
Res,2013,9(24):6853-6862.
[22]Cheng J,Chen J,Xie B,et al.Acquired multidrug resistance in human K562/ADM cells is associated with enhanced autophagy[J].Toxicol Mech Methods,2013,23(9):678-683.
[23]Eum KH,Lee M.Targeting the autophagy pathway using ecto?pic expression of Beclin 1 combination with rapamycin in drugresistant v-Ha-ras-transformed NIH 3T3 cells[J].Mol Cells,2011,31(3):231-238.
[24]Ge J,Chen Z,Huang J,et al.Upregulation of autophagy-related gene-5(ATG-5)is associated with Chemoresistance in human gastric cancer[J].PLoS One,2014,9(10):e110293.
[25]Lee JG,Wu R.Combination erlotinib-cisplatin and ATG3-me?diated autophagy in erlotinib resistant lung cancer[J].PLoS One,2012,7(10):e48532.
[26]Zhu L,Du H,Shi M,et al.ATG7 deficiency promote apoptotic death induced by Cisplatin in human esophageal squamous cell carcinomacells[J].Bull Cancer,2013,100(7-8):15-21.
[27]Shen C,Wang W,Tao L,et al.Chloroquine blocks the autophagic process in cisplatin-resistant osteosarcoma cells by regulating theexpression of p62/SQSTM1[J].Int J Mol Med,2013,32(2):448-456.
[28]Yu H,Su J,Xu Y,et al.p62/SQSTM1 involved in cisplatin resis?tance in human ovariancancer cells by clearing ubiquitinated pro?teins[J].Eur J Cancer,2011,47(10):1585-1594.
[29]Kim KW,Myers CJ,Jung DK,et al.NVP-BEZ-235 enhances radiosensitization via blockade of the PI3K/mTOR pathway in cisplatin-resistant non-small cell lung carcinoma[J].Genes Cancer,2014,5(7-8):293-302.
[30]Li JR,Cheng CL,Yang CR,et al.Dual inhibitor of phosphoinositide 3-kinase/mammalian target of rapamycin NVP-BEZ235 effectively inhibitscisplatin-resistant rothelial cancer cell growth through au?tophagic flux[J].Toxicol Lett,2013,220(3):267-276.
[31]Feng X,Li L,Jiang H,et al.Dihydroartemisinin potentiates the anticancer effect of cisplatin via mTOR inhibition in cisplatin-re?sistant ovariancancer cells:involvement of apoptosis and autoph?agy[J].Biochem Biophys Res Commun,2014,444(3):376-381.
[32]Yang L,Yu Y,Kang R,et al.Up-regulated autophagy by endog?enous high mobility group box-1 promotes chemoresistance in leukemia cells[J].Leuk Lymphoma,2012,53(2):315-322.
[33]Meng X,Thiel KW,Leslie KK.Drug resistance mediated by AEG-1/MTDH/LYRIC[J].Adv Cancer Res,2013,120:135-157.
[34]Kong D,Ma S,Liang B,et al.The different regulatory effects of p53 status on multidrug resistance are determined by autophagy in ovariancancer cells[J].Biomed Pharmacother,2012,66(4):271-278.
[35]Amrein L,Soulières D,Johnston JB,et al.p53 and autophagy con?tribute to dasatinib resistance in primary CLL lymphocytes[J]. Leuk Res,2011,35(1):99-102.
[36]Sui X,Kong N,Wang X,et al.JNK confers 5-fluorouracil resis?tance in p53-deficient and mutant p53-expressing colon cancer cells by inducingsurvival Autophagy[J].Sci Rep,2014,4:4694.
[37]Paillas S,Causse A,Marzi L,et al.MAPK14/p38α confers irino?tecan resistance to TP53-defective cells by inducing survival au?tophagy[J].Autophagy,2012,8(7):1098-1112.
[38]de la Cruz-Morcillo MA,Valero ML,Callejas-Valera JL,et al. P38MAPK is the balance between apoptosis a major determinant of and autophagy triggered by 5-fluorouracil:implication in resis?tance[J].Oncogene,2012,31(9):1073-1085.
[39]Zhang J,Zhang Y,Liu S,et al.Metadherin confers chemoresis?tance of cervical cancer cells by inducing autophagy and activat?ing ERK/NF-κBpathway[J].Tumour Biol,2013,34(4):2433-2440.
[40]Wei Y,Zou Z,Becker N,et al.EGFR-mediated Beclin 1 phos?phorylation in autophagy suppression,tumor progression,and tu?mor chemoresistance[J].Cell,2013,154(6):1269-1284.
[41]Zou Y,Ling YH,Sironi J,et al.The autophagy inhibitor chloro?quine overcomes the innate resistance of wild-type EGFR nonsmall-cell lungcancer cells to erlotinib[J].J Thorac Oncol,2013,8(6):693-702.
[42]Han W,Pan H,Chen Y,et al.EGFR tyrosine kinase inhibitors activate a autophagy as cytoprotective response in human lung cancer cells[J].PLoS One,2011,6(6):e18691.
[43]Gisel A,Valvano M,El Idrissi IG,et al.miRNAs for the detec?tion of multidrug resistance:overview and perspectives[J].Mole?cules,2014,19(5):5611-5623.
[44]Yu Y,Yang L,Zhao M,et al.Targeting microRNA-30a-mediat?ed autophagy enhances imatinib activity against human chronic myeloid leukemia cells[J].Leukemia,2012,26(8):1752-1760.
[45]Zou Z,Wu L,Ding H,et al.MicroRNA-30a sensitizes tumor cells to cis-platinum via suppressing beclin 1-mediated autopha?gy[J].J Biol Chem,2012,287(6):4148-4156.
[46]Li X,Wang S,Chen Y,et al.miR-22 targets the 3'UTR of HMGB1 and inhibits the HMGB1-associated autophagy in os?teosarcoma cells duringchemotherapy[J].Tumour Biol,2014,35(6):6021-6028.
[47]Zhang H,Tang J,Li C,et al.MiR-22 regulates 5-FU sensitivity by inhibiting autophagy and promoting apoptosis in colorectal cancer cells[J].Cancer Lett,2015,356(2):781-790.
[48]Pan B,Chen Y,Song H,et al.Mir-24-3p downregulation con?tributes to VP16-DDP resistance in small-cell lung cancer by targeting ATG4A[J].Oncotarget,2014,6(1):317-331.
[49]Pennati M,Lopergolo A,Profumo V,et al.miR-205 impairs the autophagic flux and enhances cisplatin cytotoxicity in castrationresistant prostate cancercells[J].Biochem Pharmacol,2014,87(4):579-597.
[50]Wang Z,Wang N,Liu P,et al.MicroRNA-25 regulates chemo?resistance-associated autophagy in breast cancer cells,a process modulated by the natural autophagy inducer isoliquiritigenin[J]. Oncotarget,2014,5(16):7013-7026.
(2015-01-13收稿)
(2015-04-08修回)
(編輯:周曉穎)
Research progress on tumor multidrug resistance regulated by autophagy
Binbin WANG1,2,Chengfeng WU1,2,F(xiàn)angxin ZHANG1,Qiang MA1
Fangxin ZHANG;E-mail:zhangfx59@126.com
Multidrug resistance(MDR)limits the clinical application and efficacy of chemotherapy drugs.Thus,MDR is the biggest obstacle to the success of chemotherapy.Complex and diverse MDR mechanisms exist,including the following:adenosine triphosphate-binding cassette membrane transport protein family,anti-apoptotic or enhanced DNA repair,mutations in drug targets or metabolic enzymes,microRNA,and cancer stem cells.Autophagy can degrade organelles and proteins that have been damaged in the cytoplasm through the formation of autolysosome and recycle metabolites.Maintaining intracellular homeostasis and a balanced internal environment is highly significant.Recent studies found that autophagy is closely related to the pathophysiology of MDR.The interaction between autophagy and MDR and the possible molecular mechanisms underlying these phenomena are reviewed.This paper elucidates the occurrence of MDR in relation to autophagy in order to provide new information on chemotherapy MDR.
autophagy,tumor,multidrug resistance
10.3969/j.issn.1000-8179.20150066
①蘭州軍區(qū)蘭州總醫(yī)院消化科(蘭州市730050);②甘肅中醫(yī)學(xué)院臨床醫(yī)學(xué)院
*本文課題受國家自然科學(xué)基金項(xiàng)目(編號:81374019)資助
張方信zhangfx59@126.com
1Department of Gastroenterology,Lanzhou General Hospital of Lanzhou Military Area Command,Lanzhou 730050;2College of Clinical Medicine,Gansu University of Traditional Chinese Medicine,Lanzhou 730000,China
This work was supported by the National Natural Science Foundation of China(No.81374019)
王彬彬?qū)I(yè)方向?yàn)橄滥[瘤及高原胃腸病的基礎(chǔ)與臨床研究。
E-mail:wy4287_1976@163.com