• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看

      ?

      基于粒度商的連續(xù)屬性離散化方法

      2015-12-30 02:29:06儲亞偉
      關鍵詞:決策表阜陽粗糙集

      李 萍,儲亞偉,范 敏

      (阜陽師范學院 信息工程學院, 安徽 阜陽 236041)

      基于粒度商的連續(xù)屬性離散化方法

      李 萍,儲亞偉,范 敏

      (阜陽師范學院 信息工程學院, 安徽 阜陽 236041)

      連續(xù)數(shù)值屬性的離散化是粒計算理論應用的重要步驟,提出粒度商的連續(xù)屬性離散化方法。通過給出粒度商的概念,根據(jù)粒度商的大小來選取合適的區(qū)間粒,從而達到連續(xù)屬性離散化的目的。最后給出實例分析,說明該算法的有效可行性。

      粗糙集;連續(xù)屬性;離散化;粒度商

      粗糙集中提到,在對決策表進行屬性約簡的過程中,需要考慮屬性是連續(xù)型的還是離散型,運用粗糙集理論處理離散型屬性要比處理連續(xù)型屬性簡便,對屬性的離散化能夠降低問題的復雜度[1-2]。離散化方法可分為有監(jiān)督和無監(jiān)督兩種,有監(jiān)督方法需要把樣本數(shù)據(jù)的類別屬性考慮進來,較無監(jiān)督方法更科學,有監(jiān)督方法主要包括基于信息熵的離散化方法,基于屬性類別關聯(lián)度的離散方法及基于聚類的k均值方法等[3-4]。粒計算理論是現(xiàn)階段人工智能領域的新的研究熱點,其理論模型主要有兩種,分別為以處理不確定性為目標的模型和以多粒度計算為目標的模型,如商空間理論[5-6]。從粒度商的角度對連續(xù)屬性離散化可分自底向上的逐步粗化和自頂向下的逐步細化?;谧缘紫蛏系碾x散化算法選擇初始的區(qū)間粒集可以把不同的屬性值相互分開,然后按照一定的規(guī)則選擇相鄰的兩個或多個區(qū)間粒進行合并,得到新的區(qū)間粒集,依次循環(huán),直到所得的區(qū)間粒集滿足一定的終止條件。

      本文依據(jù)粒度商的值選取合適的粒度集,完成自底向上的對連續(xù)屬性進行離散化,提出了基于粒度商的連續(xù)屬性離散化方法該算法。一種基于條件熵的粗糙集連續(xù)屬性離散化方法在對連續(xù)屬性進行離散化時需要人為給出由細到粗的區(qū)間粒集,通過比較條件熵選出合適的區(qū)間粒集,從而達到連續(xù)屬性離散化的目的,而本文所提方法無需提前給出由細到粗的區(qū)間粒集,操作起來更為方便。

      1 粒度商相關概念

      定義6粒度商。假設S=(U,C∪D,V,f)是一個決策系統(tǒng),Q?C,粒度關聯(lián)商,也可簡稱為粒度商定義為:

      2 基于粒度商的連續(xù)屬性離散化方法

      對于決策表而言,如果對連續(xù)的條件屬性劃分較粗,可能會出現(xiàn)不相容的情況; 反之,如果劃分較細,又會增加屬性約簡的計算量[8-9]。總之,在對連續(xù)屬性離散化時,要保證決策表的相容性的條件下,盡可能的對連續(xù)屬性劃分的更粗,從而提高屬性約簡效率。在對不同的區(qū)間粒進行合并時,按照粒度商值變化較小的 那些區(qū)間粒度進行合并,在保證決策表相容性的條件下,離散化后的條件屬性相對于決策屬性的粒度商越小越好。

      (1)

      每個區(qū)間粒只含有一個屬性值。然后對相鄰的m個區(qū)間粒進行合并,直到滿足給出的?;?guī)則,這時所得的每個區(qū)間粒對應一個離散值,實現(xiàn)了連續(xù)屬性離散化的目的。

      以下是基于粒度商的連續(xù)屬性離散化算法:

      輸出:e的離散后的結果e′。

      s1:將e的值由小到大排序;

      s2:按照(1)式,選擇初始的區(qū)間粒集I,然后把具有相同分類屬性值的相鄰區(qū)間粒合并到一起,作為一個新的區(qū)間粒,得到新的區(qū)間粒集重新記為I;

      s4:選擇使得粒度商變化量|QG(C∪{e′},D)-QG(C∪{e″},D)|最小的,e′對應的區(qū)間粒集I′;如當前步的粒度商變化量小于等于前一步的n倍,令I=I′,轉s3;否則轉s5;

      s5:輸出根據(jù)I離散化e后的值e′,算法結束。

      3 實例分析

      根據(jù)經(jīng)驗,四個條件屬性中b,c,d取值較為確定,直接將它們離散化,將條件屬性中的32、0.1、0.5記為1;65、0.2、1記為2;130、0.3、2記為3。記每次合并的區(qū)間粒個數(shù)m=2,參數(shù)n=1,對于條件屬性a的值由小到大排序,得出初始區(qū)間粒集I1,可由細到粗選取四種區(qū)間粒集,把具有相同分類屬性值的相鄰區(qū)間粒合并到一起,作為一個新的區(qū)間粒,得到新的區(qū)間粒集I2,按照已得的區(qū)間粒度集I2對e離散化,離散結果記為e″,計算

      表1 材料加工數(shù)據(jù)

      表2 屬性a的各步驟所得區(qū)間粒集

      表3 離散化后的決策表

      4 結束語

      本文利用粒度商對決策表中的連續(xù)條件屬性離散化,整個過程既考慮到了決策屬性也顧及到了條件屬性,利用粒度商的值作為?;瘻蕜t對區(qū)間粒進行合并,最后,通過實例分析說明該方法的可行性和有效性,并且相對于一種基于條件熵的粗糙集連續(xù)屬性離散化方法來說操作起來更為方便,對決策表中連續(xù)屬性的離散化有一定的實際意義和參考價值。目前,從粒度的角度還提出了其他一些連續(xù)屬性離散化方法,下一步將對這些方法進行深入研究,與本文方法進行比較,在比較的基礎上再進行改進。

      [1] 賀 躍,鄭建軍,朱 蕾.一種基于熵的連續(xù)屬性離散化算法[J].計算機應用,2005,25(3):637-638, 651.

      [2] 謝 宏,程浩忠,牛東曉.基于信息熵的粗糙集連續(xù)屬性離散化算法[J].計算機學報,2005,28(9):1570-1574.

      [3] 史志才,夏永祥,周金祖.基于粒計算的離散化算法及其應用[J].計算機科學,2013,40(S1):133-135.

      [4]KerberRC.Discretizationofnumericattributes[C]//Proceedingsofthe10thNationalConferenceonArtificialIntelligence:mitpress, 1992: 123-128.

      [5] 周丹晨.采用粒計算的屬性權重確定方法[J].智能系統(tǒng)學報,2015,10(2):273-280.

      [6] 張 鈸,張 鈴.粒計算未來發(fā)展方向探討[J].重慶郵電大學學報:自然科學版,2010,22(5):538-540.

      [7] 周 軍,林 慶,胡瑞瑞.基于動態(tài)粒度商的屬性約簡算法[J].計算機應用,2009,29(6):1608-1611.

      [8] 丁 劍,白鳳偉.一種基于相似性度量的離散化方法[J].西北師范大學學報(自然科學版),2012,48(5):43-47.

      [9] 陳 貞,邢笑雪.粗糙集連續(xù)屬性離散化的k均值方法[J].遼寧工程技術大學學報(自然科學版),2015,34(5):642-646.

      [10]閆 華.一種基于條件熵的粗糙集連續(xù)屬性離散化方法[J].現(xiàn)代制造工程,2009(3):87-89.

      Discretizationalgorithmofcontinuousattributesbasedonquotientgranularity

      LIPing,CHUYa-wei,F(xiàn)ANMin

      (CollegeofInformationEngineering,FuyangNormalUniversity,FuyangAnhui236041,China)

      Thediscretizationofcontinuousnumericalattributesisanimportantstepfortheapplicationofgranularcomputing.Amethodofdiscretizationofcontinuousattributesbasedonquotientgranularityisproposed.Bycomputingthequotientofgranularity,thesuitablesectiongranularisselectedtodiscretethecontinuousattribute.Intheend,anexampleanalysisshowsthatthisalgorithmisfeasibleandeffective.

      roughset;continuousattributes;discretization;quotientgranularity

      2015-07-08

      安徽省高等學校省級教學研究重點項目(2013jyxm553);安徽省高等學校省級專業(yè)綜合改革試點項目(2014zy138,2013zy167);阜陽師范學院信息工程學院院級項目(2015FXXSK01 ); 阜陽師范學院信息工程學院院級項目(2015FXXZK01)資助。

      李 萍(1985-),女,碩士,助教,研究方向:模式識別、智能計算。

      O235

      A

      1004-4329(2015)04-080-04

      10.14096/j.cnki.cn34-1069/n/1004-4329(2015)04-080-04

      猜你喜歡
      決策表阜陽粗糙集
      基于決策表相容度和屬性重要度的連續(xù)屬性離散化算法*
      基于Pawlak粗糙集模型的集合運算關系
      第二屆淮河文化論壇在阜陽舉行
      合肥至霍邱至阜陽高速公路今年開建
      安徽阜陽潁上:“產(chǎn)業(yè)花”結出“脫貧果”
      多粒化粗糙集性質的幾個充分條件
      雙論域粗糙集在故障診斷中的應用
      關于把阜陽建成區(qū)域中心城市的思考
      正反轉電機缺相保護功能的實現(xiàn)及決策表分析測試
      兩個域上的覆蓋變精度粗糙集模型
      张家口市| 青冈县| 永吉县| 毕节市| 绥阳县| 新建县| 汝南县| 搜索| 土默特左旗| 邹平县| 凤山市| 乌鲁木齐县| 商洛市| 来宾市| 右玉县| 百色市| 富顺县| 兴隆县| 平果县| 滕州市| 镇巴县| 虹口区| 砚山县| 邢台市| 枝江市| 内江市| 安化县| 乐平市| 曲麻莱县| 资溪县| 汕头市| 宁南县| 安顺市| 新绛县| 鄂尔多斯市| 永丰县| 西藏| 嘉义市| 临洮县| 皋兰县| 瓮安县|