張蓓,崔毓桂
?
蛋白質(zhì)乙?;c精子DNA穩(wěn)定性和精子活力
張蓓,崔毓桂△
【摘要】表觀遺傳學參與調(diào)節(jié)精子發(fā)生和精子形成,其中組蛋白及非組蛋白乙?;瘜ι毎旧|(zhì)結(jié)構重建以及精子活力起關鍵作用。環(huán)磷酸腺苷(cAMP)反應元件連接蛋白(CREB)的結(jié)合蛋白(CREB-binding protein,CBP)和p300是兩個乙?;?,能使核心組蛋白發(fā)生乙?;?,其乙酰化作用能被乙?;敢种苿↖NHAT)所抑制。睪丸特異的布羅莫結(jié)構域(BRDT)蛋白為保守的核蛋白,能夠識別乙酰化和非乙?;慕M蛋白。在精子發(fā)生早期,BRDT調(diào)節(jié)基因轉(zhuǎn)錄;在精子形成階段,BRDT識別高度乙酰化組蛋白,接著組蛋白被魚精蛋白替代,從而使精子形成致密的染色質(zhì)。非組蛋白α微管蛋白(α-Tubulin)去乙?;瘎t降低精子活力,在少弱精患者精子中乙?;廖⒐艿鞍祝╝cetylated α-tubulin,Ac-α-Tu)明顯下降。
【關鍵詞】精子發(fā)生;組蛋白類;后成說,遺傳;乙酰化作用;微管蛋白;不育,男(雄)性
△審校者
(J Int Reprod Health/Fam Plan,2016,35:118-122)
表觀遺傳學修飾有嚴格的時空特異性,在精子發(fā)生過程中起重要作用,其中組蛋白乙酰化、甲基化、磷酸化、泛素化已成為研究熱點。這些修飾可通過改變組蛋白與DNA以及組蛋白與組蛋白之間的相互作用,改變?nèi)旧|(zhì)結(jié)構,調(diào)節(jié)轉(zhuǎn)錄,影響精子發(fā)生[1]。在原始生殖細胞的有絲分裂過程中,致密染色質(zhì)中的DNA甲基化能啟動父系特殊的遺傳印跡。在精母細胞的減數(shù)分裂過程中,DNA磷酸化促進染色質(zhì)重組和XY染色體的形成,并且DNA泛素化、類泛素化以及融入染色質(zhì)的H2AZ和H3.3等組蛋白異構體也參與XY染色體的形成。DNA雙鏈斷裂,染色質(zhì)修飾異常,mRNA和其他非編碼RNA表達的改變均可導致減數(shù)分裂過程中染色體不分開[2]。本文綜述蛋白質(zhì)乙酰化及其與精子DNA穩(wěn)定性和精子活力的關系。
1.1精子形成與組蛋白乙酰化精子形成過程中,組蛋白高度乙酰化后染色質(zhì)松散,有助于組蛋白向魚精蛋白的轉(zhuǎn)換[2]。目前已確認5種組蛋白:H1、H3、H4、H2A和H2B,編碼它們的基因沒有內(nèi)含子并且其轉(zhuǎn)錄產(chǎn)物沒有多聚A尾(ployA),其中組蛋白H3和H4最保守[3]。核心組蛋白為H2A、H2B、H3和H4,分子質(zhì)量相對較?。?1~15 ku),成對的組蛋白形成核心組蛋白八聚體。約147 bp的DNA線圈樣包繞核心組蛋白形成1.75個超螺旋,從而形成核小體的核心結(jié)構。核小體作為染色質(zhì)的基本單元,由H1等組蛋白連接,進一步折疊成為高度致密的染色質(zhì)結(jié)構[4]。與體細胞不同,生殖細胞DNA包裹了不同數(shù)量的睪丸特異性核心組蛋白異構體,如:睪丸特異性組蛋白H2A(testis-specific histone H2A,TH2A)、TH2B和TH3,以及連接組蛋白異構體H1t和HILS1[5]。組蛋白以及組蛋白異構體的乙酰化對正常的精子發(fā)生是必需的,其能通過促進基因轉(zhuǎn)錄影響精子發(fā)生并且保證遺傳物質(zhì)穩(wěn)定傳遞。而非組蛋白乙?;瘜影l(fā)生也有重要的調(diào)節(jié)作用,如α微管蛋白(α-Tubulin)去乙?;瘎t降低精子活力,在少弱精子癥患者的精子中乙酰化α微管蛋白(Ac-α-Tubulin)明顯下降[6]。
組蛋白乙酰化是指在組蛋白的氨基端賴氨酸殘基上引入疏水的乙?;?。這使DNA與組蛋白間的靜電引力和空間位阻增大,兩者間的相互作用減弱,DNA易于解聚,染色質(zhì)變得松弛,從而有利于聚合酶Ⅱ(PolⅡ)對基因進行轉(zhuǎn)錄。組蛋白的去乙酰作用則與基因沉默有關[7]。精子發(fā)生過程中,精原細胞和細線前期精母細胞的核心組蛋白H2A和H2B、H3 和H4高度乙酰化;在延伸型精子細胞中,乙?;暮诵慕M蛋白再次出現(xiàn)[8]。精原細胞和前細線期精母細胞中高度乙?;慕M蛋白能促進基因轉(zhuǎn)錄以供減數(shù)分裂所需。除了常見的幾種核心組蛋白乙?;軠p弱其與DNA的相互作用,TH2B的氨基端乙?;灿邢嗤淖饔?。與核心組蛋白相似,精原細胞中乙?;腡H2B最豐富(28.9%),而精母細胞(8.3%)和圓形精子細胞(11.2%)中相對較低[9]。
1.2組蛋白乙?;福℉ATs)和去乙酰化酶(HDACs)
至少有5類HATs[10]:CBP/p300家族、PCAF/GCN5家族、SRC/ACTR家族、TAFⅡp250家族和MYST家族。其中CBP/p300可以乙?;?種核小體核心組蛋白,并且在不同的組蛋白上有特定位點和多位點乙?;绞絒11]。然而,組蛋白賴氨酸殘基乙?;鞘蹾ATs和HDACs動態(tài)調(diào)節(jié)的。迄今發(fā)現(xiàn)約18種HDACs,可分為4類:第Ⅰ類包括HDAC4、HDAC5、HDAC6、HDAC7、HDAC9和HDAC10,與酵母HDA1同源,皆呈磷酸化依賴,穿梭于細胞質(zhì)和細胞核之間;第Ⅱ類包括SIRT1~7共7種,與酵母SIR2a同源;第Ⅲ類包括HDAC1、HDAC2、HDAC3和HDAC8,與酵母轉(zhuǎn)錄調(diào)節(jié)因子RPD3同源,除HDAC3能穿梭于細胞質(zhì)和細胞核,其余都存在于細胞核中;第Ⅳ類包括HDAC11[12]。
HATs與HDACs相互協(xié)調(diào),共同調(diào)節(jié)精子發(fā)生。精子DNA分裂指數(shù)(DFI)與HAT活性呈正相關,正常精子形態(tài)比例與乙?;钢笖?shù)(HAT/HDAC活性比值)呈負相關[13]。組蛋白乙?;艽龠M精子發(fā)生過程中重要基因的轉(zhuǎn)錄。睪丸組織特異性基因表達受各種因素調(diào)節(jié),如:啟動子、增強子以及長鏈非編碼RNA(lncRNAs)。有一保守的非編碼序列CNS1可作為小鼠睪丸精母細胞特異性黏附分子1(Tcam1)基因的一個新的增強子。lncRNA-Tcam1的轉(zhuǎn)錄與H3乙?;嚓P[14]。在精原細胞系GC-1中,啟動子區(qū)域組蛋白H3的乙?;虷3賴氨酸4位點二甲基化能促進精原細胞Pou5f1(POU domain class 5 transcription factor 1)和膠質(zhì)細胞源性神經(jīng)營養(yǎng)因子受體α1(glial cell line derived neurotrophic factor family receptor alpha 1,Gfrα1)的轉(zhuǎn)錄,并且受HDACs和組蛋白賴氨酸特異性脫甲基酶1(lysine specific demethylase 1,KDM1)影響。
Gfrα1定位于A型精原細胞,包括As、Apair和Aaligned精原細胞,并與Pou5f1共定位。在睪丸干細胞中敲除Gfrα1會導致細胞增殖減低,Pou5f1以及其他分化標記物表達增多,干細胞向精原細胞分化。Pou5f1又稱為Oct4,該轉(zhuǎn)錄因子在精原細胞中高度表達,被敲除后原始生殖細胞凋亡增多,其表達隨著精原細胞分化而降低[15]。在人類精原細胞、精母細胞、延伸型精子細胞以及射出精液的精子中,免疫組化顯示H3K9ac陽性。在正常男性和不育男性精子中,H3K9ac結(jié)合的基因序列存在差異:在正常男性精子中,H3K9ac結(jié)合CRAT、G6PD、MCF2L等啟動子,結(jié)合SOX2、GAPDH、STK11IP、FLNA、PLXNA3、SH3GLB2、CTSD等外顯子,結(jié)合TH等基因間隔區(qū);在不育男性精子中,H3K9ac只結(jié)合CRAT、G6PD等啟動子,SH3GLB2等外顯子[16]。H4K12ac在轉(zhuǎn)錄起始位點前后2 kb處表達豐富,成熟精子的H4K12ac對應啟動子表達基因是精子發(fā)生的重要基因,其中mRNA表達最高的是PHF7(testis-specific PHD finger protein-7),提示H4K12ac可能激活該基因的表達[17]。新生兒時期暴露于苯并芘(BaP)能長遠地破壞睪酮生成和精子發(fā)生,可能是通過降低類固醇激素合成快速調(diào)節(jié)蛋白(steroidogenic acute regulatoryprotein,STAR)啟動子H3乙?;蕉饔玫腫18]。
1.3組蛋白乙酰化與魚精蛋白取代越來越多的證據(jù)表明,在精子形成早期,精子染色質(zhì)組裝與體細胞相似,即組蛋白參與形成經(jīng)典的核小體核心顆粒。精子形成過程中,組蛋白被中間過渡蛋白所取代,緊接著過渡蛋白又被魚精蛋白P1和P2所替代。魚精蛋白是富含半胱氨酸和精氨酸的蛋白質(zhì),負責精子最終致密染色質(zhì)的形成[19]。在整個轉(zhuǎn)換過程中發(fā)生組蛋白被替換、DNA鏈斷裂,在這些事件發(fā)生前有一標志性事件,即組蛋白H4發(fā)生高度乙酰化。因此,組蛋白H4高度乙酰化被當作組蛋白分離并觸發(fā)接下來的蛋白轉(zhuǎn)換過程的起始信號[20]。
蛋白酶體激活劑PA200及其在酵母中的同源類似物Blm10能與蛋白酶體的20S亞基結(jié)合,促進小肽段及松散的Tau蛋白水解,PA200/Blm10通過核心組蛋白的乙酰化調(diào)節(jié)蛋白酶體降解,這可能是乙酰化調(diào)節(jié)組蛋白降解,促進精子生成的機制之一[21]。用維甲酸滅活乙?;?,能阻礙組蛋白分離以及魚精蛋白為基礎的染色質(zhì)結(jié)構的形成,從而阻礙精子細胞進一步分化;用乙酰化酶抑制劑古曲抑菌素A (trichostatin,TSA)抑制乙酰化酶后,圓形精子細胞核中組蛋白高度乙酰化已經(jīng)形成,但精子并未形成以魚精蛋白為基礎的染色質(zhì)結(jié)構,因此,在精子形成的組蛋白向魚精蛋白轉(zhuǎn)換的過程中,組蛋白H4高度乙?;潜匦璧皇俏ㄒ坏腫22]。
其他因子也參與組蛋白轉(zhuǎn)換過程。與正常男性相比,不育男性患者睪丸中Chd5(chromodomain helicase DNA binding protein 5)表達降低。Chd5在組蛋白向魚精蛋白替換的過程中起著多方面的調(diào)節(jié)作用,包括組蛋白H4的高度乙?;?、組蛋白異構體的表達、核小體的釋放、DNA破壞的修復。Chd5缺陷也能導致過渡蛋白(Tnp1/Tnp2)和魚精蛋白(Prm1/ 2)表達紊亂[23]。DYP19L2基因缺陷導致人類精子缺乏癥。DYP19L2敲除小鼠精子發(fā)生中組蛋白H4乙酰化的動態(tài)改變消失,并且缺乏過渡蛋白,從而不能發(fā)生魚精蛋白取代,終止了精子形成[24]。
2.1 Dazap1/Prrp(deletedinazoospermiaassociated 1/proline-rich RNA binding protein)的乙?;腿ヒ阴;墙M蛋白的乙酰化能調(diào)節(jié)胞質(zhì)轉(zhuǎn)運。Dazap1/Prrp主要在睪丸中表達,編碼的RNA連接蛋白參與RNA的代謝過程,其在粗線期精母細胞和圓形精子細胞中的胞質(zhì)和胞核中均有表達,而只在延伸型精子中胞質(zhì)表達。Dazap1/Prrp在胞質(zhì)胞核間穿梭受其150位點賴氨酸殘基乙?;{(diào)節(jié)。乙?;疍azap1/Prrp存在于胞核,去乙?;腜rrp存在于胞質(zhì)尤其存在于線粒體中;非組蛋白的乙?;{(diào)節(jié)RNA加工和翻譯效率。
2.2 Mvh的乙?;疢vh又稱Ddx4(Dead box polypeptide 4),編碼一種進化上保守的ATP依賴的DEAD盒RNA解螺旋酶,能調(diào)節(jié)mRNA的轉(zhuǎn)錄和翻譯。在p46存在的情況下,一種胞質(zhì)特異性乙?;窰at1能直接乙?;疢vh的405位賴氨酸殘基,從而導致Mvh的RNA連接活性降低。再者,乙酰化的Mvh與 eIF4B(eukaryotic initiation factor 4B)mRNA作用力減弱,導致精子生成晚期eIF4B翻譯水平增高[1];非組蛋白的乙?;苡绊懗墒炀踊盍Α?/p>
其中:σdp、σds分別為P波和S波產(chǎn)生的動載;Cp、Cs分別為P 波和S波傳播速度;υpp、υps分別為由P波和S波傳播引起的質(zhì)點最大震動速度;ρ為介質(zhì)密度;μ為泊松比。
2.3 Tubulin乙酰化Tubulin是微管的主要成分,是分子質(zhì)量為100 ku的α,β-異二聚體,而微管是精子重要的細胞結(jié)構之一。Tubulin乙?;皆诰影l(fā)生過程中是動態(tài)變化的,在粗線期精母細胞中少量微管表達Ac-α-Tubulin,精子開始延伸時乙?;接新晕⑸?,Tubulin在有精子鞭毛形成的延伸型和致密型精子時乙?;矫黠@增高[25]。α-Tubulin在睪丸中表達的異構體有TUBA3C、TUBA4A 和TUBA8,其中TUBA3C和TUBA4A是乙?;摹?/p>
少弱精子癥患者中α-Tubulin明顯降低,睪丸特異性乙?;?Tubulin變異體TUBA3C降低,TUBA4A增高,TUBA8降低,與正常精子相比,活力不足精子的TUBA3C/TUBA4A比例明顯降低[6]。Tau是微管相關蛋白質(zhì),能促進微管聚合,增加穩(wěn)定性。Tau蛋白磷酸化促進精子生成減數(shù)分裂過程,并與乙酰化的Tubulin有相互作用[26]。Ac-α-Tubulin在未分化的增殖的精原細胞上高表達,提示微管的轉(zhuǎn)錄后修飾在基膜處招募和錨定精原細胞中起重要的作用[25]。
3.1睪丸特異性布羅莫結(jié)構域蛋白(bromodomain testis-specific,BRDT)布羅莫結(jié)構域是高度保守的結(jié)構域,其能識別組蛋白和其他蛋白的乙?;馁嚢彼釟埢?。BET(bromodomain and extraterminal domain)家族核蛋白通常很保守,包含4種BET蛋白:BRD2、BRD3、BRD4和BRDT,其通常在氨基端有2個布羅莫結(jié)構域,羧基端有一個額外終端(ET)結(jié)構域。鑒于在轉(zhuǎn)錄和細胞周期中重要的調(diào)節(jié)作用,BRDT已被深入研究[27]。BRDT屬BET家族,僅在生殖細胞中特異性表達,能識別和連接乙?;头且阴;慕M蛋白。
BRDT對男性生殖細胞分化是十分重要的,其在不同發(fā)育階段以不同的方式影響精子發(fā)生,在早期生精階段啟動特殊的生精基因譜的表達,在精子形成過程中控制基因組的緊密包裝[28]。在果蠅中,睪丸特異性表達的布羅莫結(jié)構域蛋白tBRD-1在睪丸中特異性表達,并且僅在有高度轉(zhuǎn)錄活性的初級精母細胞上表達[29],tBRD-1與TATA盒連接蛋白相關因子的睪丸特異性同系物tTAFs部分共定位,并且這依賴于tTAF功能及初級精母細胞乙?;癄顟B(tài)[30]。有學者認為,在精子形成過程中,BRDT識別并移除高度乙?;慕M蛋白從而啟動魚精蛋白結(jié)合和染色體壓縮致密[28]。
Smarcel(BAF57)是ATP依賴的SWI/SNF家族的一員,通過其氨基端形成染色質(zhì)重組復合體。在單倍體圓形精子細胞中,BRDT與Smarce1的相互作用顯著提高組蛋白乙?;?。因此,BRDT介導乙?;蕾嚨那也皇蹵TP影響的染色質(zhì)重組[31]。免疫熒光顯示BRD4在精子細胞核周圍包繞環(huán)狀,環(huán)內(nèi)包含高度乙酰化的組蛋白。該環(huán)鄰近頂體基板(頂體的細胞骨架),在頂體突變的小鼠中不形成BRD4環(huán)。BRD4和BRDT相互促進但又有區(qū)別,BRD4在精子發(fā)生的特異性基因上表達明顯豐富[32]。
3.2 CBP/p300與蛋白乙?;疌BP/p300是轉(zhuǎn)錄復合物的輔助激活因子,包括3個鋅指區(qū)域(cys,ZZ,TAZ),1個布羅莫結(jié)構域,1個HAT結(jié)構域和至少2個能和各種轉(zhuǎn)錄因子相互作用的獨立結(jié)構域[33]。在結(jié)腸癌中,其能通過調(diào)節(jié)Wnt/β-catenin信號通路調(diào)節(jié)多種生物學行為[34]。在髓性粒細胞白血病多個亞型中,CBP/p300可能是一種潛在的治療靶點[35]。應用激活劑TTK21激活乙?;窩BP/p300有利于成人的神經(jīng)發(fā)生和長期記憶從而促進腦的功能[36]。
CBP/p300催化的組蛋白乙酰化在轉(zhuǎn)錄調(diào)節(jié)中也起著關鍵的作用,在卵母細胞的減數(shù)分裂時期(從卵泡破裂到第一次減數(shù)分裂末期),CBP在染色質(zhì)區(qū)域的表達與組蛋白H3的AcH3/K18、AcH3/K23、dime-H3/R17是一致的,CBP的表達和這些組蛋白修飾的一致性一直持續(xù)到第一次減數(shù)分裂[36]。在CBP/ p300敲除小鼠中,生精細胞中一些代謝相關基因在減數(shù)分裂前高表達,在精母細胞和早期分裂后的細胞呈抑制狀態(tài),在延伸型精子時期再次激活[37]。乙酰化酶抑制劑(INHAT)為一復合體結(jié)構,包含髓性白血病相關的腫瘤蛋白SET/TAF-1β、TAF-1α和核磷酸化蛋白pp32,內(nèi)源性INHAT能抑制組蛋白乙酰化酶CBP/p300活性[38]。
精子發(fā)生過程中組蛋白乙?;侵匾霓D(zhuǎn)錄后修飾,受CBP/p300等乙酰化酶的影響,BRDT通過識別乙酰化的組蛋白進一步調(diào)節(jié)精子形成,在不育男性的生殖細胞中出現(xiàn)異常的組蛋白乙酰化定位及表達并有多個因子參與。非組蛋白(如Dazap1/ Prrp、Ddx4,尤其是Tubulin)的乙?;苷{(diào)節(jié)胞質(zhì)轉(zhuǎn)運,與精子活力相關。
參考文獻
[1] Pa ng A,Rennert O. Protein acetylation and spermatogenesis [J]. Reprod Syst Sex Disord,2013,Suppl 1:5.
[2] Dada R,Kumar M,Jesudasan R,et al. Epigenetics and its role in male infertility[J]. J Assist Reprod Genet,2012,29(3):213-223.
[3] Wu JL,Kang XJ,Guo MS,et al. Cloning and Functional Analysis of Histones H3 and H4 in Nuclear Shaping during Spermatogenesis of the Chinese Mitten Crab, Eriocheir sinensis [J]. PLoS One,2015,10(5):e0126623.
[4] Cutter AR,Hayes JJ. A brief review of nucleosome structure [J]. FEBS Lett,2015,589(20 Pt A):2914-2922.
[5] Pentakota SK,Sandhya S,P Sikarwar A,et al. Mapping post -translational modifications of mammalian testicular specific histone variant TH2B in tetraploid and haploid germ cells and their implications on the dynamics of nucleosome structure [J]. J Proteome Res,2014,13(12):5603-5617.
[6] Bhagwat S,Dalvi V,Chandrasekhar D,et al. Acetylated α-tubulin is reduced in individuals with poor sperm motility[J]. Fertil Steril,2014,101(1):95-104.e3.
[7] Jenuwein T,Allis CD. Translating the histone code[J]. Science,2001,293(5532):1074-1080.
[8] Hazzoui M,Pivot -Pajot C,F(xiàn)aure AK,et al. Regulated hyperacetylation of core histones during mouse spermatogenesis: involvement of histone deacetylases[J]. Eur J Cell Biol,2000,79 (12):950-960.
[9] Lu S,Xie YM,Li X,et al. Mass spectrometry analysis of dynamic post-translational modifications of TH2B during spermatogenesis [J]. Mol Hum Reprod,2009,15(6):373-378.
[10] Wynne Aherne G,Rowlands MG,Stimson L,et al. Assays for the identification and evaluation of histone acetyltransferase inhibitors [J]. Methods,2002,26(3):245-253.
[11] Roth SY,Denu JM,Allis CD. Histone acetyltransferases [J]. Annu Rev Biochem,2001,70:81-120.
[12] Kofman AE,Huszar JM,Payne CJ. Transcriptional analysis of histone deacetylase family members reveal similarities between differentiating and aging spermatogonial stem cells[J]. Stem Cell Rev,2013,9(1): 59-64.
[13] Kim JH,Jee BC,Lee JM,et al. Histone acetylation level and histone acetyltransferase/deacetylase activity in ejaculated sperm from normozoospermic men[J]. Yonsei Med J,2014,55(5):1333-1340.
[14] Kurihara M,Shiraishi A,Satake H,et al. A conserved noncoding sequence can function as a spermatocyte-specific enhancer and a bidirectional promoter for a ubiquitously expressed gene and a testis-specific long noncoding RNA[J]. J Mol Biol,2014,426(17):3069-3093.
[15] Godmann M,May E,Kimmins S. Epigenetic mechanisms regulate stem cell expressed genes Pou5f1 and Gfra1 in a male germ cell line[J]. PLoS One,2010,5(9):e12727.
[16] Steilmann C,Paradowska A,Bartkuhn M,et al. Presence of histone H3 acetylated at lysine 9 in male germ cells and its distribution pattern in the genome of human spermatozoa[J]. Reprod Fertil Dev,2011,23(8):997-1011.
[17] Paradowska AS,Miller D,Spiess AN,et al. Genome wide identification of promoter binding sites for H4K12ac in humansperm and its relevance for early embryonic development [J]. Epigenetics,2012,7(9):1057-1070.
[18] Liang J,Zhu H,Li C,et al. Neonatal exposure to benzo[a]pyrene decreases the levels of serum testosterone and histone H3K14 acetylation of the StAR promoter in the testes of SD rats [J]. Toxicology,2012,302(2/3):285-291.
[19] Krejcˇí J,Stixová L,Pagácˇová E,et al. Post-Translational Modifications of Histones in Human Sperm[J]. J Cell Biochem,2015,116 (10):2195-2209.
[20] Dottermusch -Heidel C,Gartner SM,Tageder I,et al. H3K79 methylation: a new conserved mark that accompanies H4 hyperacetylation prior to histone -to -protamine transition in Drosophila and rat[J]. Biol Open,2014,3(6):444-452.
[21] Qian MX,Pang Y,Liu CH,et al. Acetylation-mediated proteasomal degradation of core histones during DNA repair and spermatogenesis[J]. Cell,2013,153(5):1012-1024.
[22] Awe S,Renkawitz-Pohl R. Histone H4 acetylation is essential to proceed from a histone- to a protamine-based chromatin structure in spermatid nuclei of Drosophila melanogaster[J]. Syst Biol Reprod Med,2010,56(1):44-61.
[23] Li W,Wu J,Kim SY,et al. Chd5 orchestrates chromatin remodelling during sperm development[J]. Nat Commun,2014,5:3812.
[24] Yassin S,Escoffier J,Martinez G,et al. Dpy19l2 -deficient globozoospermic sperm display altered genome packaging and DNA damage that compromises the initiation of embryo development[J]. Mol Hum Reprod,2015,21(2):169-185.
[25] Luo J,Rodriguez -Sosa JR,Tang L,et al. Expression pattern of acetylated alpha-tubulin in porcine spermatogonia[J]. Mol Reprod Dev,2010,77(4):348-352.
[26] Bhagwat S,Dalvi V,Chandrasekhar D,et al. Acetylated α-tubulin is reduced in individuals with poor sperm motility[J]. Fertil Steril,2014,101(1):95-104.e3.
[27] Kimura S,Loppin B. Two bromodomain proteins functionally interact to recapitulate an essential BRDT -like function in Drosophila spermatocytes[J]. Open Biol,2015,5(2):140145.
[28] Gaucher J,Boussouar F,Montellier E,et al. Bromodomain -dependent stage-specific male genome programming by Brdt[J]. EMBO J,2012,31(19):3809-3820.
[29] Theofel I,Bartkuhn M,Hundertmark T,et al. tBRD-1 selectively controls gene activity in the Drosophila testis and interacts with two new members of the bromodomain and extra-terminal (BET) family[J]. PLoS One,2014,9(9):e108267.
[30] Leser K,Awe S,Barckmann B,et al. The bromodomain-containing protein tBRD-1 is specifically expressed in spermatocytes and is essential for male fertility[J]. Biol Open,2012,1(6):597-606.
[31] Dhar S,Thota A,Rao MR. Insights into role of bromodomain, testis -specific (Brdt) in acetylated histone H4 -dependent chromatin remodeling in mammalian spermiogenesis [J]. J Biol Chem,2012,287(9):6387-6405.
[32] Bryant JM,Donahue G,Wang X,et al. Characterization of BRD4 during mammalian postmeiotic sperm development [J]. Mol Cell Biol,2015,35(8):1433-1448
[33] Xue K,Song J,Wei H,et al. Synchronous behaviors of CBP and acetylations of lysine 18 and lysine 23 on histone H3 during porcine oocyte first meiotic division [J]. Mol Reprod Dev,2010,77 (7):605-614.
[34] Bordonaro M,Lazarova DL. CREB-binding protein, p300, butyrate, and Wnt signaling in colorectal cancer [J]. World J Gastroenterol,2015,21(27):8238-8248.
[35] Giotopoulos G,Chan WI,Horton SJ,et al. The epigenetic regulators CBP and p300 facilitate leukemogenesis and represent therapeutic targets in acute myeloid leukemia[J]. Oncogene,2016,35(3):279-289.
[36] Chatterjee S,Mizar P,Cassel R,et al. A novel activator of CBP/ p300 acetyltransferases promotes neurogenesis and extends memory duration in adult mice[J]. J Neurosci,2013,33(26):10698-10712.
[37] Boussouar F,Goudarzi A,Buchou T,et al. A specific CBP/p300-dependent gene expression programme drives the metabolic remodelling in late stages of spermatogenesis[J]. Andrology, 2014,2 (3):351-359.
[38] Song N,Liu J,An S,et al. Immunohistochemical Analysis of Histone H3 Modifications in Germ Cells during Mouse Spermatogenesis[J]. Acta Histochem Cytochem,2011,44(4):183-190.
[本文編輯王琳]
(上接p112)
analysis of 674 patients at a single institution[J]. J BUON,2011,16 (1):64-73.
[12] Abu-Rustum NR,Gomez JD,Alektiar KM,et al. The incidence of isolated paraaortic nodal metastasis in surgically staged endometrial cancer patients with negative pelvic lymph nodes[J]. Gynecol Oncol,2009,115(2):236-238.
[13]曹澤毅.婦科惡性腫瘤治療中對淋巴處理的商榷[J].中華婦產(chǎn)科雜志,2004,39(2):135-137.
[14] SGO Clinical Practice Endometrial Cancer Working Group,Burke WM,Orr J,et al. Endometrial cancer:a review and current management strategies:partⅠ[J]. Gynecol Oncol,2014,134(2):385-392.
[15] Kong A,Johnson N,Kitchener HC,et al. Adjuvant radiotherapy for stageⅠendometrial cancer:an updated Cochrane systematic review and meta-analysis [J]. J Natl Cancer Inst,2012,104(21):1625-1634.
[16] Hogberg T,Signorelli M,de Oliveira CF,et al. Sequential adjuvant chemotherapy and radiotherapy in endometrial cancer—results from two randomised studies [J]. Eur J Cancer,2010,46(13):2422-2431.
[17] Vandenput I,Vergote I,Leunen K,et al. Leuven dose -dense paclitaxel/carboplatin regimen in patients with primary advanced or recurrent endometrial carcinoma[J]. Int J Gynecol Cancer,2009,19 (6):1147-1151.
[本文編輯秦娟]
·綜述·
Protein Acetylation Promotes Sperm DNA Stability and Motility
ZHANG Bei,CUI Yu-gui. Clinical Center of Reproductive Medicine,F(xiàn)irst Affiliated Hospital of Nanjing Medical University,Nanjing 210029,China
【Abstract】During spermatogenesis, the protein acetylation level regulated by both acetyltransferases (HATs) and histone deacetylases (HDACs) ensures the reconstruction of highly condensed chromatin and sperm motility. The acetyltransferase CREB-binding protein (CBP) and p300 can acetylate all the histones of H2A, H2B, H3 and H4, which can be blocked by the complex of inhibitor of acetyltransferases (INHAT). Testis-specific bromodomain (BRDT) protein, a conserved nucleoprotein member of the bromodomain and extra-terminal (BET) family, can recognize those acetylated or unacetylated histones. BRDT participates in the regulation of gene transcription in the early stage of spermatogenesis; BRDT can recognize the high -acetylated histones, which mediates the replacement from histone to protamine in the elongated spermatids. The deacetylated α-Tubulin, one of nonhistone proteins, impairs the sperm motility. Acetylation α-tubulin (Ac-α-Tu) is reduced in patients with asthenozoosperm.
【Keywords】Spermatogenesis;Histones;Epigenesis,genetic;Acetylation;Tubulin;Infertility,male
收稿日期:(2015-11-09) (2015-12-28)
Corresponding author:CUI Yu-gui,E-mail:cuiygnj@njmu.edu.cn
通信作者:崔毓桂,E-mail:cuiygnj@njmu.edu.cn
基金項目:國家自然科學基金(81370754,81170559);江蘇省婦幼保健重點學科(FXK201221);2012年度省級科技創(chuàng)新與成果轉(zhuǎn)化項目(BL2012009)
作者單位:210029南京醫(yī)科大學第一附屬醫(yī)院生殖醫(yī)學科