牛明杰, 鄭國砥, 朱彥莉, 趙馨玥, 高 定, 陳同斌
(1 中國科學(xué)院地理科學(xué)與資源研究所環(huán)境修復(fù)中心, 北京 100101; 2 中國科學(xué)院大學(xué), 北京 100049)
?
城市污泥與調(diào)理劑混合堆肥過程中有機質(zhì)組分的變化
牛明杰1, 2, 鄭國砥1*, 朱彥莉1, 2, 趙馨玥1, 高 定1, 陳同斌1
(1 中國科學(xué)院地理科學(xué)與資源研究所環(huán)境修復(fù)中心, 北京 100101; 2 中國科學(xué)院大學(xué), 北京 100049)
城市污泥; 堆肥; 有機質(zhì)組分; 土地利用
城市污泥是城市污水處理的末端產(chǎn)品,含有大量的有機物質(zhì)和氮、 磷等營養(yǎng)元素,土地利用后可以提高土壤肥力。但是污泥中有機質(zhì)未腐熟,未經(jīng)穩(wěn)定化處理施入土壤可能引起燒苗。污泥堆肥是一種行之有效的穩(wěn)定化處理技術(shù),而且堆肥過程中微生物代謝活動能夠降解有機污染物,產(chǎn)熱形成的高溫可以有效殺死病原微生物,同時堆肥化處理形成的腐殖質(zhì)能夠鈍化重金屬,降低城市污泥的危害性[1-2]。但城市脫水污泥由于含水量高(80%),粘性大,C/N值不適合,直接堆肥很難升溫。污泥加入鋸末、 秸稈等有機廢物混合堆肥可以克服上述困難,但由于秸稈受季節(jié)限制,現(xiàn)在城市污泥堆肥更多的采用鋸末等木材加工廢料進行混合堆肥。
有機廢棄物堆肥過程中,微生物的代謝作用使堆肥物料中部分有機質(zhì)被轉(zhuǎn)化為更加復(fù)雜穩(wěn)定的大分子物質(zhì)[3-6],C/N值逐漸降低[7],富里酸、 胡敏酸和腐殖質(zhì)等物質(zhì)含量增加。堆肥結(jié)束后,物料性質(zhì)穩(wěn)定,可作為有機肥料應(yīng)用于土壤[8-10]。施用腐熟穩(wěn)定的堆肥可以增加土壤有機質(zhì)含量,改善土壤的理化性質(zhì)及生物學(xué)特性,進而促進植株的生長,提高產(chǎn)量[11-13]。
目前,多數(shù)研究集中于城市污泥物料腐熟過程中腐殖質(zhì)的形成與轉(zhuǎn)化作用[14-15],但是對污泥堆肥過程中有機質(zhì)組分的變化鮮有報道[16]。城市污泥堆肥中的有機質(zhì)組分主要包括水溶性物質(zhì)、 半纖維素、 纖維素和木質(zhì)素四種成分,對物料的腐熟過程具有十分重要的影響。其中,水溶性組分主要包括淀粉、 蔗糖、 低聚糖、 果糖和氨基酸等物質(zhì),是有機物料中的重要組成部分。大多數(shù)的微生物活動發(fā)生在固-液界面,因此水溶性組分是微生物的直接物質(zhì)和能量來源,水溶性組分含量的變化可以最直觀的反映出堆肥過程中有機質(zhì)的轉(zhuǎn)化程度和物料的穩(wěn)定度[17-18]。有機物料施用于土壤后,其中的水溶性有機質(zhì)轉(zhuǎn)化為土壤中生物活性有機質(zhì)組分,其含量和動態(tài)變化可以反映土壤有效養(yǎng)分庫的大小及其在土壤中的周轉(zhuǎn)[19]。半纖維素是構(gòu)成植物細(xì)胞壁的主要成分之一,它是一種混合多糖,組成結(jié)構(gòu)十分復(fù)雜,半纖維素在污泥堆肥過程中被降解為碳水化合物,并為微生物的代謝活動提供能量來源。纖維素是植物細(xì)胞壁的主要骨架結(jié)構(gòu),為植物提供了抵抗重力和生物降解的支撐性架構(gòu),半纖維素結(jié)合在纖維素微纖維的表面,并且相互連接,木質(zhì)素形成交織網(wǎng)來硬化細(xì)胞壁,形成了極為堅固的木質(zhì)纖維素結(jié)構(gòu)。纖維素相比于半纖維素來說較難降解,木質(zhì)素一般則不能被生物降解,只能部分被微生物轉(zhuǎn)化為其他物質(zhì)[20],這兩種物質(zhì)在污泥堆肥過程中起到調(diào)節(jié)物料的營養(yǎng)結(jié)構(gòu)和堆體結(jié)構(gòu)的作用。
研究城市污泥堆肥過程中有機質(zhì)組分(水溶性組分、 半纖維素、 纖維素以及木質(zhì)素)的動態(tài)變化,有助于深入認(rèn)識物料堆肥腐熟過程中各組分的降解難易程度,明確污泥堆肥過程中物料有機質(zhì)穩(wěn)定化的特點,從而調(diào)控堆肥過程,促進污泥堆肥產(chǎn)品的安全利用。
1.1試驗設(shè)計
試驗于2015年1月在上海松江污泥處理廠7號堆倉內(nèi)進行。污泥來源于上海松江污水處理廠的脫水污泥,含水率80%; 調(diào)理劑為蘑菇渣與鋸末的混合物(d<2 cm),返混料為其他堆倉的腐熟堆肥。根據(jù)污泥、 調(diào)理劑以及返混料的含水率和C/N值,控制初始堆體的含水率處于60%左右,C/N值為25 ∶1左右,確定三者的質(zhì)量比為6 ∶3 ∶1。
試驗采取強制通風(fēng)靜態(tài)垛堆肥,其中第10 d進行一次翻拋。堆體下部均勻設(shè)置通風(fēng)管道,由鼓風(fēng)機對堆體進行間歇式曝氣,調(diào)節(jié)堆體的含氧量、 溫度、 濕度。鼓風(fēng)機由主機自動控制,曝氣參數(shù)為第一階段(72 h)曝氣6 min,暫停32 min,頻率為30 Hz; 第二階段(360 h)曝氣10 min,關(guān)停30 min,頻率為40 Hz。
堆肥周期18 d,周期內(nèi)每日9: 00、 21: 00分別測量堆體溫度,取其平均值作為當(dāng)天的堆體溫度。周期內(nèi)分別于1、 3、 6、 8、 11、 15、 18 d采集樣品,在堆體內(nèi)同一高度選取6個采樣點,總計采樣2 kg,鮮樣測定堆體含水率和pH,剩余樣品經(jīng)過冷凍干燥并充分研磨后測定總有機碳(TOC)、 總氮(TN)、 灰分、 水溶性組分、 半纖維素、 纖維素和木質(zhì)素。
1.2測定項目與方法
1.2.1 含水率以及灰分的測定取少量樣品置于凈質(zhì)量為W1的坩堝中,準(zhǔn)確稱取樣品與坩堝的總質(zhì)量為W2,將坩堝放入烘箱內(nèi),105℃條件下干燥6 h,再次測定坩堝質(zhì)量為W3,由此計算物料含水率。
取少量烘干后的樣品置于凈質(zhì)量為W4的坩堝中,準(zhǔn)確稱取樣品與坩堝的總質(zhì)量為W5,將坩堝放入馬弗爐內(nèi),550℃條件下灼燒6 h,再次測定坩堝質(zhì)量為W6,由此計算物料灰分含量。
1.2.2 有機質(zhì)組分的測定有機質(zhì)組分的測定采用系統(tǒng)分析法[21],在傳統(tǒng)Van Soest方法的基礎(chǔ)上進行一定的優(yōu)化,酸性洗滌劑修改為2 mol/L HCl溶液,木質(zhì)素測定過程中增加了過夜消解的步驟。具體步驟為:
3)酸性洗滌木質(zhì)素和酸不溶灰分測定將酸性洗滌纖維加入5 mL 72% H2SO4中,在20℃消化3 h, 然后加入45 mL去離子水,過夜消解。之后將殘渣用重量為W5的漏斗過濾并沖洗至中性,將漏斗置于105℃烘箱中烘2 h 后,在干燥器中冷卻30 min稱重,至恒重為W6。消化過程中溶解部分為纖維素,不溶解的殘渣為酸性洗滌木質(zhì)素和酸不溶灰分,將殘渣轉(zhuǎn)置于重量為W7的坩堝中,然后將坩堝置于馬弗爐中,于550℃條件下灼燒6 h后稱重為W8,即可得出酸性洗滌木質(zhì)素和酸不溶灰分的含量。
各組分物質(zhì)表觀含量的計算:
各物質(zhì)組分降解率的計算:
式中,A0表示初始物料的灰分含量;Ai表示第i天物料灰分含量;C0表示初始物料的物質(zhì)組分含量;Ci表示第i天物料的物質(zhì)組分含量。
1.2.3 總有機碳和總氮的測定采用Flash2000元素分析儀測定樣品中的總有機碳和總氮。儀器條件設(shè)置: 載氣140 mL/min,參比100 mL/min,工作溫度950℃,柱溫50℃,分析時間720 s。標(biāo)準(zhǔn)試劑采用雙叔丁基苯甲噻吩(C26H26N2O2S),設(shè)置四個標(biāo)準(zhǔn)點,在標(biāo)準(zhǔn)曲線系數(shù)R2≥0.999的條件下,對樣品進行測定。每個樣品重復(fù)測定3次。
2.1生污泥、 調(diào)理劑與返混料的基本性質(zhì)
生污泥、 調(diào)理劑與返混料三者按照6∶3∶1的質(zhì)量比混合形成堆肥的初始物料,通過測定其基本理化性質(zhì)(表1)可知,初始物料中的可溶性物質(zhì)主要來源于生污泥,半纖維素、 纖維素以及木質(zhì)素主要來源于調(diào)理劑。
表1 堆肥物料的基本理化性質(zhì)
2.2污泥堆肥過程中溫度的動態(tài)變化
溫度是污泥堆肥過程中十分重要的影響因素,直接關(guān)系到堆體內(nèi)微生物活性的變化。堆體內(nèi)溫度升高主要源于微生物代謝活動產(chǎn)熱,反過來又決定了微生物的代謝活性。依據(jù)污泥堆肥過程中溫度的變化可以將其劃分為升溫期、 高溫期、 降溫期和穩(wěn)定期4個階段。堆體溫度在55℃條件下保持3 d 以上,可以殺滅堆料中所含病原菌, 滿足堆肥衛(wèi)生學(xué)指標(biāo)和腐熟的要求。
圖1 污泥堆肥過程中堆體溫度變化Fig.1 Temperature of pile during sewage sludge composting
2.3污泥堆肥過程中含水率以及pH的動態(tài)變化
圖2 污泥堆肥過程中含水率以及pH的變化Fig.2 Dynamics of moisture and pH of pile during sewage sludge composting
2.4污泥堆肥過程中總有機碳(TOC)、 總氮(TN)含量的動態(tài)變化
圖3 污泥堆肥過程中總有機碳和總氮含量的變化Fig.3 Dynamics of total organic carbon (TOC) and total N(TN) of pile during sewage sludge composting
2.5污泥堆肥過程中有機質(zhì)組分的動態(tài)變化
圖4 污泥堆肥過程中物料有機質(zhì)組分成分變化Fig.4 Dynamics of organic components during sewage sludge composting
采用系統(tǒng)分析法,探究物料在堆肥的各個階段的有機質(zhì)組分組成情況(圖4)。圖4表明,堆肥初始階段,堆肥物料中4種成分含量表現(xiàn)為水溶性組分>纖維素、 半纖維素、 木質(zhì)素,至堆肥結(jié)束變化為纖維素>水溶性組分>木質(zhì)素>半纖維素,水溶性組分以及半纖維素含量經(jīng)過堆肥處理后有下降的趨勢,分別由39.5%和20.1%下降為27.9%和14.4%,纖維素含量由初始的21.8%上升至29.5%,木質(zhì)素含量相對穩(wěn)定不變,物料成分在堆肥前后發(fā)生了顯著的變化。微生物代謝活動主要利用水溶性組分進行,因此水溶性組分出現(xiàn)顯著下降。半纖維素堆肥后有一定的降解,說明微生物代謝活動能夠降解半纖維素,但是不能完全降解。隨著水溶性組分和半纖維素含量的下降,纖維素和木質(zhì)素含量相對呈現(xiàn)上升趨勢,主要源于兩個方面: 首先,纖維素和木質(zhì)素兩種組分較難降解; 其次,物料總量在堆肥后實現(xiàn)了減量化,共同導(dǎo)致了纖維素和木質(zhì)素含量的上升。
根據(jù)溫度指標(biāo)的變化將堆肥周期劃分為4個階段: 升溫期、 高溫期、 降溫期以及穩(wěn)定期。表2為堆肥周期4個階段內(nèi)物料的各項指標(biāo)以及有機質(zhì)組分含量的變化趨勢。堆肥過程中,物料中水溶性組分的變化趨勢與總有機碳以及含水率的變化趨勢保持基本一致(相關(guān)性分別為:r=0.86,P=0.014;r=0.82,P=0.023),微生物活動直接消耗水溶性物質(zhì)能量,造成總有機碳含量的降低,產(chǎn)生的大量高溫有助于水分的散失,造成了物料含水率的快速下降。半纖維素含量的變化則與總氮含量的變化相悖,主要原因是半纖維素的降解發(fā)生在降溫期與穩(wěn)定期,而總氮含量在該階段因為硝態(tài)氮的積累呈現(xiàn)上升趨勢。纖維素和木質(zhì)素的降解主要發(fā)生在高溫期,因為高溫期部分微生物失去活性,耐高溫的放線菌此時作為優(yōu)勢菌,纖維素和木質(zhì)素作為其作用對象被降解[25]。
表2 各項指標(biāo)在堆肥周期內(nèi)不同階段的變化趨勢
注(Note): “↑”表示值上升Represent value ascends; “↓”表示值下降Represent value descends; “-”表示值穩(wěn)定不變Represent value keeps stable.
表3表明,水溶性組分和半纖維素的總降解率分別為38.6%和38.8%,其中高溫期是水溶性組分的主要降解階段,占總降解量的65.5%; 穩(wěn)定期為半纖維素的主要降解階段,占總降解量的69.1%。纖維素和木質(zhì)素僅在高溫期分別有11.7%和18.5%的降解,而降溫期和穩(wěn)定期有一定的累積效應(yīng),這與康軍等[26]的研究結(jié)果一致,可能的原因是細(xì)胞壁中纖維素受木質(zhì)素的保護, 而木質(zhì)素有完整而堅硬的外殼, 不易被微生物降解,因此纖維素的降解受到限制。
表3 有機質(zhì)組分在堆肥周期內(nèi)不同階段的降解率(%)
注(Note): “—”表示無降解Represent no degradation.
總體上,物料組分前后的變化體現(xiàn)了堆肥是一個肥效增強的過程。水溶性組分主要供應(yīng)微生物代謝活動所需的物質(zhì)和能量,其含量直接反映了微生物代謝活動的強弱。水溶性組分經(jīng)過發(fā)酵后含量逐漸穩(wěn)定,避免了未腐熟物料土地利用時燒苗的潛在威脅。半纖維素、 纖維素以及木質(zhì)素進入土壤后,很難被土壤中的微生物利用,經(jīng)過堆肥處理后,三者均有一定程度的降解,形成生物有效性養(yǎng)分。因此,腐熟物料施用于土壤后,可以提高土壤中有機質(zhì)含量,降低土壤的容重,改善土壤結(jié)構(gòu),提高土壤持水能力[27]。
城市污泥與鋸末蘑菇渣混合堆肥處理后,堆肥物料中有機質(zhì)組分含量發(fā)生了顯著變化。纖維素和木質(zhì)素在堆肥過程中降解較少,僅在高溫期有少量降解; 堆肥過程中水溶性組分和半纖維素降解較快,水溶性組分的主要降解階段為高溫期,高溫期降解部分占總降解量的65.5%; 半纖維素的主要降解階段為穩(wěn)定期,穩(wěn)定期降解部分占總降解量的69.1%,且有繼續(xù)降解的趨勢。通過堆肥處理,城市污泥中不穩(wěn)定的有機質(zhì)組分被降解,堆肥物料達到穩(wěn)定化要求,以避免土地利用過程中燒苗等風(fēng)險。
[1]Villasenor J, Rodriguez L, Fernandez F J. Composting domestic sewage sludge with natural zeolites in a rotary drum reactor[J]. Bioresource Technology, 2011, 102(2): 1447-1454.
[2]Gabhane J, William S P M P, Bidyadhar R,etal. Additives aided composting of green waste: Effects on organic matter degradation, compost maturity, and quality of the finished compost[J]. Bioresource Technology, 2012, 114: 382-388.
[3]高偉, 鄭國砥, 高定, 等. 堆肥處理過程中豬糞有機物的動態(tài)變化特征[J]. 環(huán)境科學(xué), 2006, 27(5): 164-168.
Gao W, Zheng G D, Gao D,etal. Transformation of organic matter during thermophilic composting of pig manure[J]. Environmental Science, 2006, 27(5):164-168.
[4]Ingelmo F, Molina M J, Soriano M D,etal. Influence of organic matter transformations on the bioavailability of heavy metals in a sludge based compost[J]. Journal of Environmental Management, 2012, 95(Suppl.): S104-S109.
[5]Hernández T, Masciandaro G, Moreno J I,etal. Changes in organic matter composition during composting of two digested sewage sludges[J]. Waste Management, 2006, 26(12): 1370-1376.
[6]Provenzano M R, Malerba A D, Pezzolla D,etal. Chemical and spectroscopic characterization of organic matter during the anaerobic digestion and successive composting of pig slurry[J]. Waste Management, 2014, 34(3): 653-660.
[7]Fels L E, Zamama M, Asli A E,etal. Assessment of biotransformation of organic matter during co-composting of sewage sludge-lignocelullosic waste by chemical, FTIR analyses, and phytotoxicity tests[J]. International Biodeterioration & Biodegradation, 2014, 87: 128-137.
[8]Oberholzer H R, Leifeld J, Mayer J. Changes in soil carbon and crop yield over 60 years in the Zurich Organic Fertilization Experiment, following land-use change from grassland to cropland[J]. Journal of Plant Nutrition and Soil Science, 2014, 177(5): 696-704.
[9]Martín J, Santos J L, Aparicio I,etal. Pharmaceutically active compounds in sludge stabilization treatments: Anaerobic and aerobic digestion, wastewater stabilization ponds and composting[J]. Science of The Total Environment, 2015, 503-504: 97-104.
[10]Epstein E, Taylor J M, Chancy R L. Effects of sewage sludge and sludge compost applied to soil on some soil physical and chemical properties1[J]. Journal of Environmental Quality, 1976, 5(4): 422-426.
[11]田小明, 李俊華, 危常州, 等. 連續(xù)3年施用生物有機肥對土壤有機質(zhì)組分、 棉花養(yǎng)分吸收及產(chǎn)量的影響[J]. 植物營養(yǎng)與肥料學(xué)報, 2012, 18(5): 1111-1118.
Tian X M, Li J H, Wei C Z,etal. Effects of continuous application of bio-organic fertilizer for three years on soil organic matter fractions, cotton nutrient absorption and yield[J]. Plant Nutrition and Fertilizer Science, 2012, 18(5): 1111-1118.
[12]劉立生, 徐明崗, 張璐, 等. 長期種植綠肥稻田土壤顆粒有機碳演變特征[J]. 植物營養(yǎng)與肥料學(xué)報, 2015, 21(6): 1439-1446.
Liu L S, Xu M G, Zhang L,etal. Evolution characteristics of soil particulate organic carbon in the paddy field with long-term planting green manure[J]. Journal of Plant Nutrition and Fertilizer, 2015, 21(6): 1439-1446.
[13]張麗敏, 徐明崗, 婁翼來, 等. 長期有機無機肥配施增強黃壤性水稻土有機氮的物理保護作用[J]. 植物營養(yǎng)與肥料學(xué)報, 2015, 21(6): 1481-1486.
Zhang L M, Xu M G, Lou Y L,etal. Combined application of chemical and organic fertilizers in long-term increases physical protection of organic nitrogen in yellow paddy soil[J]. Journal of Plant Nutrition and Fertilizer, 2015, 21(6): 1481-1486.
[14]Zbytniewski R, Buszewski B. Characterization of natural organic matter (NOM) derived from sewage sludge compost. Part 1: chemical and spectroscopic properties[J]. Bioresource Technology, 2005, 96(4): 471-478.
[15]Li X, Dai X, Takahashi J,etal. New insight into chemical changes of dissolved organic matter during anaerobic digestion of dewatered sewage sludge using EEM-PARAFAC and two-dimensional FTIR correlation spectroscopy[J]. Bioresource Technology, 2014, 159(6): 412-420.
[16]Wei Z, Zhao X, Zhu C,etal. Assessment of humification degree of dissolved organic matter from different composts using fluorescence spectroscopy technology[J]. Chemosphere, 2014, 95(1): 261-267.
[17]Gómez-Brandón M, Lazcano C, Domínguez J. The evaluation of stability and maturity during the composting of cattle manure[J]. Chemosphere, 2008, 70(3): 436-444.
[18]Said-Pullicino D, Erriquens F G, Gigliotti G. Changes in the chemical characteristics of water-extractable organic matter during composting and their influence on compost stability and maturity[J]. Bioresource Technology, 2007, 98(9): 1822-1831.
[19]高偉, 楊軍, 任順榮. 長期不同施肥模式下華北旱作潮土有機碳的平衡特征[J]. 植物營養(yǎng)與肥料學(xué)報, 2015, 21(6): 1465-1472.
Gao W, Yang J, Ren S R. Balance characteristics of soil organic carbon under different long-term fertilization models in the upland fluvo-aquic soil of North China[J]. Journal of Plant Nutrition and Fertilizer, 2015, 21(6): 1465-1472.
[20]Jouraiphy A, Amir S, Gharous M E,etal. Chemical and spectroscopic analysis of organic matter transformation during composting of sewage sludge and green plant waste[J]. International Biodeterioration & Biodegradation, 2005, 56(2): 101-108.
[21]陳賢情, 商晉, 宋慧芳, 郭康權(quán). 秸稈中纖維素/半纖維素和木質(zhì)素的幾種測定方法對比[A]. 中國農(nóng)業(yè)工程學(xué)會. 中國農(nóng)業(yè)工程學(xué)會2011年學(xué)術(shù)年會論文集[C]. 北京: 中國農(nóng)業(yè)工程學(xué)會, 2011.
Chen X Q, Shang J, Song H F, Guo K Q. Comparative study of several determination methods of celluse, hemicelluse and lignin in straw[A]. Chinese Society of Agricultural Engineering. Chinese Society of Agricultural Engineering 2011 annual meeting symposium[C]. Beijing: Chinese Society of Agricultural Engineering, 2011.
[22]李艷霞, 王敏健, 王菊思, 等. 填充料和通氣對污泥堆肥過程的影響[J]. 生態(tài)學(xué)報, 2000, 20(6): 1015-1020.
Li Y X, Wang M J, Wang J S,etal. Effect of bulking agent and aeration on sewage sludge composting process[J]. Acta Ecologica Sinica, 2000, 20(6): 1015-1020.
[23]Miller F C. Matric water potential as an ecological determinant in compost, a substrate dense system.[J]. Microbial Ecology, 1989, 18(18):59-71.
[24]賈程, 張增強, 張永濤. 污泥堆肥過程中氮素形態(tài)的變化[J]. 環(huán)境科學(xué)學(xué)報, 2008, 28(11): 2269-2276.
Jia C, Zhang Z Q, Zhang Y T,etal. Transformation of nitrogen forms during co-composting of sewage sludge and wheat straw[J]. Acta Scientiae Circumstantiae, 2008, 28(11): 2269-2276.
[25]Yu H, Zeng G, Huang H,etal. Microbial community succession and lignocellulose degradation during agricultural waste composting[J]. Biodegradation, 2007, 18(6): 793-802.
[26]康軍, 張增強, 賈程, 等. 污泥好氧堆肥過程中有機質(zhì)含量的變化[J]. 西北農(nóng)林科技大學(xué)學(xué)報: 自然科學(xué)版, 2009, 37(6): 118-124.
Kang J, Zhang Z Q, Jia C,etal. Changes of organic matter content during aerobic co-composting of sewage sludge with straw[J]. Journal of Northwest A&F University (Natural Science Edition), 2009, 37(6): 118-124.
[27]陳同斌, 高定, 李新波. 城市污泥堆肥對栽培基質(zhì)保水能力和有效養(yǎng)分的影響[J]. 生態(tài)學(xué)報, 2002, 22(6): 802-807.
Chen T B, Gao D, Li X B. Effects of sewage sludge compost on available nutrients and water retention ability of planting substrate[J]. Acta Ecologica Sinica, 2002, 22(6): 802-807.
Dynamic of organic matter fractions during sewage sludge and bulking agent composting
NIU Ming-jie1, 2, ZHENG Guo-di1*, ZHU Yan-li1, 2, ZHAO Xin-yue1, GAO Ding1, CHEN Tong-bin1
(1CenterforEnvironmentalRemediation,InstituteofGeographicSciencesandNaturalResourcesResearch,ChineseAcademyofSciences,Beijing100101,China; 2UniversityofChineseAcademyofSciences,Beijing100049,China)
【Objectives】 The study for transformation of organic matters, total organic carbon, and total nitrogen in sewage sludge is of considerable importance. The objective is to improve the biological availability of compost and promote its land-application process.【Methods】 The composting experiment was conducted with forced aeration and turning in the factory, and the overall work lasted for 18 days. The pile was composed of sewage sludge, bulking agent (mushroom and saw-dust mixture), and compost in mass ratio of 6 ∶3 ∶1. Samples were taken at different times during the composting process. Temperature in real-time, C/N ratio, pH, moisture, and organic matter degradation were determined throughout the period. In particular, the transformations of water soluble organic matter, hemicellulose, cellulose, and lignin were monitored. 【Results】 During the progress of the experiment, windrow temperature rapidly reached up to 71.3℃ and lasted for 5 days, then declined to the normal level gradually. Meanwhile, the pH of windrow showed the same trend with temperature, ranging from 6.0 to 7.5. In addition, moisture continuously reduced from 60.7% to 51.4%. Properties of the windrow were within the range of composting standard after period work. Total organic carbon content descended in the whole period, whereas total nitrogen content decreased by the end of thermophilic phase and then increased gradually. In the initial phase, four organic fractions in the windrow were distributed as follows: water-soluble fraction > cellulose > hemicellulose > lignin. After the compost process, the distribution changed to: cellulose > water-soluble fraction> lignin > hemicellulose. The water-soluble fraction and hemicellulose reduced from 39.5% and 20.1% to 27.9% and 14.4%, respectively. Cellulose content reached 29.5% from 21.8%, and lignin content was stable in the period. According to the results, compost experiment reached the standard requirement. This result indicated that water-soluble organic matter and hemicellulose were the main energy and material sources to microbe. Contents of water soluble organic matter, hemicellulose reduced by 38.6% and 38.8%, respectively. The reduction of cellulose and lignin were 11.7% and 18.5%, respectively. Finally, the mass decrement of the pile was 9.8%. Water-soluble organic matter was mainly degraded in the thermophilic phase, and 65.5% of reduction occurred in this phase. However, hemicellulose was mainly degraded in the stable phase, and 69.1% of reduction occurred in this phase. At the same time, a small amount of cellulose and lignin were degraded in thermophilic phase because of their complex structure. Organic carbon was transformed to inorganic carbon in the whole period. Ammonia nitrogen was lost in the thermophilic phase, whereas nitrate nitrogen accumulated in the stable phase. 【Conclusions】 The composting process rendered the sewage sludge, stabilized and reduced. Moreover, the process increased the biological availability of sludge, which promotes the feasibility of the land application of sludge.
sewage sludge; compost; organic matter fractions; land application
2015-11-16接受日期: 2016-01-06網(wǎng)絡(luò)出版日期: 2016-04-21
國家自然科學(xué)基金項目(41371455,41101463)資助。
牛明杰(1991—), 男, 河南鄭州人, 碩士研究生, 主要從事城市有機廢棄物資源化和有機污染物降解研究。
Tel: 010-64889936, E-mail: bbnight@yeah.net。 *通信作者 Tel: 010-64888050, E-mail: zhenggd@igsnrr.ac.cn
S141.6
A
1008-505X(2016)04-1016-08