謝躍杰,賀稚非,李洪軍
(西南大學(xué)食品科學(xué)學(xué)院/重慶市特色食品工程技術(shù)研究中心,重慶 400715)
超臨界CO2流體萃取兔肉腥味物質(zhì)
謝躍杰,賀稚非,李洪軍
(西南大學(xué)食品科學(xué)學(xué)院/重慶市特色食品工程技術(shù)研究中心,重慶 400715)
【目的】探討超臨界CO2流體(SFE-CO2)萃取兔肉腥味物質(zhì)的條件,確定腥味物質(zhì)的種類、組成和含量,為兔肉脫腥以及加工提供理論基礎(chǔ)?!痉椒ā坎捎贸R界CO2流體對兔肉腥味物質(zhì)進行萃取,以提取率為指標(biāo),在單因素試驗基礎(chǔ)上進行Box-Behnken響應(yīng)面分析;定量加入內(nèi)標(biāo)物質(zhì)2,4,6-三甲基吡啶(TMP),通過氣相色譜質(zhì)譜儀(GC-MS)對兔肉腥味物質(zhì)進行分析鑒定。計算氣味活度值(OAV),結(jié)合氣相色譜-嗅聞(GC-O)和感官評價,確定兔肉腥味物質(zhì)主體成分?!窘Y(jié)果】單因素試驗結(jié)果表明,當(dāng)萃取溫度為40℃時,提取率最高達(dá)到97.91%,峰面積為1.58×109;當(dāng)萃取時間為4 h時,提取率最高,為97.83%,峰面積為2.42×109;萃取壓力為25 MPa時,最高提取率為97.78%,峰面積3.78×108。其中,萃取溫度和萃取壓力不僅影響溶質(zhì)擴散系數(shù),還影響CO2流體密度。溫度增加時,盡管擴散系數(shù)增大,由于 CO2流體密度下降,提取率隨之減小。雖然 CO2流體密度在高壓下較大,但隨著壓力增加,可壓縮性隨之減小,由于擴散系數(shù)降低,溶質(zhì)溶解度下降,因而提取率降低。當(dāng)萃取時間過長時,一些非揮發(fā)性物質(zhì)被溶出,使得萃取物質(zhì)總量增加,降低了揮發(fā)性風(fēng)味物質(zhì)的比重。根據(jù)響應(yīng)面分析,得出最優(yōu)萃取條件為:萃取溫度40.67℃、萃取壓力25.67 MPa、萃取時間3.13 h,提取率為98.01%。而實際操作時,提取條件修正為萃取溫度40℃、萃取壓力25 MPa、萃取時間3 h,在此條件下提取率為98.11%。通過定量加入內(nèi)標(biāo)物質(zhì)TMP,GC-MS定性定量分析得到兔肉揮發(fā)性風(fēng)味物質(zhì)5類,包括醛類、酸類、酯類、雜環(huán)類化合物和烴類,共計38種風(fēng)味化合物。其中,酸類((1 394.25±3.45)μg·kg-1)>酯類((569.26±1.23)μg·kg-1)>烴類((471.82±1.11)μg·kg-1)>醛類((168.46±0.97)μg·kg-1)>雜環(huán)類((86.71±0.64)μg·kg-1)。通過計算得到兔肉揮發(fā)性風(fēng)味物質(zhì)中戊醛、己醛、己酸和2-戊基-呋喃的OAV值均大于1,且己酸>己醛>2-戊基-呋喃>戊醛,表明這4種物質(zhì)對兔肉腥味有重要貢獻(xiàn),而己酸對兔肉腥味的貢獻(xiàn)最大。同時,氣相色譜-嗅聞(GC-O)分析認(rèn)為這4種物質(zhì)均具有不同程度異味,包括肝臟腥味、草腥味、羊膻味和豆腥味等,感官分析表明萃取物有明顯兔肉腥味?!窘Y(jié)論】超臨界 CO2流體萃取兔肉腥味物質(zhì)可行,為研究兔肉腥味提供了新的提取方法。其最佳萃取條件為:時間3 h,溫度40℃,壓力25 MPa。戊醛、己醛、己酸和2-戊基-呋喃初步確定為兔肉腥味的主體成分。
兔肉;腥味;超臨界CO2流體萃取(SFE-CO2);氣相色譜-質(zhì)譜(GC-MS);氣味活度值(OAV);感官評價
【研究意義】根據(jù)FAO統(tǒng)計,2013年中國家兔和野兔存欄共計2.3億只,兔肉產(chǎn)量約73萬t,是第二大兔肉生產(chǎn)國意大利產(chǎn)量的近3倍[1]。兔肉作為“高蛋白、高賴氨酸、高磷脂、高消化率”和“低脂肪、低熱量、低膽固醇、低尿胺”的功能性肉制品,本應(yīng)成為大眾消費品[2]。但是,兔肉腥味影響了國人對兔肉的消費,中國兔肉人均年消費僅為0.55 kg,歐盟國家人均消費3.5 kg,而意大利則達(dá)到4.33 kg[3]。兔肉腥味,是指兔肉在加熱后所產(chǎn)生的一種令人嫌忌的特殊氣味[4]。不同國家、民族和個體對此氣味的敏感程度不同,適應(yīng)接受度也不同。在中國,大部分人認(rèn)為兔肉是有腥味的[5]。由于烹飪的原因,主要消費群體集中在川渝兩地。因此,研究兔肉腥味物質(zhì)對兔產(chǎn)業(yè)發(fā)展尤為重要。【前人研究進展】目前,對兔肉揮發(fā)性風(fēng)味物質(zhì)提取的研究主要是同時蒸餾萃取法(SDE)和固相微萃取法(SPME),研究主要集中在風(fēng)味物質(zhì)的種類和數(shù)量,對于兔肉主體風(fēng)味物質(zhì)的認(rèn)定還不明確[6-7]。SDE和 SPME都是在沸騰或者接近沸騰的溫度下進行提取,風(fēng)味物質(zhì)可能受到高溫的影響而發(fā)生降解、氧化或與其他物質(zhì)進行反應(yīng)。據(jù)實際調(diào)查發(fā)現(xiàn),兔肉腥味往往在低溫或室溫時更強烈?!颈狙芯壳腥朦c】由于超臨界CO2流體萃?。⊿FE-CO2)技術(shù)中CO2的臨界溫度接近室溫(31.1℃),臨界壓力7.38 MPa,對易揮發(fā)性和生理活性物質(zhì)的損失和破壞極小,且適用于親脂性、分子量較小物質(zhì)的萃?。?]。此技術(shù)常用于精油物質(zhì)的提取[9-11],而針對肉類風(fēng)味方面的研究則較少[12-13]。因此,本試驗采用SFE-CO2萃取兔肉揮發(fā)性風(fēng)味物質(zhì),運用氣味活度值法(OAV),通過氣相色譜串聯(lián)質(zhì)譜(GC-MS)分析,對兔肉腥味物質(zhì)進行定量定性研究?!緮M解決的關(guān)鍵問題】確定SFE-CO2萃取兔肉腥味物質(zhì)的條件,明確兔肉腥味物質(zhì)的組成和成分,為進一步研究兔肉脫腥奠定基礎(chǔ)。
試驗于2015年9—11月在西南大學(xué)食品科學(xué)學(xué)院和重慶市食品藥品檢驗檢測研究院進行。
1.1 材料與試劑
兔肉:75日齡的伊拉兔10只,伊拉兔的養(yǎng)殖地點為西南大學(xué)動物科技學(xué)院養(yǎng)殖場。宰殺于實驗兔場,經(jīng)胴體分割,于-20℃冷凍保存;2,4,6-三甲基吡啶(TMP)標(biāo)準(zhǔn)品、戊醛、己醛、己酸、2-戊基-呋喃、2,4-癸二烯醛、2-癸烯醛,均為色譜純,美國Sigma-Aldrich公司生產(chǎn)。
1.2 儀器與設(shè)備
QP2010氣相色譜-質(zhì)譜聯(lián)用儀,日本島津公司;氣相色譜-嗅辨儀,日本島津公司&瑞士 Brechbuehler公司;N-EVAP系列24位氮吹儀,美國Organomation公司;DW-86W100超低溫保存箱,青島海爾特種電器有限公司;Hei-VAP Adventage旋轉(zhuǎn)蒸發(fā)儀,德國Heidoph公司;SFE-4超臨界二氧化碳萃取儀,德國Applied Separations公司;JYL-C020廚房機械料理機,中國Joyoung公司。
1.3 方法
1.3.1 樣品制備 將冷凍兔肉置于 4℃的冷藏箱里過夜解凍,然后將其置于室溫下待用。將解凍后的兔肉切成1 cm×1 cm×1 cm的肉丁,置于家用攪拌機里絞碎,隨后取出密封、冷藏備用。
1.3.2 SFE-CO2單因素試驗[14]稱取絞碎兔肉樣品30 g,放入超臨界二氧化碳流體萃取釜中,聚丙烯羊絨填充夯實。萃取溫度分別為:35、40、45、50和55℃,此時萃取時間和萃取壓力分別為3 h和20 MPa;萃取時間分別為:1、2、3、4和5 h,此時萃取溫度和萃取壓力分別為45℃和20 MPa;萃取壓力分別為:10、15、20、25和30 MPa,此時萃取溫度和萃取時間分別為45℃和3 h。將提取到的液體旋轉(zhuǎn)蒸發(fā)濃縮至1 mL,定量加入TMP 10 μL,0.45 μm有機濾膜過濾備用。
1.3.3 SFE-CO2響應(yīng)面分析試驗 根據(jù) Box-Behnken中心設(shè)計原理,以萃取溫度、萃取壓力和萃取時間 3因素為自變量,并以-1、0、+1分別代表自變量的低、中和高水平,設(shè)計3因素3水平試驗,試驗因素水平設(shè)計見表1,以提取率Y為響應(yīng)值進行響應(yīng)面試驗。
1.3.4 GC-MS分析[15]色譜柱:J&W DB-5ms石英毛細(xì)柱(30 m×0.25 mm,0.25 μm);進樣口溫度250℃;升溫程序:40℃保持1 min,以8 ℃·min-1升至180℃,保持3 min;載氣(He)流速1.1 mL·min-1,壓力2.4 kPa,進樣量1 μL;分流比:10∶1。質(zhì)譜條件:電子轟擊離子源;電子能量70 eV;傳輸線溫度250℃;離子源溫度250℃;檢測器電壓350 V;質(zhì)量掃描范圍(m/z)35—400。
表1 響應(yīng)面試驗因素水平表Table 1 Level of factors in the response surface design
定性分析:參考各種化合物的保留時間,并且與計算機自帶數(shù)據(jù)庫(NIST)檢索匹配,相似度大于80%的化合物被認(rèn)定,反之則否定。
定量分析:各揮發(fā)性化合物的相對含量即為各峰面積的百分比,各種揮發(fā)性風(fēng)味化合物的絕對含量計算公式如下:
式中:MC為化合物絕對含量(μg·kg-1),As為總離子流圖中化合物峰面積,AI為內(nèi)標(biāo)物質(zhì)峰面積,CTMP為TMP濃度(μg·mL-1),VTMP為內(nèi)標(biāo)物加入的體積(mL),MS為肉樣品重量(g)。
1.3.5 OAV分析[16]氣味活度值(VOA)=氣味物質(zhì)濃度(C)/閾值(T);氣味物質(zhì)濃度,即1.3.4測得各化合物絕對含量;閾值,即各化合物的嗅聞閾值。當(dāng)OAV≥1時,認(rèn)為此物質(zhì)對總體風(fēng)味有重要貢獻(xiàn);反之,當(dāng)OAV<1時,認(rèn)為此物質(zhì)對總體風(fēng)味無貢獻(xiàn)。1.3.6 GC-O分析 參考GC-MS的儀器參數(shù)條件,感官嗅聞。
1.3.7 統(tǒng)計分析 利用SPSS22.0統(tǒng)計軟件對試驗數(shù)據(jù)進行方差分析,Excel 2010計算平均值和標(biāo)準(zhǔn)偏差,Origin8.1軟件作圖。
2.1 SFE-CO2萃取單因素試驗
2.1.1 萃取溫度對提取率的影響 由圖1可以看出,無論是峰面積還是提取效率都隨著提取溫度增加呈先上升,再下降的趨勢。萃取溫度40℃時,提取率可達(dá)到97.91%。低于此溫度時,雖然CO2密度稍有減小,但增加了溶質(zhì)擴散系數(shù),因此溫度增加,萃取物質(zhì)的量增加;高于此溫度時,雖然擴散系數(shù)增大,但CO2密度下降較大,因此提取到的物質(zhì)總量減少。由此可見,萃取溫度40℃為臨界點,是最佳提取溫度。
2.1.2 萃取時間對提取率的影響 由圖2可以看出,萃取時間為4 h時,無論是峰面積還是提取效率都最高。隨著萃取時間延長,提取率呈上升趨勢,4 h的提取率則達(dá)到 97.83%。而萃取物峰面積則先下降后上升,4 h的峰面積幾乎是3 h的3倍。明顯看出,萃取時間為4 h時,提取效果最佳。萃取時間超過4 h,提取率反而下降,說明此時有些物質(zhì)之間相互發(fā)生了反應(yīng),或者一些物質(zhì)濃度較低,沒法檢出,也有可能是一些非揮發(fā)性成分溶出。
圖1 超臨界二氧化碳流體萃取溫度對提取率的影響Fig. 1 The effect of extraction temperature on the extraction rate by SFE-CO2
圖2 超臨界二氧化碳流體萃取時間對提取率的影響Fig. 2 The effect of extraction time on the extraction rate by SFE-CO2
2.1.3萃取壓力對提取率的影響 經(jīng)GC-MS分析,如圖3所示,萃取壓力為15 MPa時,峰面積最大。隨著提取壓力增大,峰面積呈減小的趨勢。這與在一定溫度下,壓力與擴散系數(shù)成反比的原理一致。而萃取壓力為25 MPa時,提取效率最高,達(dá)到97.78%。大于這個壓力時,提取效率反而下降。說明此壓力為萃取臨界壓力,由于在高壓下CO2密度較大,可壓縮性也較小,增加萃取壓力,反而降低了擴散系數(shù),減少了對溶質(zhì)的溶解度,進而降低了萃取效率。低于此壓力時,雖然萃取量不少,但提取效率不高[17]。因此,25 MPa是最佳萃取壓力。
2.2 SFE-CO2萃取條件響應(yīng)面分析試驗
利用Design Expert7.0 軟件對表2數(shù)據(jù)進行多元回歸擬合,得到提取率(Y)對萃取溫度(A)、萃取壓力(B)和萃取時間(C)的二次多項回歸模型,回歸 方 程 為 : Y=97.9+0.29A+0.39B+1.32C+0.23AB-0.1AC-0.15BC-0.44A2-1.59B2-0.76C2。對回歸模型各因素進行方差分析,結(jié)果見表3。
圖3 超臨界二氧化碳流體萃取壓力對提取率的影響Fig. 3 The effect of extraction pressure on the extraction rate by SFE-CO2
對回歸方程進行顯著性檢驗:F=50.79,P<0.0001,極顯著,相關(guān)系數(shù)R2= 0.9975,R2Adj=0.9943,失擬項P=0.0897>0.05,不顯著,說明模型與實際值擬合良好??捎么四P脱芯坎煌腿l件對兔肉揮發(fā)性物質(zhì)提取率的影響,優(yōu)化響應(yīng)因子水平。由表3可知,3個因素中,模型的一次項A、B、C和二次項A2、B2、C2對提取率的影響顯著,A、B和B、C之間交互作用顯著,但A、C之間交互作用不顯著。從方差分析可以看出,對提取率的影響為萃取時間>萃取壓力>萃取溫度。
根據(jù)響應(yīng)面分析,得到最佳的萃取溫度40.67℃、萃取壓力25.67 MPa、萃取時間3.13 h。根據(jù)實際操作,提取條件修正為萃取溫度40℃、萃取壓力25 MPa、萃取時間3 h,在此條件下提取率為98.11%,高于表2中的最高值98.01%。因此,認(rèn)為該模型適用于優(yōu)化提取工藝參數(shù)。
2.3 GC-MS分析
超臨界二氧化碳流體提取兔肉揮發(fā)性風(fēng)味物質(zhì)如圖4。通過譜庫檢索,一共鑒定到38種揮發(fā)性風(fēng)味物質(zhì),見表 4。通過內(nèi)標(biāo)物計算得到每種物質(zhì)的濃度,其中烴類(471.82±1.11)μg·kg-1、醛類(168.46±0.97)μg·kg-1、酸類(1 394.25±3.45)μg·kg-1、酯類(569.26± 1.23)μg·kg-1和雜環(huán)類(86.71±0.64)μg·kg-1??梢钥闯觯犷惡孔罡?,主要是己酸、壬酸、辛酸、棕櫚酸等。其中己酸、辛酸被描述為具有羊膻味的物質(zhì),而壬酸、棕櫚酸則不具有揮發(fā)性。因此,己酸、辛酸可能對兔肉腥味有重要影響。酯類物質(zhì)也是風(fēng)味成分中很重要的一類,特別是酒類和水果中含量較高。但此處多是一些不具揮發(fā)性的酯類,對風(fēng)味的貢獻(xiàn)不大。烴類物質(zhì)是含量第三高的一類,但烴類物質(zhì)的感官閾值通常較高,因此,雖然含量較高,但是它也并不是對兔肉腥味貢獻(xiàn)較大的一類。雜環(huán)類只檢測到2-戊基-呋喃和2-辛基-呋喃兩種。有學(xué)者認(rèn)為2-戊基-呋喃和戊醛與腐臭味有較強的相關(guān)性[18]。而醛類物質(zhì)含量較低,總共只有(168.46±0.97)μg·kg-1。由于醛類物質(zhì)的感官閾值通常較低,因此,即便是較低含量也能產(chǎn)生足夠強的風(fēng)味,對兔肉腥味的影響較大。
表2 Box-Behnken設(shè)計表及試驗結(jié)果Table 2 Design of Box-Behnken and experimental data
表3 響應(yīng)面回歸模型方差分析Table 3 ANOVA for response surface quadratic model
表4 兔肉SFE-CO2提取物GC-MS分析結(jié)果Table 4 Volatile compound in rabbit meat extracted by SFE-CO2
圖4 超臨界二氧化碳流體萃取兔肉揮發(fā)性風(fēng)味物質(zhì)GC-MS圖Fig. 4 The gas chromatography mass spectrum of rabbit meat volatile flavor compounds extracted by SFE-CO2
2.4 兔肉腥味主體成分分析
采用SFE-CO2提取到兔肉中的大約38種揮發(fā)性風(fēng)味物質(zhì),每種物質(zhì)有不同的感官閾值和各自的特征風(fēng)味。本試驗萃取物經(jīng)過GC-O感官分析,萃取物能嗅聞到油脂味、紙板味、蘑菇味、金屬味、青草味、豆腥味、泥土味等,總體呈現(xiàn)強烈的不愉悅兔肉腥味。由于揮發(fā)性風(fēng)味物質(zhì)是由不同物質(zhì)組成,而每種物質(zhì)對整體風(fēng)味的貢獻(xiàn)不同。因此,采用香氣活度值法計算各物質(zhì)的OAV值,可以知道各種物質(zhì)對總體風(fēng)味的貢獻(xiàn)程度。只有當(dāng)OAV值≥1時,表明此物質(zhì)對總體風(fēng)味有影響[19]。如表5所示,兔肉采用SFE-CO2法提取到的風(fēng)味物質(zhì)中,戊醛、己醛、己酸和 2-戊基-呋喃為主體風(fēng)味物質(zhì)。除己酸和2-戊基-呋喃以外,與之前研究兔肉風(fēng)味報道中提到的中級醛類為主體風(fēng)味大體一致[20-21]。
表5 兔肉腥味主體成分Table 5 Main bodies of odor in rabbit meat
3.1 SFE-CO2萃取條件對兔肉腥味萃取效果的影響
眾所周知,超臨界流體萃取是研究風(fēng)味物質(zhì)的有效方法之一[27]。其密度與液體接近,而又有較高的傳質(zhì)性和流動性,因此,其萃取能力既接近液體,又近似于氣體。在合適的溫度和壓力下,能提供足夠的密度來實現(xiàn)較強的溶解能力[28]。在諸多的超臨界流體中,CO2最受人青睞,主要是因為其臨界溫度接近室溫,對易揮發(fā)性或生理活性物質(zhì)極少損失和破壞。特別適合于天然活性物質(zhì)成分的萃取分離[29]。除此之外,安全無毒、化學(xué)惰性、腐蝕性小、廉價易得等特點使得 CO2成為一種綠色環(huán)保的萃取介質(zhì)。由于SFE-CO2操作相對簡單,萃取條件主要為:萃取溫度、萃取壓力和萃取時間。試驗結(jié)果可以看出,萃取壓力25 MPa,萃取溫度40℃,萃取時間3 h時,萃取效果最佳。這和其他一些采用SFE-CO2研究揮發(fā)性風(fēng)味物質(zhì)試驗時的萃取條件相似,但也略有不同[30-31]??赡苁且驗橐恍]發(fā)性物質(zhì)的性質(zhì)相似。同時,儀器的使用范圍有限,例如萃取壓力。即便如此,萃取壓力、萃取溫度等條件的改變,的確能左右最終的萃取效果。因此,本研究也初步探索了SFE-CO2萃取條件對兔肉腥味的萃取效果。
3.2 SFE-CO2對兔肉腥味物質(zhì)的萃取分析
SFE-CO2一般用于精油、香辛料等物質(zhì)的萃取,且萃取效果較好。其用于肉風(fēng)味物質(zhì)的研究的確較少,僅國外有些相關(guān)研究[13]。與同時蒸餾萃取、固相微萃取相比,SFE-CO2雖然萃取種類和含量不如前二者[32]。但是,感官嗅聞表明,此萃取方法得到的萃取物更接近真實的兔肉腥味。原因可能是,同時蒸餾萃取幾乎是在沸騰狀態(tài)下進行提取,而固相微萃取的萃取條件根據(jù)針頭涂層的性質(zhì)和厚度有所不同,SFE-CO2法在較低溫度下進行了兔肉腥味的提取,避免了高溫氧化、熱降解和掩蓋等一系列作用,得到了一些對熱不穩(wěn)定,非極性脂溶性的小分子醇、醛和酸類物質(zhì),特別是酸類物質(zhì)顯著增加。因此,可以設(shè)想兔肉腥味物質(zhì)與某種或者幾種酸類物質(zhì)相關(guān),這也為后續(xù)進一步研究兔肉腥味提供了參考。
3.3 兔肉腥味主體成分的確定
目前,對主體風(fēng)味物質(zhì)的研究主要依靠OAV法和香味提取物稀釋分析法(AEDA)[33-34]。AEDA法是在確定的幾種風(fēng)味物質(zhì)里,根據(jù)不同稀釋濃度觀察不同物質(zhì)對風(fēng)味的貢獻(xiàn)程度,一般用于主體成分已經(jīng)確定之后的進一步研究。而OAV法則是通過計算試驗中各物質(zhì)的香氣活度值來確定主體成分,與AEDA法相比,OAV法更適合樣品主體風(fēng)味成分未知時的分析研究。本研究采用 OAV法,對兔肉揮發(fā)性風(fēng)味物質(zhì)進行篩選,得到戊醛、己醛、己酸和2-戊基-呋喃這4種物質(zhì)的濃度大于其感官閾值,即 OAV>1,說明這4種化合物對兔肉腥味有重大貢獻(xiàn)。戊醛、己醛作為異味物質(zhì)已經(jīng)存在于前人的報道中[6],2-戊基-呋喃也被初步認(rèn)定對兔肉腥味有影響[35],而己酸作為兔肉腥味則未見報道,這也正是本研究新發(fā)現(xiàn)之一。當(dāng)然,對于己酸作為兔肉腥味物質(zhì)也需更深入的研究。
超臨界CO2流體萃取兔肉腥味物質(zhì),得到超臨界萃取最佳時間為3 h,最佳萃取溫度為40℃,最佳萃取壓力為25 MPa,提取率達(dá)98.11%;超臨界CO2流體萃取可有效用于兔肉腥味物質(zhì)的提取。通過定量加入內(nèi)標(biāo)物質(zhì) TMP,經(jīng)氣相色譜串聯(lián)質(zhì)譜進行分析鑒定,SFE-CO2法能萃取到兔肉中 38種揮發(fā)性風(fēng)味物質(zhì),其中戊醛、己醛、己酸和2-戊基-呋喃認(rèn)定為兔肉腥味主體成分,感官分析表明,超臨界CO2流體萃取物確實有明顯的兔肉腥味。
References
[1] FAOSTAT. Food and Agriculture Organization of the United Nations. 2015-03-23. http://faostat3.fao.org/home/E.
[2] ANTONELLA D Z, ZSOLT S. The role of rabbit meat as functional food. Meat Science, 2011, 88(3): 319-331.
[3] 楊佳藝, 李洪軍. 我國兔肉加工現(xiàn)狀分析. 食品科學(xué), 2010, 31(7):429-432. YANG J Y, LI H J. Current situation of rabbit meat processing in China. Food Science, 2010, 31(7): 429-432. (in Chinese)
[4] 朱成林, 李誠, 付剛, 劉愛平. 兔肉腥味物質(zhì)的研究進展. 食品安全質(zhì)量檢測學(xué)報, 2015, 6(1): 165-169. ZHU C L, LI C, FU G, LIU A P. Research progress on rabbit meat flavor substances. Journal of Food Safety and Quality, 2015, 6(1):165-169. (in Chinese)
[5] 白小彥. 美系獺兔血液指標(biāo)、肉質(zhì)特性及腥味的研究[D]. 蘭州: 甘肅農(nóng)業(yè)大學(xué), 2011. BAI X Y. Studies on blood characteristics, meat quality and the meat flavor of American strain Rex rabbits [D]. Lanzhou: Gansu Agricultural University, 2011. (in Chinese)
[6] 陳紅霞, 賀稚非, 朱慧敏, 王毅, 李洪軍. 頂空固相微萃取和同時蒸餾萃取用于兔肉揮發(fā)性風(fēng)味成分分析的比較研究. 食品工業(yè)科技, 2014, 35(3): 288-291. CHEN H X, HE Z F, ZHU H M, WANG Y, LI H J. Comparative application of head space-solid micro-extraction and simultaneous distillation extraction for GC-MS analysis of volatile components in IRA rabbit meat. Science and Technology of Food Industy, 2014, 35(3):288-291. (in Chinese)
[7] 王珺, 賀稚非, 李洪軍, 劉雅娜. 頂空固相微萃取結(jié)合氣相色譜-質(zhì)譜法分析兔肉的揮發(fā)性風(fēng)味物質(zhì). 食品科學(xué), 2013, 34(14):212-217. WANG J, HE Z F, LI H J, LIU Y N. Determination of flavour compounds in rabbit meat by HS-SPME/GC-MS. Food Science, 2013,34(14): 212-217. (in Chinese)
[8] LAMSEN, MARY R L, ZHONG Q X. Impacts of supercriticalextraction on GC-MS profiles of volatiles in whey protein isolate sampled by solid-phase micro extraction. Journal of Food Processing and Preservation, 2011, 36(5): 869-883.
[9] CHENG M C, CHANG W H, CHEN C W, LI W W, TSENG C Y,SONG T Y. Antioxidant properties of essential oil extracted from pinus morrisonicola hay needles by supercritical fluid and identification of possible active compounds by GC/MS. Molecules,2015, 20(10): 19051-19065.
[10] VILLANUEVA B D, ANGELOV I, VICENTE G, STATEVA R P,RODRIGUEZ G R M, REGLERO, G, IBANEZ E, FORNARI T. Extraction of thymol from different varieties of thyme plants using green solvents. Journal of the Science of Food and Agriculture, 2015,95(14): 2901-2907.
[11] MASOUD N S, SAEED T, IRAJ G. Optimization of supercritical carbon dioxide extraction of essential oil from Dracocephalum kotschyi Boiss: An endangered medicinal plant in Iran. Journal of Chromatography A, 2015, 1422: 73-81.
[12] NARVAEZ R M, GALLARDO E, LEON C M. Analysis of volatile compounds from Iberian hams: A review. Grasas Y Aceites, 2012,63(4): 432-454.
[13] MOON J H, CHOI I W, CHOI H D, KIM Y, Flavor pattern and sensory properties of meat flavor based on maillard reaction products with supercritical fluid extracted lard fractions. Korean Journal for Food Science of Animal Resources, 2012, 32(5): 644-651.
[14] WEHLING R L, FRONING G W, CUPPETT S L, NIEMANN L. Extraction of cholesterol and Other lipids from dehydrated beef using supercritical carbon dioxide. Journal of Agricultural and Food Chemistry, 1992, 40(7): 1204-1207.
[15] MALAMAN F S, MORAES L A B, WEST C, FERREIRA N J,OLIVEIRA A L. Supercritical fluid extracts from the Brazilian cherry (Eugenia uniflora L.): Relationship between the extracted compounds and the characteristic flavour intensity of the fruit. Food Chemistry,2011, 124(1): 85-92.
[16] AYSELI M T, FILIK G, SELLI S. Evaluation of volatile compounds in chicken breast meat using simultaneous distillation and extraction with odour activity value. Journal of Food and Nutrition Research,2014, 53(2): 137-142.
[17] KHOSRAVI-DARANI K. Research activities on supercritical fluid science in food biotechnology. Critical Reviews in Food Science and Nutrition, 2010, 50(6): 479-488.
[18] STETZER A J, CADWALLADER K, SINGH T K, MCKEITH F K,BREWER M S. Effect of enhancement and ageing on flavor and volatile compounds in various beef muscles. Meat Science, 2008, 79(1): 13-19.
[19] SUN L X, CHEN J P, LI M Y, LIU Y X, ZHAO G M. Effect of star anise (Illicium verum) on the volatile compounds of stewed chicken. Journal of Food Process Engineering, 2014, 37(2): 131-145.
[20] 姜穎, 張振華, 張益民, 楊明敏, 周剛, 徐朗萊. 兔肉腥味物質(zhì)的提取與鑒定. 分析科學(xué)學(xué)報, 2002, 18(4): 300-302. JIANG Y, ZHANG Z H, ZHANG Y M, YANG M M, ZHOU G, XU L L. Extraction and identification of volatiles from rabbit meat. Journal of Analytical Science, 2002, 18(4): 300-302. (in Chinese)
[21] 張益民, 張振華, 周培根. 兔肉腥味物質(zhì)的提取和鑒定. 分析化學(xué),2001, 29(7): 859. ZHANG Y M, ZHANG Z H, ZHOU P G. Extraction and edentification of volatiles from rabbit meat. Chinese Journal of Analytical Chemistry, 2001, 29(7): 859. (in Chinese)
[22] GARY R. Flavor Chemistry and Technology. 2nd Edition. London:CRC Press, 2006.
[23] HENRYK J. Food Flavors: Chemical, Sensory and Technological Properties. London: CRC Press, 2012.
[24] Zhu J C, Chen F, Wang L Y, Niu Y W, Yu D, Shu C, Chen H X, Wang H L, Xiao Z B. Comparison of aroma-active volatile in Oolong tea infusions using GC-Olfactometry, GC-FPD, and GC-MS. Journal of Agricultural and Food Chemistry, 2015, 63: 7499-7510.
[25] ENRIQUE J C M, ABRAHAM, M H. Structure-activity relationships on the odor detectability of homologous carboxylic acids by humans. Experimental Brain Research, 2010, 207(1/2): 75-84.
[26] DONG L, HOU Y M, LI F, PIAO Y Z, ZHANG X, ZHANG X Y, LI C,ZHAO C X. Characterization of volatile aroma compounds in different brewing barley cultivars. Journal of the Science of Food and Agriculture, 2015, 95(5): 915-921.
[27] 夏延斌. 食品風(fēng)味化學(xué). 北京: 化學(xué)工業(yè)出版社, 2008: 25. XIA Y B. Food Flavor Chemistry. Beijing: Chemical Industry Press,2008: 25. (in Chinese)
[28] 張慧. 超臨界 CO2萃取花椒風(fēng)味物質(zhì)的工藝開發(fā)研究[D]. 西安:西北大學(xué), 2010. ZHANG H. The research of processing development of flavor substance on pepper by supercritical fluid carbon dioxide [D]. Xi’an:Northwest University, 2010. (in Chinese)
[29] 王亞男, 季曉敏, 黃健, 王求娟, 陳義芳, 夏靜波, 蘇秀榕. CO2超臨界萃取技術(shù)對金槍魚油揮發(fā)性成分的分析. 中國糧油學(xué)報, 2015,30(6): 74-78. WANG Y N, JI X M, HUANG J, WANG Q J, CHEN Y F, XIA J B,SU X R. The analysis of the effect of supercritical CO2extraction technology on volatile component of tuna oils. Journal of the ChineseCereals and Oils Association, 2015, 30(6): 74-78. (in Chinese)
[30] 李淑榮, 王麗, 宋煥祿, 張春紅, 王強. 超臨界 CO2萃取烘烤花生種揮發(fā)性物質(zhì)的研究. 核農(nóng)學(xué)報, 2013, 27(3): 321-328. LI S R, WANG L, SONG H L, ZHANG C H, WANG Q. Supercritical-CO2fluid extraction of the volatile components in roasted peanut. Journal of Nuclear Agricultural Sciences, 2013, 27(3):321-328. (in Chinese)
[31] 張郁松. 花椒風(fēng)味物質(zhì)超臨界萃取與有機溶劑萃取的比較. 中國調(diào)味品, 2014, 39(2): 25-27. ZHANG Y S. Comparison of supercritical extraction and organic solvents extraction of pepper flavour substances. China Condiment,2014, 39(2): 25-27. (in Chinese)
[32] 謝躍杰, 賀稚非, 李洪軍. 兔肉揮發(fā)性風(fēng)味成分提取效果的比較.食品科學(xué), 2015, 36(24): 147-151. XIE Y J, HE Z F, LI H J. Volatile flavor profile of rabbit meat extracted by three frequently used techniques. Food Science, 2015, 36(24): 147-151. (in Chinese)
[33] CORRAL S, SALVADOR A, FLORES M. Elucidation of key aroma compounds in traditional dry fermented sausages using different extraction techniques. Journal of the Science of Food and Agriculture,2015, 95(6): 1350-1361.
[34] STRASSER S, SCHIEBERLE P. Characterization of the key aroma compounds in roasted duck liver by means of aroma extract dilution analysis comparison with beef and pork livers. European Food Research and Technology, 2014, 238(2): 307-313.
[35] 陳康, 李洪軍, 賀稚非, 陳紅霞. 不同性別伊拉兔肉揮發(fā)性風(fēng)味物質(zhì)的SPME-GC-MS分析. 食品科學(xué), 2014, 35(6): 98-102. CHEN K, LI H J, HE Z F, CHEN H X. SPME-GC-MS analysis of volatile flavor compounds in male and female Ira rabbit meat. Food Science, 2014, 35(6): 98-102. (in Chinese)
(責(zé)任編輯 趙伶俐)
The Odor of Rabbit Meat Extracted by Supercritical Carbon Dioxide Fluid Extraction
XIE Yue-jie, HE Zhi-fei, LI Hong-jun
(College of Food Science, Southwest University/Chongqing Special of Food Engineering Technology Research Center,Chongqing 400715)
【Objective】The aim of this study was to explore the conditions for extracting the odor of rabbit meat by supercritical carbon dioxide fluid extraction (SFE-CO2), to determine the species, components and contents of rabbit meat odor and to provide thedatabase for further deodorization and processing industry. 【Method】 SFE-CO2technology was employed to extract the odorants in rabbit meat with Box-Behnken response surface analysis based on single factor experiments, using extraction yield as a target. The odorants of rabbit meat were detected by gas chromatograph in tandem with mass spectrum, with 2, 4, 6-trimethylpyridine (TMP) as an internal standard. Calculating odor active value (OAV) of the detected matters, and combining with gas chromatography olfactory (GC-O) and sensory evaluation, the main contents of rabbit meat odor was determined.【Result】The results of single factor experiment indicated that the extraction yield could reach 97.91% and the peak areas were 1.58×109when the extraction temperature was 40℃. When the extraction time was 4 hours, the extraction yield and peak areas were 97.83% and 2.42×109, respectively. The extraction rate reached 97.78% with peak areas of 3.78×108when the extraction pressure was 25 MPa. Among the three factors, the extraction temperature and extraction pressure not only affected the solute diffusion coefficient, but also the density of CO2fluid. The diffusion coefficient increased when the extraction temperature was raised, but the extraction yield decreased due to the decreased CO2fluid density. Although the density of CO2fluid was larger at higher extraction pressure, the compressibility decreased. Hence,the extraction yield decreased due to the reduction of diffusion coefficient and solubility. When the extraction time was too long, the proportion of the odorants was reduced, for some non-volatile compounds were extracted, with the total amount increased. According to the response surface analysis, it was concluded that the optimal extraction temperature, extraction pressure and extraction time were 40.67℃, 25.67 MPa and 3.13 h, respectively, with extraction yield reached 98.01%. And the actual operation showed that the extraction temperature, extraction pressure and extraction time were 40℃, 25 MPa and 3 h, respectively. Under these conditions, the extraction yield was 98.11%. Through quantitatively adding internal standard substance TMP, GC - MS quantitatively analyzed for rabbit meat volatile flavour compounds of five classes, including aldehydes, acids, esters, heterocyclic compounds and hydrocarbons,a total of 38 kinds of flavor compounds. Comparing the five types of matter content: acids ((1 394.25±3.45) μg·kg-1) > esters((569.26±1.23) μg·kg-1) > hydrocarbon ((471.82±1.11) μg·kg-1) > aldehyde ((168.46±0.97) μg·kg-1) > heterocyclic ((86.71±0.64)μg·kg-1). The key odorants of rabbit meat odor were pentanal, hexanal, hexanoic acid and 2-pentyl furan via calculating OAV. Those four materials with liver off-flavor, grass odor, muttony odor and beany odor respectively were regarded as the main bodies of odor in rabbit meat by GC-O. In addition, the extractant showed rabbit meat odor obviously through sensory evaluation.【Conclusion】The method of SFE-CO2which provides a new extraction way for researching rabbit meat odor is feasible. The optimal extraction temperature, extraction time and extraction pressure was 40℃, 3 h, 25 MPa. Pentanal, hexanal, hexanoic acid and 2-pentyl furan were preliminarily regarded as the main bodies of rabbit meat odor.
rabbit meat; odor; supercritical carbon dioxide fluid extraction (SFE-CO2); gas chromatography mass spectrum (GC-MS); odor active value (OAV); sensory evaluation
2016-03-01;接受日期:2016-05-04
國家現(xiàn)代農(nóng)業(yè)(兔)產(chǎn)業(yè)技術(shù)體系建設(shè)專項(CARS-44-D-1)、教育部兔產(chǎn)業(yè)體系項目(100030-40305411)、中央高?;究蒲袠I(yè)務(wù)費專項資金(XDJK2014D042)
聯(lián)系方式:謝躍杰,E-mail:yjxie@sina.com。通信作者李洪軍,E-mail:983362225@qq.com