王忠民, 鄒德志
(西安理工大學(xué) 土木建筑工程學(xué)院,西安 710048)
?
面內(nèi)平動(dòng)功能梯度斜板的主動(dòng)振動(dòng)控制
王忠民, 鄒德志
(西安理工大學(xué) 土木建筑工程學(xué)院,西安710048)
對(duì)新型功能梯度材料制成的面內(nèi)平動(dòng)斜板,通過直角坐標(biāo)系和斜角坐標(biāo)系的坐標(biāo)變換,建立了在斜角坐標(biāo)系下受多個(gè)集中控制力作用的橫向振動(dòng)控制微分方程。采用微分求積法,將微分方程和邊界條件對(duì)空間坐標(biāo)進(jìn)行離散化處理,得到了時(shí)域內(nèi)振動(dòng)控制系統(tǒng)的狀態(tài)方程。應(yīng)用最優(yōu)控制法,對(duì)面內(nèi)平動(dòng)功能梯度斜板的無(wú)量綱運(yùn)動(dòng)速度小于一階無(wú)量綱臨界速度時(shí)的等幅振動(dòng)和大于一階無(wú)量綱臨界速度時(shí)的發(fā)散失穩(wěn)兩種情況進(jìn)行了數(shù)值仿真,得到控制前后若干個(gè)節(jié)點(diǎn)撓度隨時(shí)間的變化曲線。結(jié)果表明,該方法能夠有效地控制面內(nèi)平動(dòng)功能梯度斜板的橫向振動(dòng),特別是對(duì)于發(fā)散失穩(wěn)的抑制。
面內(nèi)平動(dòng)斜板;功能梯度材料;最優(yōu)振動(dòng)控制;微分求積法
在造船工業(yè)和橋梁工程等領(lǐng)域,斜板、加肋斜板的應(yīng)用越來(lái)越廣泛。目前,許多學(xué)者在面內(nèi)平動(dòng)(或軸向運(yùn)動(dòng))矩形板或薄膜的線性振動(dòng)、非線性振動(dòng)、穩(wěn)定性以及振動(dòng)控制方面做了大量的研究。Gorman[1]用解析法研究了矩形板的自由振動(dòng)特性。Lin[2]以對(duì)邊簡(jiǎn)支對(duì)邊自由的軸向運(yùn)動(dòng)板為對(duì)象,分析了軸向運(yùn)動(dòng)速度、長(zhǎng)寬比和剛度對(duì)板的穩(wěn)定性的影響。Shin等[3]分析了軸向運(yùn)動(dòng)矩形薄膜的振動(dòng)特性。周銀鋒等[4]研究了軸向運(yùn)動(dòng)Kelvin-Voigt黏彈性矩形板的橫向振動(dòng)特性。阮苗等[5]分析了受切向均布隨從力的功能梯度(Functionally Graded Materials,FGM)斜板的穩(wěn)定性。Hossain Nezhad Shirazi等[6]利用模糊控制策略對(duì)功能梯度矩形板進(jìn)行了控制,其中沒有考慮板的軸向運(yùn)動(dòng)。賀容波等[7]提出了基于光電層合簡(jiǎn)支板的最優(yōu)模糊多模態(tài)主動(dòng)振動(dòng)控制算法。浦玉學(xué)等[8]提出基于次級(jí)通道在線辨識(shí)的變步長(zhǎng)振動(dòng)主動(dòng)控制算法,以某實(shí)時(shí)控制器進(jìn)行了簡(jiǎn)支梁振動(dòng)主動(dòng)控制試驗(yàn)。在斜板結(jié)構(gòu)的彎曲、屈曲及后屈曲研究方面,李國(guó)豪[9]提出了各向異性斜板彎曲的平衡微分方程及其實(shí)用的近似解法。紀(jì)冬梅等[10]采用Galerkin法,以小波作為試函數(shù),得出了斜板在不同邊長(zhǎng)比與不同斜角下的后屈曲四級(jí)漸近解。黎振源等[11]分析了兩對(duì)邊簡(jiǎn)支、另兩對(duì)邊自由簡(jiǎn)支斜板橋振動(dòng)頻率特性,以及單輛標(biāo)準(zhǔn)車靠邊行駛、靠中行駛和兩輛標(biāo)準(zhǔn)車并排行駛時(shí)的車橋振動(dòng)特性。阮苗等[12]研究了功能梯度斜板在兩對(duì)邊受有均布?jí)毫ψ饔孟碌那鷨栴},討論了斜板的幾何外形尺寸、夾角、梯度指標(biāo)以及中面變形等因素對(duì)臨界屈曲荷載的影響。
在上述研究的基礎(chǔ)上,對(duì)新型功能梯度材料制成的面內(nèi)平動(dòng)斜板,采用二元Diracδ函數(shù),建立了在集中控制力作用下的橫向振動(dòng)控制微分方程;采用微分求積法,將微分方程和邊界條件進(jìn)行離散化處理,得到了振動(dòng)控制系統(tǒng)的狀態(tài)方程;應(yīng)用最優(yōu)控制法,確定了最優(yōu)控制率,對(duì)系統(tǒng)進(jìn)行數(shù)值仿真,得到了控制前后所求點(diǎn)的撓度隨時(shí)間的變化曲線。
1.1受控系統(tǒng)的力學(xué)模型
X=XcVc+XmVm=XcVc+Xm(1-Vc)
(1)
圖1 面內(nèi)平動(dòng)的FGM斜板Fig.1 In-plane translating skew plate made of functionally graded materials
1. 2控制微分方程
(2)
式中:w(x,y,t)是板的撓度函數(shù);μ是泊松比,Em、ρm和Ec、ρc分別是金屬、陶瓷的楊氏模量和密度,Ecm=Ec-Em,ρcm=ρc-ρm;4為重調(diào)和算子,即
由圖2知,直角坐標(biāo)和斜角坐標(biāo)的關(guān)系為
x=ξ+ηcosθ,y=ηsinθ
(3)
圖2 直角坐標(biāo)與斜角坐標(biāo)Fig.2 Rectangular coordinates and skew coordinates
對(duì)控制微分方程(2),應(yīng)用式(3),可得到斜角坐標(biāo)系下的控制微分方程,即
(4)
引入無(wú)量綱量
(5)
得到斜角坐標(biāo)系下無(wú)量綱量表示的控制微分方程
(6)
1. 3微分方程的離散
(7)
四邊簡(jiǎn)支斜板的邊界條件為
W1j=WNj=Wi1=WiN=0
(i,j=1,2,…,N)
(8a)
(i=2,N-1;j=2,3,…,N-1)
(8b)
(j=2,N-1;i=2,3,…,N-1)
(8c)
(9)
二元Diracδ(ξ*,η*)函數(shù)的展開式
(10)
圖3 二元Diracδ(ξ*-0.5,η*-0.5)函數(shù)的部分和隨坐標(biāo)變量的變化曲面Fig.3 Curved surface of partial sum for Dirac function δ(ξ*-0.5,η*-0.5) versus two variables
本文采用不均勻分布節(jié)點(diǎn)方式,即
(12)
(13)
式中:U(τ)=[u1(τ),u2(τ),u3(τ),u4(τ),u5(τ)]T為無(wú)量綱控制力列陣。
將方程(13)寫成狀態(tài)方程
(14a)
Y=CX
(14b)
對(duì)于無(wú)限時(shí)間輸出調(diào)節(jié)器,二次型指標(biāo)為
(15)
用極小值原理[17],得到唯一最優(yōu)控制率
U*(τ)=-R-1BTPX(τ)
(16)
式中:P是正定對(duì)稱常值矩陣,是下列Riccati代數(shù)方程的唯一解
PA+ATP-PBR-1BTP+Q=0
(17)
最優(yōu)狀態(tài)X*(τ)是下列微分方程和初始條件的解
X(τ0)=X0
(18)
在式(16)中,令K=-R-1BTP,有最優(yōu)指標(biāo)
(19)
受控系統(tǒng)閉環(huán)控制框圖如圖4所示。
圖4 受控系統(tǒng)閉環(huán)結(jié)構(gòu)圖Fig.4 Closed-loop structurediagram of the controlled system
取板的邊長(zhǎng)a=b=1,即長(zhǎng)寬比c=a/b=1;采用的FGM 板由 金屬Aluminum 和陶瓷Zirconia兩種材料構(gòu)成,其彈性模量分別為Em=70 GPa和Ec=151 GPa,密度分別為ρm=2 707 kg/m3和ρc=3 000 kg/m3,泊松比μ=μm=μc=0.3;梯度指標(biāo)k=1,斜板的夾角θ=75°,N=9。
對(duì)于無(wú)控制力作用的運(yùn)動(dòng)功能梯度斜板,前三階復(fù)頻率ω1、ω2、ω3的實(shí)部和虛部隨無(wú)量綱速度v的變化曲線如圖5所示??梢钥闯?,當(dāng)無(wú)量綱速度小于一階無(wú)量綱臨界速度5.49時(shí),第一階復(fù)頻率的虛部是0,板是穩(wěn)定的;當(dāng)無(wú)量綱速度大于5.49小于6.9時(shí),第一階復(fù)頻率虛部不為0,實(shí)部為0,斜板發(fā)生發(fā)散失穩(wěn)。
圖5 前三階無(wú)量綱復(fù)頻率的實(shí)部與虛部隨無(wú)量綱速度的變化曲線Fig.5 Curve of real part and imaginary part of the first three dimensionless complex frequency versus velocity
在以下分析中,取斜板上A1、A2、A3點(diǎn)為控制對(duì)象。為了清晰地表示這三個(gè)點(diǎn)的位置,將板畫成矩形,如圖6所示。在方程(14a)中,將B取成0矩陣,即無(wú)控制狀態(tài),取初始條件為
[000000000000000000
00000000000.10000000
-0.10000000000000]T
對(duì)無(wú)量綱運(yùn)動(dòng)速度v=3,用Runge-Kutta法計(jì)算了A1、A2、A3點(diǎn)處的無(wú)量綱撓度隨無(wú)量綱時(shí)間的變化情況,如圖7-圖9(圖中均為無(wú)量綱量)。由圖可以看出,其變化規(guī)律是等幅穩(wěn)態(tài)振動(dòng)。
圖6 A1、A2、A3點(diǎn)所在位置Fig.6 Location of point A1、A2、A3
圖7 控制前A1點(diǎn)撓度隨時(shí)間的變化曲線(v=3)Fig.7 Curve for deflection of point A1 versus time under uncontrolled state(v=3)
圖8 控制前A2點(diǎn)撓度隨時(shí)間的變化曲線圖(v=3)Fig.8 Curve for deflection of point A2 versus time under uncontrolled state(v=3)
圖9 控制前A3點(diǎn)撓度隨時(shí)間的變化曲線(v=3)Fig.9 Curve for deflection of point A3 versus time under uncontrolled state(v=3)
D3=[0.000 028 109 162 15,0.000 083 491 291 43,
-0.013 192 615 874 43,0.000 083 491 291 43,
0.000 028 109 162 15,0.000 083 491 291 43,
0.000 247 990 164 49,-0.039 185 391 967 64,
0.000 247 990 164 49,0.000 083 491 291 43,
-0.013 192 615 874 43,-0.039 185 391 967 64,
6.191 757 430 466 36,-0.039 185 391 967 64,
-0.013 192 615 874 43,0.000 083 491 291 43,
0.000 247 990 164 49,-0.039 185 391 967 64,
0.000 247 990 164 49,0.000 083 491 291 43,
0.000 028 109 162 15,0.000 083 491 291 43,
-0.013 192 615 874 43,0.000 083 491 291 43,
0.000 028 109 162 15]T
對(duì)方程式(14a)和式(16)~(18)進(jìn)行數(shù)值計(jì)算,得到控制后的無(wú)量綱撓度隨無(wú)量綱時(shí)間的變化曲線如圖10~圖12所示(圖中均為無(wú)量綱量)。從這些響應(yīng)曲線可以看出,控制后板的無(wú)量綱撓度隨無(wú)量綱時(shí)間的響應(yīng)曲線呈現(xiàn)為顯著的衰減,斜板的振動(dòng)受明顯的抑制,在無(wú)量綱時(shí)間大于2 s后,無(wú)量綱撓度幾乎趨于0。
圖10 控制后A1點(diǎn)撓度隨時(shí)間的變化曲線(v=3)Fig.10 Curve for deflection of point A1versus time under controlled state(v=3)
圖11 控制后A2點(diǎn)撓度隨時(shí)間的變化曲線(v=3)Fig.11 Curve for deflection of point A2versus time under controlled state(v=3)
圖12 控制后A3點(diǎn)撓度隨時(shí)間的變化曲線(v=3)Fig.12 Curve for deflection of point A3 versus time under controlled state(v=3)
在圖5中,當(dāng)斜板的無(wú)量綱速度v=6時(shí),斜板呈現(xiàn)為發(fā)散失穩(wěn)狀態(tài),導(dǎo)致產(chǎn)生發(fā)散失穩(wěn)的主要原因是第一階復(fù)頻率的虛部Im(ω1)=-4.136, 實(shí)部是0。v=6時(shí)的響應(yīng)曲線如圖13~圖15,文中只畫出前兩秒的變化曲線,可以看出各點(diǎn)的撓度絕對(duì)值隨時(shí)間的增加越來(lái)越大。實(shí)施控制后響應(yīng)曲線如圖16-圖18所示,顯然斜板的無(wú)量綱撓度絕對(duì)值的增大現(xiàn)象得到明顯的抑制,使其在短時(shí)間內(nèi)趨近于0,最優(yōu)控制效果非常明顯。在最優(yōu)控制中,合理選擇加權(quán)矩陣Q和R更利于確定最優(yōu)控制律。
圖13 控制前A1點(diǎn)撓度隨時(shí)間的變化曲線(v=6)Fig.13 Curve for deflection of point A1 versus time under uncontrolled state(v=6)
圖14 控制前A2點(diǎn)撓度隨時(shí)間的變化曲線(v=6)Fig.14 Curve for deflection of point A2 versus time under uncontrolled state(v=6)
圖15 控制前A3點(diǎn)撓度隨時(shí)間的變化曲線(v=6)Fig.15 Curve for deflection of point A3versus time under uncontrolled state(v=6)
圖16 控制后A1點(diǎn)撓度隨時(shí)間的變化曲線(v=6)Fig.16 Curve for deflection of point A1 versus time under controlled state(v=6)
圖17 控制后A2點(diǎn)撓度隨時(shí)間的變化曲線(v=6)Fig.17 Curve for deflection of point A2versus time under controlled state(v=6)
圖18 控制后A3點(diǎn)撓度隨時(shí)間的變化曲線(v=6)Fig.18 Curve for deflection of point A3versus time under controlled state(v=6)
利用微分求積法,對(duì)面內(nèi)平動(dòng)功能梯度斜板的控制微分方程進(jìn)行了空間離散,建立了時(shí)域內(nèi)的狀態(tài)方程。應(yīng)用Runge-Kutta法,對(duì)無(wú)控制的斜板,計(jì)算了面內(nèi)平動(dòng)速度小于一階無(wú)量綱臨界速度(v=3,等幅振動(dòng))和大于一階臨界速度(v=6,發(fā)散失穩(wěn))兩種情況的斜板撓度隨時(shí)間的變化情況。再用最優(yōu)控制理論,求得了最優(yōu)控制率,并對(duì)斜板在這兩種情況下穩(wěn)態(tài)振動(dòng)和發(fā)散失穩(wěn)分別進(jìn)行了主動(dòng)控制。仿真結(jié)果表明了該法的可行性和有效性。
[1] Gorman D J. Free vibration analysis of rectangular plates[M]. New York: Elsevier North Holland, 1982.
[2] Lin C C. Stability and vibration characteristics of axially moving plates[J]. International Journal of Solids and Structures, 1997, 34(24): 3179-3190.
[3] Changho S, Jintai C, Wonsuk K. Dynamic characteristics of the out-of-plane vibration for an axially moving membrane [J]. Journal of Sound and Vibration, 2005, 286(4/5): 1019-1031.
[4] Zhou Yin-feng, Wang Zhong-min. Transverse vibration characteristics of axially moving viscoelastic plate[J]. Applied Mathematics and Mechanics, 2007, 28(2): 209-218.
[5] Ruan Miao, Wang Zhong-min, Wang Yan. Dynamic stability of functionally graded materials skew plates subjected to uniformly distributed tangential follower forces[J]. Journal of Vibration and Control, 2012, 18(7): 913-923.
[6] Hossain Nezhad Shirazi A, Qwji H R, Rafeeyan M. Active vibration control of an FGM rectangular plate using fuzzy logic controllers[C]//Procedia Engineering,2011,14:3019-3026.
[7] 賀容波, 鄭世杰. 光電層合簡(jiǎn)支板的多模態(tài)最優(yōu)模糊主動(dòng)振動(dòng)控制[J]. 振動(dòng)與沖擊,2015, 34(10): 77-81.
HE Rong-bo,ZHENG Shi-jie. Multi-modal optimal fuzzy active vibration control of a photo-electric laminated simplysupported plate[J]. Journal of Vibration and Shock, 2015, 34(10): 77-81.
[8] 浦玉學(xué),張方,姜金輝. 變步長(zhǎng)自適應(yīng)結(jié)構(gòu)振動(dòng)主動(dòng)控制算法[J]. 振動(dòng)與沖擊,2015, 34(8):199-205.
PU Yu-xue,ZHANG Fang,JIANG Jin-hui. A varying step adaptive algorithm for structural vibration active control[J]. Journal of Vibration and Shock, 2015, 34(10): 199-205.
[9] 李國(guó)豪. 關(guān)于斜交異性斜板的彎曲理論[J]. 同濟(jì)大學(xué)學(xué)報(bào), 1997, 25(2): 121-126.
LI Guo-hao. On the bending theory of skew anisotropic skew plate[J]. Journal of Tongji University, 1997, 25(2): 121-126.
[10] 紀(jì)冬梅, 胡毓仁. 小波加權(quán)殘值法在斜板后屈曲上的應(yīng)用[J]. 應(yīng)用力學(xué)學(xué)報(bào), 2008, 25(4): 673-677.
JI Dong-mei, HU Yu-ren. Wavelet weighted residuals with application to post-buckling analysis of skew plates[J]. Chinese Journal of Applied Mechanics, 2008, 25(4): 673-677.
[11] 黎振源, 夏桂云, 李傳習(xí). 簡(jiǎn)支斜板的車-橋耦合振動(dòng)分析[J]. 交通科學(xué)與工程, 2010, 26(1): 59-65.
LI Zhen-yuan, XIA Gui-yun, LI Chuan-xi. Vibrating frequencies and vehicle-bridge vibration of simply- supported skewed slab[J]. Journal of Transport Science and Engineering, 2010, 26(1): 59-65.
[12] 阮苗, 王忠民. 功能梯度斜板的屈曲分析[J]. 機(jī)械工程學(xué)報(bào), 2011, 47(6):57-61.
RUAN Miao, WANG Zhong-min. Buckling analysis of functionally graded skew thin plate[J]. Journal of Mechanical Engineering, 2011, 47(6):57-61.
[13] Ruan Miao,Wang Zhong-min. Transverse vibrations of moving skew plates made of functionally graded material[J]. Journal of Vibration and Control, first published on December,2014,17:1-14.
[14] 王永亮. 微分求積法和微分求積單元法的原理與應(yīng)用[D]. 南京: 南京航天航空大學(xué), 2001.
[15] 何甲興, 王淑云, 楊明. Fourier級(jí)數(shù)的求和理論與方法—求和因子法求和[J]. 數(shù)學(xué)的實(shí)踐與認(rèn)識(shí), 2003, 33(12): 112-118.
HE Jia-xing, WANG Shu-yun, YANG Ming. On summation theory and method of Fourier series-summing by summation factor[J]. Mathematics in Practice and Theory,2003,33(12):112-118.
[16] 金鈺. 二元傅里葉級(jí)數(shù)的收斂階[J]. 寧夏師范學(xué)院學(xué)報(bào):自然科學(xué)版, 2008, 29(6): 80-82.
JIN Yu. The convergent order of a double Fourier series[J]. Journal of Ningxia Teaches University:Natural Science, 2008, 29(6): 80-82.
[17] 關(guān)新平, 吳忠強(qiáng). 現(xiàn)代控制理論[M]. 北京: 電子工業(yè)出版社, 2012.
Active vibration control for an in-plane translating skew plate made of functionally graded materials
WANG Zhongmin, ZOU Dezhi
(School of Civil Engineering and Architecture, Xi’an University of Technology, Xi’an 710048, China)
Through the coordinate transformation between an orthogonal coordinate system and a skew angle coordinate system, the transverse vibration control differential equation for an in-plane translating skew plate made of a new kind of functionally graded materials subjected to multiple concentrated control forces was derived in the skew angle coordinate system. The differential quadrature method was used to discretize the differential equation and boundary conditions, and the state equations of the vibration control system in time domain were built. Using the optimal control method, the optimal control law was obtained. For the cases that the axially dimensionless moving velocity of an in-plane translating skew plate was less than the first order dimensionless critical speed(equal amplitude vibration) and it was greater than the first order dimensionless critical speed(divergence and instability), some numerical simulations for the system were implemented, and varying curves of deflections of some certain nodes versus time under uncontrolled and controlled conditions were plotted. The numerical results showed that the optimal control method can effectively control the vibration of the in-plane translating skew plate made of functionally graded materials, particularly, suppress the divergence and instability of the plate.
in-plane translating skew plate; functionally graded materials; optimal vibration control; differential quadrature method
國(guó)家自然科學(xué)基金項(xiàng)目(11272254);陜西省自然科學(xué)基礎(chǔ)研究計(jì)劃項(xiàng)目(2015JM1029)
2015-03-12修改稿收到日期:2015-08-05
王忠民 男,博士, 教授, 博士生導(dǎo)師,1957年生
O326
A
10.13465/j.cnki.jvs.2016.15.014