姚慶鑫,王 蓓,陽后桂,謝建軍
(中南林業(yè)科技大學(xué) 材料科學(xué)與工程學(xué)院,長沙 410004)
?
響應(yīng)面法優(yōu)化木質(zhì)素基選擇性吸附樹脂的皂化條件*
姚慶鑫,王 蓓,陽后桂,謝建軍
(中南林業(yè)科技大學(xué) 材料科學(xué)與工程學(xué)院,長沙 410004)
采用響應(yīng)面法研究了膨潤土/木質(zhì)素磺酸鈉接枝丙烯酰胺選擇性吸附樹脂(BLPAM)的皂化實(shí)驗(yàn)。以氫氧化鈉溶液濃度、皂化溫度、皂化時(shí)間為影響因素,以Pb2+吸附量、Cu2+吸附量、Pb2+對(duì)Cu2+的選擇性吸附系數(shù)、Pb2+去除率、Cu2+去除率為響應(yīng)值建立Box-Behnken數(shù)學(xué)模型,通過響應(yīng)面分析得到針對(duì)各響應(yīng)值的主次因素和優(yōu)化皂化條件。采用組合賦權(quán)法確定各響應(yīng)值的權(quán)重,獲得最終的優(yōu)化皂化條件。結(jié)果表明,BLPAM的優(yōu)化皂化條件為:氫氧化鈉溶液濃度1.45 mol/L、皂化溫度98 ℃、皂化時(shí)間2.90 h,所得皂化BLPAM樹脂在二元Pb2+/Cu2+溶液中對(duì)Pb2+吸附量為1.772 mmol/g,Cu2+吸附量為1.719 mmol/g,Pb2+對(duì)Cu2+的選擇性吸附系數(shù)為1.604,Pb2+去除率為96.062%,Cu2+去除率為93.864%。
木質(zhì)素;吸附樹脂;皂化;選擇性吸附; 組合賦權(quán)法; 響應(yīng)面法
近年來,水體中重金屬離子污染日趨嚴(yán)重,其治理已經(jīng)成為人類亟待解決的重要問題。在重金屬離子的處理方法中,吸附法被廣泛用于去除水體中重金屬離子,其操作簡便、效果顯著、運(yùn)行成本較低廉[1-2]。在吸附過程中,吸附材料起了至關(guān)重要的作用。目前,開發(fā)低成本、高性能的重金屬離子吸附材料已經(jīng)引起人們的廣泛關(guān)注。其中,木質(zhì)素是自然界中第二大天然有機(jī)物,其基本結(jié)構(gòu)中含有芳香基、羥基、甲氧基等多種活性官能團(tuán),可以用作重金屬離子吸附材料[3-4]。為了提高木質(zhì)素基吸附材料的重金屬離子吸附性能,通常采用化學(xué)方法對(duì)木質(zhì)素進(jìn)行改性,如接枝共聚、Mannich反應(yīng)、縮合反應(yīng)等,在木質(zhì)素骨架上引入具有良好吸附性能的基團(tuán)如酰胺基、羧基、季銨基等[5-6]。
傳統(tǒng)實(shí)驗(yàn)設(shè)計(jì)中通常采用單因素方法來探索實(shí)驗(yàn)優(yōu)化條件,然而單因素方法實(shí)驗(yàn)設(shè)計(jì)工作量大、耗費(fèi)時(shí)間以及原料成本,且不能得到各影響因素之間的相互作用。響應(yīng)面優(yōu)化法是一種實(shí)驗(yàn)條件尋優(yōu)的方法,它通過建立連續(xù)變量曲面模型,對(duì)影響因素及其交互作用進(jìn)行評(píng)價(jià),尋求最佳組合條件[7]。響應(yīng)面法的優(yōu)勢在于:實(shí)驗(yàn)條件尋優(yōu)過程中,響應(yīng)面優(yōu)化法所需的實(shí)驗(yàn)數(shù)相對(duì)較少,且可連續(xù)的對(duì)實(shí)驗(yàn)各水平進(jìn)行分析[8]。
皂化法是提高樹脂吸附性能的一種簡便而有效的后處理方法,它可改變樹脂中吸附基團(tuán)的種類及其比例,提高吸附樹脂對(duì)重金屬離子的吸附性能。膨潤土/木質(zhì)素磺酸鈉接枝丙烯酰胺復(fù)合吸附樹脂(BLPAM)的結(jié)構(gòu)中含有大量的活性官能團(tuán)-CONH2,但由于其吸附溶脹性差,內(nèi)部大量活性基團(tuán)不能外露而有效參與重金屬離子吸附,導(dǎo)致BLPAM的綜合吸附性能較差。故本文采用皂化法進(jìn)一步處理BLPAM,并結(jié)合運(yùn)用響應(yīng)面法優(yōu)化BLPAM的皂化條件。
1.1 主要原料
膨潤土/木質(zhì)素磺酸鈉接枝丙烯酰胺復(fù)合吸附樹脂(BLPAM),該樹脂為本文自制,制備過程參考文獻(xiàn)[9]。BLPAM樹脂在濃度為2.0 mmol/L的二元Pb2+/Cu2+溶液中的基本吸附性能為對(duì)Pb2+的吸附量為0.0613 mmol/g,對(duì)Cu2+的吸附量為0.0582 mmol/g,Pb2+對(duì)Cu2+的選擇性系數(shù)為1.295,對(duì)Pb2+的去除率為1.211%,對(duì)Cu2+的去除率為0.013%。
NaOH,分析純(AR),湖南匯虹試劑有限公司;硝酸鉛(Pb(NO3)2)、硝酸銅(Cu(NO3)2),AR,天津市科密歐化學(xué)試劑有限公司。
1.2 皂化與吸附實(shí)驗(yàn)
皂化、吸附實(shí)驗(yàn)的操作方法及金屬離子的吸附量(以q表示)和Pb2+對(duì)Cu2+的選擇性系數(shù)(以α表示)的計(jì)算參考文獻(xiàn)[10],金屬離子去除率(R)計(jì)算參考文獻(xiàn)[11]。
2.1 響應(yīng)面法優(yōu)化實(shí)驗(yàn)設(shè)計(jì)
在前期探索實(shí)驗(yàn)的基礎(chǔ)上,根據(jù)響應(yīng)面實(shí)驗(yàn)設(shè)計(jì)原理(Box-Behnken模型),對(duì)BLPAM選擇性吸附樹脂的皂化后處理進(jìn)行3因素3水平實(shí)驗(yàn)設(shè)計(jì),以氫氧化鈉濃度(A)、皂化溫度(B)、皂化時(shí)間(C)為主要考察因素,以樹脂在二元Pb2+/Cu2+溶液中對(duì)Pb2+吸附量(qPb)、Cu2+吸附量(qCu)、Pb2+對(duì)Cu2+的選擇性吸附系數(shù)(α)、Pb2+去除率(RPb)、Cu2+去除率(RCu)為響應(yīng)值進(jìn)行響應(yīng)面實(shí)驗(yàn),實(shí)驗(yàn)因素水平如表1所示。響應(yīng)面實(shí)驗(yàn)設(shè)計(jì)共17個(gè)實(shí)驗(yàn)點(diǎn),其中12個(gè)析因點(diǎn),5個(gè)中心點(diǎn),實(shí)驗(yàn)設(shè)計(jì)及結(jié)果見表2所示。
表1 響應(yīng)面實(shí)驗(yàn)設(shè)計(jì)的因素與水平
Table 1 Experimental design of factors and levels of Box-Beheken response surface method
因素編碼水平-101C(NaOH)/mol·L-1A0.501.252.00Temperature/℃B7085100Time/hC0.501.252.00
表2 Box-Beheken優(yōu)化實(shí)驗(yàn)設(shè)計(jì)與結(jié)果
Table 2 Experimental design and results of Box-Beheken response surface method
No.ABCqPb/mmol·g-1qCu/mmol·g-1αRPb/%RCu/%11.25702.001.8081.7653.99396.41487.08721.25851.251.7831.7901.75595.64188.97031.25851.251.7731.5921.92393.49979.17042.001001.251.7971.7683.35295.87787.38251.251002.001.8661.8933.42499.02893.24961.25700.501.4090.9153.55273.17342.50671.25851.251.7401.7851.69993.74489.20080.50701.251.3940.9233.37872.76343.44192.00850.501.5901.3512.74384.08365.642102.00701.251.6731.6641.91390.72883.679112.00852.001.8471.9582.09498.59397.156120.50852.001.6421.4283.03087.78470.343130.501001.251.6331.3503.28686.19165.283140.50850.501.2820.8173.20967.66038.739151.25851.251.7541.7921.73792.60887.791161.25851.251.7121.6862.11592.35983.359171.251000.501.6071.3672.98686.16267.333
2.2 各響應(yīng)值的優(yōu)化皂化條件
首先,以Pb2+吸附量(qPb)為響應(yīng)值,采用Design Expert 8.0軟件對(duì)表2實(shí)驗(yàn)結(jié)果進(jìn)行二次多項(xiàng)式擬合,得到Pb2+吸附量對(duì)3因素的多元二次回歸方程為
(1)
由表3的方差分析可知,回歸模型P<0.0001,表明該二次方程模型顯著性高,可用于指導(dǎo)BLPAM皂化實(shí)驗(yàn)設(shè)計(jì)。各因素對(duì)Pb2+吸附量的影響由大到小依次為A>C>B。
表3 回歸模型的方差分析
圖1散點(diǎn)為實(shí)驗(yàn)所得Pb2+吸附量,表明實(shí)驗(yàn)值與模型預(yù)測值的偏離程度,該模型的失擬項(xiàng)不顯著;且相關(guān)系數(shù)R2=0.9880,表明預(yù)測值和實(shí)驗(yàn)值之間的相關(guān)性很好。為增加模型預(yù)測的可靠性,將R2給予適當(dāng)?shù)男拚齊adj2=0.9725,僅有2.75%的響應(yīng)值的總變異不能用該模型表示。
圖1 Pb2+吸附量的回歸模型預(yù)測值與實(shí)驗(yàn)值的比較
Fig 1 Comparation between predicted and experimental adsorption capacity of Pb2+
為了考慮各因素及其交互作用對(duì)Pb2+吸附量的影響,采用Design Expert 8.0軟件輔助分析,得到響應(yīng)面三維圖和等高線圖見圖2~4。
圖2 氫氧化鈉濃度和皂化溫度對(duì)Pb2+吸附量影響的響應(yīng)面圖及等高線圖
Fig 2 Response surface plotted and contour map for the adsorption capacity of Pb2+under differentC(NaOH) and temperatures
由圖2,3可知,該響應(yīng)面坡度比較陡峭,說明氫氧化鈉濃度對(duì)Pb2+吸附量影響顯著;隨著氫氧化鈉濃度增加,Pb2+吸附量先增大后減小。由圖4可知,該響應(yīng)面坡度相對(duì)平緩,說明皂化溫度和皂化時(shí)間對(duì)Pb2+吸附量影響較小。
圖3 氫氧化鈉濃度和皂化時(shí)間對(duì)Pb2+吸附量影響的響應(yīng)面圖及等高線圖
Fig 3 Response surface plotted and contour map for the adsorption capacity of Pb2+under differentC(NaOH) and times
圖4 皂化溫度和時(shí)間對(duì)Pb2+吸附量影響的響應(yīng)面圖及等高線圖
Fig 4 Response surface plotted and contour map for the adsorption capacity of Pb2+under different temperatures and times
另外,由圖可知A、B、C存在最大極值點(diǎn),為取得最佳值,對(duì)回歸方程做一階偏導(dǎo)數(shù)等于零并求解,得到響應(yīng)值為Pb2+吸附量的最佳皂化條件為氫氧化鈉濃度為1.51 mol/L、皂化溫度與時(shí)間分別為94.04 ℃、2.10 h。根據(jù)實(shí)際情況,將BLPAM優(yōu)化皂化條件修正為:氫氧化鈉濃度為1.51 mol/L、皂化溫度為94 ℃、皂化時(shí)間為2.10 h。
同理,用軟件對(duì)Cu2+的吸附量(qCu)、Pb2+對(duì)Cu2+的選擇性吸附系數(shù)(α)、Pb2+的去除率(RPb)、Cu2+的去除率(RCu)等響應(yīng)值進(jìn)行多元擬合,分別得到不同響應(yīng)值的多元二次回歸方程分別為
(2)
(3)
(4)
(5)
對(duì)回歸方程(2)~(5)做一階偏導(dǎo)數(shù)等于零并求解,即得各個(gè)響應(yīng)值的最佳皂化條件,且根據(jù)實(shí)際情況,得到具體優(yōu)化皂化條件,見表4所示。
表4 各響應(yīng)值的優(yōu)化皂化條件
2.3 組合賦權(quán)法優(yōu)化BLPAM的皂化條件
對(duì)于多指標(biāo)實(shí)驗(yàn)設(shè)計(jì),由于涉及多個(gè)參考指標(biāo),因而對(duì)各項(xiàng)指標(biāo)得到的優(yōu)化條件往往各不相同。因此,需要全方面分析,兼顧各項(xiàng)指標(biāo)的綜合效應(yīng),最終綜合確定優(yōu)化實(shí)驗(yàn)條件。如表4可知,每一個(gè)響應(yīng)值都會(huì)對(duì)應(yīng)一個(gè)優(yōu)化皂化條件,且各優(yōu)化皂化條件之間相差較大,這給實(shí)際工業(yè)生產(chǎn)帶來不便。為此,本文首先采用文獻(xiàn)中的專家評(píng)分法[12]、對(duì)比排序法[13]、熵權(quán)法[14]、CRITIC法[15]等單一賦權(quán)法分別對(duì)各個(gè)指標(biāo)進(jìn)行賦權(quán),結(jié)果見表5。然后根據(jù)文獻(xiàn)[16]中提到的組合賦權(quán)法綜合考慮,得到qPb、qCu、α、RPb、RCu的權(quán)重系數(shù)分別為0.267,0.177,0.171,0.241和0.143。
表5 不同單一賦權(quán)法得到的權(quán)重系數(shù)
對(duì)方程(1)~(5)進(jìn)行線性組合得到綜合回歸方程,為
(6)
對(duì)方程(6)做一階偏導(dǎo)數(shù)等于零并求解,即得各因素的最佳條件,為A=1.45、B=97.93、C=2.91。根據(jù)實(shí)際情況,將BLPAM皂化最優(yōu)條件修正為:氫氧化鈉濃度為1.45 mol/L、皂化溫度為98 ℃、皂化時(shí)間為2.90 h。進(jìn)行3組平行驗(yàn)證實(shí)驗(yàn),得到皂化BLPAM樹脂在濃度為2.0 mmol/L的二元Pb2+/Cu2+溶液中的吸附性能為對(duì)Pb2+的吸附量為1.772 mmol/g,對(duì)Cu2+的吸附量為1.719 mmol/g,Pb2+對(duì)Cu2+的選擇性吸附系數(shù)為1.604,Pb2+去除率為96.062%,Cu2+去除率為93.864%。對(duì)比可知,皂化可顯著提高BLPAM的吸附性能。
(1) 氫氧化鈉濃度、皂化溫度、皂化時(shí)間對(duì)各響應(yīng)值的影響顯著性依次為:氫氧化鈉濃度>皂化時(shí)間>皂化溫度;響應(yīng)曲面設(shè)計(jì)預(yù)測并根據(jù)實(shí)際情況得出針對(duì)各響應(yīng)值的優(yōu)化皂化條件。
(2) 通過組合賦權(quán)法得到BLPAM的優(yōu)化皂化條件為:氫氧化鈉濃度為1.45 mol/L、皂化溫度為98 ℃、皂化時(shí)間為2.90 h。最優(yōu)條件下的皂化BLPAM樹脂在2.0 mmol/L二元Pb2+/Cu2+溶液中的吸附性能為:對(duì)Pb2+的吸附量為1.772 mmol/g,Cu2+的吸附量為1.719 mmol/g,Pb2+對(duì)Cu2+的選擇性吸附系數(shù)為1.604,Pb2+去除率為96.062%,Cu2+去除率為93.864%。
[1] Modenes A N, Espinoza-Quinones F R, Colombo A, et al. Inhibitory effect on the uptake and diffusion of Cd2+onto soybean hull sorbent in Cd-Pb binary sorption systems [J]. J Environ Manag, 2015, 154: 22-32.
[2] Pal P, Banat F. Comparison of heavy metal ions removal from industrial lean amine solvent using ion exchange resins and sand coated with chitosan [J]. J Natur Gas Sci Eng, 2014, 18: 227-236.
[3] Duval A, Lawoko M. A review on lignin-based polymeric, micro-and nano-structured materials [J]. React Funct Polym, 2014, 85: 78-96.
[4] Yao Q X, Xie J J, Liu J X, et al. Adsorption of lead ions using a modified lignin hydrogel [J]. J Polym Res, 2014, 21: 1-16.
[5] Yao Qingxin, Xie Jianjun, Zeng Nian, et al. Preparation and adsorption property of BLAMA adsorbent composites [J]. Journal of Functional Materials, 2014, 45(2): 02129-02133.
姚慶鑫, 謝建軍, 曾 念, 等. BLPAM復(fù)合吸附樹脂制備與吸附性能[J]. 功能材料, 2014, 45(2): 02129-02133.
[6] Ge Y Y, Li Z L, Kong Y, et al. Heavy metal ions retention by bi-functionalized lignin: synthesis, applications, and adsorption mechanisms [J]. J Ind Eng Chem, 2014, 20(6): 4429-4436.
[7] Sun L, Wan S G, Yu Z B, et al. Optimization and modeling of preparation conditions of TiO2nanoparticles coated on hollow glass microspheres using response surface methodology [J]. Sep Purif Techn, 2014, 125: 156-162.
[8] Zhu Junren, Zheng Huaili, Zhang Zhi, et al. Synthesis and characterization of composite flocculant PAFS-CPAM by response surface methodology [J]. CIESC J, 2012, 63(12): 4019-4027.
朱俊任, 鄭懷禮, 張 智, 等. 響應(yīng)面法優(yōu)化制備PAFS-CPAM復(fù)合混凝劑及其表征[J]. 化工學(xué)報(bào), 2012, 63(12): 4019-4027.
[9] Yao Q X, Liu J X, Tang L P, et al. Preparation of adsorbent composites based on bentonite/sodium lignosulfonate-g-AM [J]. Appl Mechan Mater, 2014, 628: 12-15.
[10] Yao Q X,Xie J J, Liu J X. Saponification of adsorbent BLPAMA [J]. Adv Mater Res, 2013, 721: 20-23
[11] Lei Li, JinYinjia, Wang Ting, et al. Simultaneous removal of Cd(Ⅱ) and phenol by titanium dioxide-titanate nanotubes composite nanomaterial synthesized through alkaline-acid hydrothermal method [J]. Environ Sci, 2015, 36(7): 2573-2580.
雷 立, 晉銀佳, 王 婷, 等. 堿熱-酸熱法合成二氧化鈦-鈦酸納米管復(fù)合納米材料對(duì)Cd(Ⅱ)和苯酚的同步去除[J]. 環(huán)境科學(xué), 2015, 36(7): 2573-2580.
[12] Rao R V, Patel B K. A subjective and objective integrated multiple attribute decision making method for material selection [J]. Mater Design, 2010, 31(10): 4738-4747.
[13] He Qing, Gu Hong, Guo Xiaojin, et al. Application of multiple methods for weight of technology strength assessment indicators [J]. Chinese J Health Stat, 2013, 30 (1): 27-30.
何 倩, 顧 洪, 郭曉晶, 等. 多種賦權(quán)方法聯(lián)合應(yīng)用制定科技實(shí)力評(píng)價(jià)指標(biāo)權(quán)重[J]. 中國衛(wèi)生統(tǒng)計(jì), 2013, 30(1): 27-30.
[14] Wang Hui, Chen Li, Chen Ken, et al. Multi-index comprehensive weighing method and the selection for weights of attributes [J]. J Guangdong Coll Pharm, 2007, 23(5): 583-589.
王 暉, 陳 麗, 陳 墾, 等. 多指標(biāo)綜合評(píng)價(jià)方法及權(quán)重系數(shù)的選擇[J]. 廣東藥學(xué)院學(xué)報(bào), 2007, 23(5): 583-585.
[15] Zhang Yu, Wei Huabo. Integrated weighting method of multiple attribute decision based on CRITIC method [J]. Stat Decis, 2012, 16: 75-77.
張 玉, 魏華波. 基于CRITIC的多屬性決策組合賦權(quán)方法[J]. 統(tǒng)計(jì)與決策, 2012, 16: 75-77.
[16] Zeng Xianbao. New exploration in the integrated weighing method [J]. Forecast, 1997, 5: 69-72.
曾憲報(bào). 組合賦權(quán)法新探[J]. 預(yù)測, 1997, 5: 69-72.Optimization for saponification of lignin-based selective adsorbent by response surface methodology
YAO Qingxin,WANG Bei,YANG Hougui,XIE Jianjun
(School of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China)
The saponification hydrolysis of adsorbent composites comprising of bentonite/sodium lignosulfonate graft-polymerized with acrylamide (BLPAM) were investigated by response surface methodology (RSM). In the process, the concentration of NaOH, saponification temperature and saponification time were used as response variables and the adsorption capacity of lead ions, the adsorption capacity of copper ions, the selective coefficient of lead to copper ions, the removal ratio of lead ions and the removal ratio of copper ions were studied. The Box-Behnken mathematical relational model between response variables and response values was established and the saponification conditions were optimized. Then, combination weighting method was applied to determine the index weights and the optimized saponification conditions considering all response values were obtained. Results have shown that the optimized saponification conditions of BLPAM were as follows: the concentration of sodium hydroxide is 1.45 mol/L, the saponification temperature is 98℃, the saponification time is 2.90 h. The adsorption capacities of the saponified BLPAM for Pb2+and Cu2+in Pb2+/Cu2+binary solution are 1.772 and 1.719 mmol/g, respectively, the selective coefficient of Pb2+to Cu2+is 1.604, and the removal ratios of Pb2+and Cu2+are 96.062% and 93.864%, respectively.
lignin;adsorbent;saponification;selective adsorption; combination weighing method;response surface methodology
1001-9731(2016)11-11215-05
國家自然科學(xué)基金資助項(xiàng)目(31270603);湖南省研究生科技創(chuàng)新基金資助項(xiàng)目(CX2015B285)
2015-10-25
2016-06-08 通訊作者:謝建軍,E-mail: xiejianjun12@sina.com
姚慶鑫 (1987-),男,河北唐山人,在讀博士,師承謝建軍教授,從事功能高分子材料、水處理材料研究。
TB34;TQ028.14;O647.314
A
10.3969/j.issn.1001-9731.2016.11.042