楊龍江,杜丹,傅強(qiáng),李志樑南方醫(yī)科大學(xué)珠江醫(yī)院心血管內(nèi)科,廣東廣州508;廣州市海珠區(qū)婦幼保健院婦產(chǎn)科,廣東廣州5040
?
子癇前期相關(guān)循環(huán)microoRRNNAAss的研究進(jìn)展
楊龍江1,杜丹2,傅強(qiáng)1,李志樑11南方醫(yī)科大學(xué)珠江醫(yī)院心血管內(nèi)科,廣東廣州510282;2廣州市海珠區(qū)婦幼保健院婦產(chǎn)科,廣東廣州510240
摘要:子癇前期在全球范圍內(nèi)是導(dǎo)致孕婦和胎兒死亡的主要原因之一,其發(fā)病機(jī)制仍未完全闡明。microRNAs是一類具有調(diào)控基因轉(zhuǎn)錄后表達(dá)的非編碼小RNA,參與細(xì)胞的增殖、分化、凋亡等重要生物功能,近年來研究表明其可作為多種疾病的診斷標(biāo)志物與治療靶點(diǎn)。子癇前期患者胎盤及循環(huán)中存在一系列表達(dá)失衡的microRNAs,表明microRNAs可能在子癇前期的發(fā)生發(fā)展中發(fā)揮重要作用。本文就近年子癇前期相關(guān)循環(huán)microRNAs的研究概況做一綜述。
關(guān)鍵詞:子癇前期;循環(huán)microRNAs;診斷;發(fā)病機(jī)制
子癇前期(PE)是妊娠期高血壓疾病的五種狀況之一,是發(fā)生在妊娠20周以后的一種妊娠期特有疾病,以高血壓、蛋白尿及全身其他系統(tǒng)性紊亂為主要臨床表現(xiàn),是導(dǎo)致孕產(chǎn)婦和圍產(chǎn)兒死亡的主要原因之一[1]。PE在我國的發(fā)病率約為2%~6%[2],可伴有胎兒綜合征,包括:胎兒生長受限、宮內(nèi)窘迫等。其嚴(yán)重的并發(fā)癥有子癇、中風(fēng)、肺水腫、惡性高血壓、心肌缺血/梗死、急性腎損傷、肝功能衰竭、死產(chǎn)等,嚴(yán)重威脅產(chǎn)婦及胎兒的健康[1, 3]。
然而PE的發(fā)病機(jī)制還未完全闡明,現(xiàn)在主要有以下幾種學(xué)說:子宮螺旋小動(dòng)脈重鑄不足、炎癥免疫過度激活、血管內(nèi)皮細(xì)胞受損、遺傳因素、營養(yǎng)缺乏、胰島素抵抗等[4]。部分學(xué)者認(rèn)為胎盤淺著床、胎盤缺氧和血管內(nèi)皮的廣泛損傷是子癇前期發(fā)病的病理生理基礎(chǔ)[5]。我們對(duì)PE的發(fā)生發(fā)展機(jī)制仍不明確,因此,眾多學(xué)者致力于子癇前期預(yù)測及發(fā)病機(jī)制的研究,以期早期預(yù)測、早期干預(yù),降低母嬰的患病率及病死率。
microRNAs(miRNA)是一類內(nèi)源性的小分子非編碼單鏈RNA,長度為19-25個(gè)核苷酸,在轉(zhuǎn)錄后水平對(duì)基因進(jìn)行負(fù)向調(diào)控。成熟miRNA與其他蛋白質(zhì)形成RNA誘導(dǎo)沉默復(fù)合體(RISC),通過與mRNA的3'非編碼區(qū)(3'UTR)完全或不完全互補(bǔ)配對(duì)結(jié)合引起靶mRNA的降解或翻譯抑制[6-7]。自從1993年第一次從秀麗隱桿線蟲中發(fā)現(xiàn)miRNA后[8],在不同物種中發(fā)現(xiàn)了大量的miRNA。至今,在人類身上已經(jīng)發(fā)現(xiàn)了超過1000種miRNA,而這個(gè)數(shù)字還在不斷增長[9]。miRNA調(diào)控約30%的人類基因表達(dá),參與了很多重要的生物功能,包括細(xì)胞增殖、分化、凋亡等[10-11]。近期研究表明,miRNA在腫瘤、心血管疾病、糖尿病、阿爾茨海默病、帕金森病和艾滋病等多種疾病中都起著重要作用[7, 12-13]。循環(huán)miRNA存在于血漿和血清中,已成為疾病研究、診斷、防治和預(yù)后判斷的熱點(diǎn),可作為心血管疾病、糖尿病、腫瘤等疾病的預(yù)測、診斷標(biāo)志物和潛在的治療靶點(diǎn)。
近年來miRNA與妊娠關(guān)系的研究正逐漸得到重視。研究已經(jīng)證實(shí)眾多miRNA在妊娠過程中在胎盤及血漿中充分表達(dá),如:染色體19miRNA簇(C19MC)、C14MC、miR-371-3簇等[14]。對(duì)子癇前期、異位妊娠、妊娠相關(guān)性糖尿病等妊娠相關(guān)性疾病的研究表明,miRNA在有望成為妊娠相關(guān)疾病診斷的標(biāo)志物[15]。目前已經(jīng)有很多研究組試圖通過分析子癇前期患者與正常妊娠患者胎盤中miRNA的差異,來解釋子癇前期的發(fā)生發(fā)展[5,16]。近幾年,對(duì)子癇前期中循環(huán)miRNA的研究成為一大熱門。
3.1循環(huán)microRNAs與PE的預(yù)測與診斷
2011年,Gunel等[17]對(duì)20例PE和20例對(duì)照的血清miRNA進(jìn)行檢測后發(fā)現(xiàn),miR-210的表達(dá)水平顯著上調(diào)而miR-152的表達(dá)水平顯著下調(diào)。其中miR-210的表達(dá)上調(diào)與以往胎盤研究相一致,因此他們認(rèn)為miR-210可用來改進(jìn)PE的無創(chuàng)診斷方法。MiR-210的表達(dá)上調(diào)與過度免疫反應(yīng)相關(guān),相較于胎兒,母體的表達(dá)程度更高,因此可以認(rèn)為PE的發(fā)生發(fā)展與母體過度免疫反應(yīng)相關(guān)。Hromadnikova等[18]發(fā)現(xiàn)63例PE血漿中,C19MC簇miRNA(miR-516-5p, miR-517, miR-520a, miR-525和miR-526a)表達(dá)上調(diào),與大腦中動(dòng)脈搏動(dòng)指數(shù)和胎兒腦-胎盤率存在一定關(guān)系,但與已知的圍產(chǎn)期不良后果危險(xiǎn)因素?zé)o關(guān)聯(lián)。Campos等[19]對(duì)19例PE與14例對(duì)照的血漿中3種miRNA(miR-125b, miR-146a,和miR-196b)進(jìn)行對(duì)比,發(fā)現(xiàn)miR-196b顯著低表達(dá)。miR-196b過表達(dá)與細(xì)胞增殖相關(guān),與PE患者腫瘤患病風(fēng)險(xiǎn)降低相吻合。Luque等[20]的前瞻性研究納入了5759名孕婦,在懷孕頭3個(gè)月采集血標(biāo)本后,對(duì)31例后來發(fā)展為PE和44例對(duì)照的血清miRNA進(jìn)行對(duì)比,發(fā)現(xiàn)只有15種miRNA似乎有差異。選擇其中表達(dá)最具差異性的7種miRNA(miR-192, miR-143和miR-125b過表達(dá);miR-127, miR-942, miR-126#和miR-221低表達(dá))進(jìn)行stem-loop RT-qPCR檢測后,經(jīng)過統(tǒng)計(jì)分析發(fā)現(xiàn)兩組間沒有一種miRNA具有顯著差異。因此他們認(rèn)為miRNA在懷孕頭3個(gè)月對(duì)PE沒有預(yù)測價(jià)值。Yang等[21]對(duì)PE患者血漿及胎盤miRNA與對(duì)照組進(jìn)行對(duì)比,發(fā)現(xiàn)20種miRNA存在表達(dá)差異。這些差異表達(dá)的miRNA主要存在于4個(gè)簇或族中,分別為miR-16簇、miR-17族、miR-130族與miR-517族。因此他們認(rèn)為這些miRNA可作為PE的無創(chuàng)診斷標(biāo)志物。這些研究揭示眾多的miRNA在PE與正?;颊哐簶颖局写嬖诒磉_(dá)差異,特別是miR-210在多個(gè)研究中均有報(bào)道,存在可觀的預(yù)測與診斷價(jià)值。但這些研究所報(bào)道的miRNA存在著巨大差異,可能與人種、PE嚴(yán)重程度及PE復(fù)雜的發(fā)病機(jī)制有關(guān),還需要更大規(guī)模的研究來明確現(xiàn)有的結(jié)果。
3.2循環(huán)microRNAs表達(dá)與PE嚴(yán)重程度
Yang等[22]運(yùn)用SOLiD測序技術(shù)對(duì)4例PE(2例重度,2例輕度)和1例對(duì)照的血清miRNA分析后發(fā)現(xiàn),共22種miRNA失調(diào)與PE相關(guān),其中15種上調(diào),7種下調(diào)。經(jīng)過與PE相關(guān)胎盤miRNA進(jìn)行對(duì)比后發(fā)現(xiàn),hsa-let-7d,hsa-let-7與has-miR-223這3種miRNA在循環(huán)與胎盤中表達(dá)相一致。但他們的結(jié)果未發(fā)現(xiàn)miRNA表達(dá)差異與PE嚴(yán)重程度存在相關(guān)性。Wu等[23]通過將10例重度PE(sPE)與9例對(duì)照組血漿進(jìn)行檢測對(duì)比,發(fā)現(xiàn)15種miRNA表達(dá)有差異,其中13種上調(diào),2種下調(diào)。經(jīng)過RT-PCR分析后發(fā)現(xiàn)其中7種miRNA(miR-24, miR-26a, miR-103, miR-130b, miR-181a, miR-342-3p, 和miR-574-5p)在樣本中顯著升高。進(jìn)行GO(Gene ontology)和通路富集分析后顯示這7種miRNA均有參與新陳代謝、轉(zhuǎn)錄和細(xì)胞周期的調(diào)節(jié),以及MAPK、TGF-β信號(hào)通路。Li等[24]對(duì)4例輕度PE(mPE)、4例sPE和4例對(duì)照血漿miRNA用SOLiD測序技術(shù)進(jìn)行檢測,發(fā)現(xiàn)51 種miRNA存在表達(dá)差異。進(jìn)一步選擇4種miRNA (miR-141, miR-144, miR-221,和miR-29a)在更大規(guī)模的樣本中進(jìn)行RT-PCR驗(yàn)證,發(fā)現(xiàn)miR-141與miR-29a 在mPE組中顯著過表達(dá);miR-144在mPE與sPE組均顯著低表達(dá)。Stubert等[25]對(duì)PE合并HELLP綜合征患者和對(duì)照組血清miRNA進(jìn)行檢測,結(jié)果7種miRNA表達(dá)異常。使用qPCR驗(yàn)證后,PE合并HELLP組3種miRNA(miR-122,miR-133a和miR-758)明顯表達(dá),特別是肝臟特異性miRNA miR-122的表達(dá)差異為11.5倍。該結(jié)果與HELLP綜合征為異質(zhì)性疾病的假設(shè)一致。Ura等[26]采集孕期12~14周的孕婦血清樣本并保存,通過對(duì)比24例后來發(fā)展為sPE患者與24例對(duì)照的樣本并驗(yàn)證,發(fā)現(xiàn)4種miRNA表達(dá)異常(miR-1233, miR-520, miR-210和miR-144),其中miR-1233過表達(dá)最顯著。因此他們認(rèn)為miR-1233可能成為sPE的早期預(yù)測標(biāo)志物。Murphy等[27]從預(yù)后角度出發(fā),分別在分娩和產(chǎn)后1年兩個(gè)階段采集血漿樣本。經(jīng)過對(duì)比后發(fā)現(xiàn),分娩時(shí)6例sPE相對(duì)于17例對(duì)照,7種血漿miRNA (miR-98-5p, miR-222-3p, miR-210-3p, miR-155-5p, miR-296-3p, miR-181a-5p和miR-29b-3p)表達(dá)顯著上升。這些miRNA主要與抗血管增生、炎癥反應(yīng)及細(xì)胞凋亡功能相關(guān)。但是7例mPE與對(duì)照組之間miRNA無顯著差異。產(chǎn)后1年P(guān)E相對(duì)與對(duì)照組,只有miR-221-3p的表達(dá)水平顯著降低,但根據(jù)PE嚴(yán)重程度進(jìn)行亞組分析后,他們認(rèn)為血漿miRNA表達(dá)水平均無顯著差異。根據(jù)這一結(jié)果他們認(rèn)為miR-221-3p的降低可能提示產(chǎn)后PE患者存在持續(xù)的炎癥反應(yīng)。Miura等[28]對(duì)20 例sPE與20例正常孕婦血液樣本進(jìn)行檢測,發(fā)現(xiàn)sPE組血漿中10種C19MC族miRNA(miR-518b, miR-1323, miR-516b, miR-516a-5p, miR-525-5p, miR-515-5p, miR-520 h, miR-520a-5p, miR-519d和miR-526b)濃度明顯升高;其中14例遲發(fā)型sPE(sPELO)相對(duì)于正常組,C19MC族miRNA中除了miR-519d外均顯著升高;而6例早發(fā)型sPE(sPEEO)相對(duì)于sPELO,10種miRNA中除了miR-518b與miR-519d外,其余8種均顯著升高。因此他們認(rèn)為血漿C19MC族miRNA升高是sPE的特有現(xiàn)象,并且第1次揭示了該族miRNA的上調(diào)是在sPE發(fā)生后,而不是之前。循環(huán)miRNA與PE嚴(yán)重程度存在一定相關(guān)性,在輕重度PE間的表達(dá)也不完全相同,對(duì)不同嚴(yán)重程度PE的診斷及可能存在的不同發(fā)病機(jī)制的揭示有很大的研究價(jià)值。
3.3循環(huán)microRNAs與PE的發(fā)病機(jī)制
Anton等[29]對(duì)一個(gè)病例對(duì)照研究和一個(gè)前瞻性研究的血清miR-210進(jìn)行檢測,發(fā)現(xiàn)其在確診為PE的樣本中顯著升高,甚至在臨床確診為PE前幾個(gè)月顯著升高,提示其具有診斷及預(yù)測價(jià)值。進(jìn)一步的研究通過對(duì)miR-210進(jìn)行過表達(dá)及抑制,證明其表達(dá)異??梢杂绊懽甜B(yǎng)層功能。Fu等[30]對(duì)孕期15~18周的13例PE及13例對(duì)照的血漿樣本進(jìn)行檢測,發(fā)現(xiàn)miR-376c的水平在PE組明顯降低。這一結(jié)果同樣出現(xiàn)在孕期36~40周的16例PE和31例對(duì)照的血漿樣本和不同孕期的胎盤樣本對(duì)比研究中。通過細(xì)胞研究證實(shí),miR-376c通過抑制ALK5和ALK7表達(dá)來削弱TGF-β/Nodal信號(hào)通路,導(dǎo)致胚胎滋養(yǎng)層細(xì)胞增生與侵犯。說明子癇前期的發(fā)展可能與TGF-β/Nodal與miR-376c的表達(dá)失衡有關(guān)。Xu等[31]分別在孕期15~18周及足月生產(chǎn)時(shí)采集血漿及胎盤樣本進(jìn)行檢測,發(fā)現(xiàn)相對(duì)于33例對(duì)照,20例sPE胎盤中9種miRNA(miR-195, miR-223, miR-218, miR-17, miR-18a, miR-19b1, miR-92a1, miR-379和miR-411)表達(dá)下調(diào);7種miRNA(miR-210, miR-30a-3p, miR-518b, miR-524, miR-17-3p, miR-151 和miR-193b)表達(dá)上調(diào)。對(duì)血漿樣本中miR-17,miR-18,miR19b1,miR-92a1和miR-210進(jìn)行檢測并驗(yàn)證,發(fā)現(xiàn)在孕期的兩個(gè)階段,miR-18a, miR-19b1和miR-92a1水平明顯下降而miR-210水平明顯上升。他們通過HTR8/SVneo細(xì)胞實(shí)驗(yàn),揭示miR-18a通過抑制Smad2基因的表達(dá)來促進(jìn)滋養(yǎng)層細(xì)胞的侵襲。Lalevee等[32]對(duì)PE胎盤miRNA研究后認(rèn)為,PE時(shí)低氧信號(hào)通路異常與miR-455低表達(dá)有關(guān),并預(yù)測循環(huán)miR-210與miR455的比值可作為PE的無創(chuàng)早期診斷標(biāo)志物,但這一假設(shè)未被驗(yàn)證。Sandrim等[33]通過研究可溶性血管內(nèi)皮生長因子受體-1(sFLT-1)與miRNA之間的關(guān)系,試圖揭示PE的發(fā)病機(jī)制。對(duì)24例PE的血漿sFLT-1水平進(jìn)行測量后,選擇表達(dá)水平最高與最低各3例進(jìn)行miRNA分析,結(jié)果顯示miR-195-5p, miR-16-5p和miR-19b-3p在高sFLT-1組表達(dá)水平高,而miR-375在低sFLT-1組表達(dá)水平高。再通過所有樣本檢驗(yàn)上述miRNA與sFLT-1的相關(guān)性,結(jié)果顯示miR-195-5p相關(guān)性最為顯著。該結(jié)果提示PE的發(fā)生發(fā)展可能與miRNA介導(dǎo)內(nèi)皮生長相關(guān)?,F(xiàn)有的研究揭示了循環(huán)miRNA可能通過影響滋養(yǎng)層細(xì)胞功能從而影響PE的發(fā)展過程。
循環(huán)miRNA對(duì)疾病的無創(chuàng)預(yù)測、診斷及治療存在巨大的研究價(jià)值,在PE發(fā)展過程中的作用在近幾年才被大家重視?,F(xiàn)有的研究部分揭示了循環(huán)miRNA對(duì)PE的無創(chuàng)診斷價(jià)值及發(fā)病機(jī)制中的作用。PE發(fā)病過程中免疫炎癥過度激活與血管內(nèi)皮損傷與循環(huán)miRNA的關(guān)系存在巨大的研究價(jià)值,但尚無此方面研究。因此,循環(huán)miRNA在PE發(fā)病機(jī)制中的作用需要更多的研究來進(jìn)一步揭示與驗(yàn)證。
參考文獻(xiàn):
[1]Magee LA, Helewa M, Moutquin JM, et al. Diagnosis, evaluation, and management of the hypertensive disorders of pregnancy[J]. J Obstet Gynaecol Can, 2008, 30(3 Suppl): S1-48.
[2]喬寵,楊小梅,林其德.子癇前期的流行病學(xué)研究進(jìn)展[J].中國計(jì)劃生育和婦產(chǎn)科, 2013, 5(6): 5-8.
[3]Lin S, Leonard D, Co MA, et al. Pre-eclampsia has an adverse impact on maternal and fetal health[J]. Trans Res, 2015, 165(4): 449-63.
[4]Naljayan MV, Karumanchi SA. New developments in the pathogenesis of preeclampsia[J]. Adv Chronic Kidney Dis, 2013, 20 (3): 265-70.
[5]Li JY, Yong TY, Michael MZ, et al. MicroRNAs: are they the missing Link between hypoxia and pre-eclampsia[J]. Hypertension in Pregnancy, 2014, 33(1): 102-14.
[6]Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function[J]. Cell, 2004, 116(2): 281-97.
[7]Urbich C, Kuehbacher A, Dimmeler S. Role of microRNAs in vascular diseases, inflammation, and angiogenesis[J]. Cardio Res, 2008, 79(4): 581-8.
[8]Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14[J]. Cell, 1993, 75(5): 843-54.
[9]Bentwich I, Avniel A, Karov Y, et al. Identification of hundreds of conserved and nonconserved human microRNAs[J]. Nat Genet, 2005, 37(7): 766-70.
[10]Hime GR, Somers WG. Micro-RNA mediated regulation of proliferation, self-renewal and differentiation of mammalian stem cells[J]. Cell Adh Migr, 2009, 3(4): 425-32.
[11]Ivey KN, Srivastava D. MicroRNAs as regulators of differentiation and cell fate decisions[J]. Cell Stem Cell, 2010, 7(1): 36-41.
[12]Qu ZG, Li WH, Fu BQ. MicroRNAs in autoimmune diseases[J]. Biomed Res Int, 2014, 15(8): 18.
[13]Price NL, Ramirez CM, Fernandez-Hernando C. Relevance of microRNAin metabolic diseases[J]. Crit Rev Clin Lab Sci, 2014, 51 (6): 305-20.
[14]Morales-Prieto DM, Ospina-Prieto S, Chaiwangyen W, et al. Pregnancy-associated miRNA-clusters[J]. J Reprod Immunol, 2013, 97(1, SI): 51-61.
[15]Zhao Z, Moley KH, Gronowski AM. Diagnostic potential for miRNAs as biomarkers for pregnancy-specific diseases[J]. Clin Biochem, 2013, 46(10/11, SI): 953-60.
[16]Chen DB, Wang W. Human placental MicroRNAs and preeclampsia [J]. Biol Reprod, 2013, 88(5): 130.
[17]Gunel T, Zeybek YG, Akcakaya P, et al. Serum microRNA expression in pregnancies with preeclampsia[J]. Gene Molec Res, 2011, 10(4): 4034-40.
[18]Hromadnikova I, Kotlabova K, Ondrackova MA, et al. Circulating C19MC MicroRNAs in preeclampsia, gestational hypertension, and fetal growth restriction[J]. Med Inflamm, 2013, 19(6): 14.
[19]Campos CB, Marques TM, Pereira RW, et al. Reduced circulating miR-196b levels is associated with preeclampsia[J]. Pregnancy Hypertens, 2014, 4(1): 11-3.
[20]Luque A, Farwati A, Crovetto F, et al. Usefulness of circulating microRNAs for the prediction of early preeclampsia at first-trimester of pregnancy[J]. Sci Rep, 2014, 4(9): 23.
[21]Yang S, Li H, Ge Q, et al. Deregulated microRNA species in the plasma and placenta of patients with preeclampsia[J]. Mol Med Rep, 2015, 12(1): 527-34.
[22]Yang Q, Lu J, Wang S, et al. Application of next-generation sequencing technology to profile the circulating microRNAs in the serum of preeclampsia versus normal pregnant women[J]. Clin Chim Acta, 2011, 412(23/24): 2167-73.
[23]Wu L, Zhou HH, Lin HY, et al. Circulating microRNAs are elevated in plasma from severe preeclamptic pregnancies[J]. Reproduction, 2012, 143(3): 389-97.
[24]Li HL, Ge QY, Guo L, et al. Maternal plasma miRNAs expression in preeclamptic pregnancies[J]. Biomed Res Int, 2013, 17(4): 78.
[25]Stubert J, Koczan D, Richter DU, et al. miRNA expression profiles determined in maternal sera of patients with HELLP syndrome[J]. Hypertension in Pregnancy, 2014, 33(2): 215-35.
[26]Ura B, Feriotto G, Monasta L, et al. Potential role of circulating microRNAs as early markers of preeclampsia[J]. Taiwan J Obstet Gynecol, 2014, 53(2): 232-4.
[27]Murphy MS, Casselman RC, Tayad EC, et al. Differential expression of plasma microRNA in preeclamptic patients at delivery and 1 year postpartum[J].American J of Obste and Gynec, 2015.
[28]Miura K, Higashijima A, Murakami Y, et al. Circulating chromosome 19 miRNA cluster microRNAs in pregnant women with severe pre-eclampsia[J]. J Obstet Gynaecol Res, 2015, 41(10): 1526-32.
[29]Anton L, Olarerin-George AO, Schwartz NA, et al. miR-210 inhibits trophoblast invasion and is a serum biomarker for preedampsia[J].American J of Path, 2013, 183(5): 1437-45.
[30]Fu GD, Ye G, Nadeem L, et al. MicroRNA-376c impairs transforming growth factor-beta and nodal signaling to promote trophoblast cell proliferation and invasion[J]. Hypertension, 2013, 61(4): 864.
[31]Xu P, Zhao YY, Liu M, et al. Variations of MicroRNAs in human placentas andplasma frompreeclamptic pregnancy[J]. Hypertension, 2014, 63(6): 1276-84.
[32]Lalevee S, Lapaire O, Buehler M. miR455 is linked to hypoxia signaling and is deregulated in preeclampsia[J]. Cell Death Dis, 2014, 5(7): 46.
[33]Sandrim V, Fernandes K, Cavalli R. miR-195b is correlated with plasma sFLT-1 levels in preeclampsia[J]. Pregnancy Hypertens, 2015, 5(1): 60.
Research progress of circulating microRNAs in preeclampsia
YANG Longjiang1, Du Dan2, FU Qiang1, LI Zhiliang11Department of Cardiovascuology, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China;2Department of Gynecology and Obstetrics, Haizhu Maternal and Child Health Hospital, Guangzhou 510240, China
Abstract:Preeclampsia is one major cause of maternal and fetus morbidity and mortality in the world, the pathogenesis is still unclear. MicroRNAs are non-coding small RNA that can regulate the gene expression and participate in many important bio-functions such as cellular proliferation, differentiation and apoptosis. Recently, studies demonstrate that microRNAs can be use as diagnosis biomarkers and treating targets for many diseases. The imbalance of microRNAs in placenta and circulation of PE patients demonstrate that microRNAs may play an important role in pathogenesis of PE. This review summarizes current studies on circulating microRNAin PE.
Key words:preeclampsia; circulating microRNAs; diagnosis; pathogenesis
通信作者:李志樑,主任醫(yī)師,E-mail: lizhiliang020@126.com
作者簡介:楊龍江,在讀博士生,E-mail: chinacqjjfox@126.com
基金項(xiàng)目:廣州市科技計(jì)劃項(xiàng)目(20130000091)
收稿日期:2015-12-01