李晶晶,孫梅
(西北大學(xué)數(shù)學(xué)學(xué)院,陜西西安710127)
包含函數(shù)Γ(x)的對數(shù)完全單調(diào)函數(shù)及不等式
李晶晶,孫梅
(西北大學(xué)數(shù)學(xué)學(xué)院,陜西西安710127)
基于歐拉Gamma函數(shù)的奇特性質(zhì),利用函數(shù)的單調(diào)性理論以及一些簡單函數(shù)的積分表達式與級數(shù)展開式證明了函數(shù)fα(x),α∈R和函數(shù)s(x)的對數(shù)完全單調(diào)性,并利用該性質(zhì)得出了一個比原有結(jié)論更精確的不等式以及一個雙邊不等式.
完全單調(diào)性;對數(shù)完全單調(diào)性;Gamma函數(shù);充分條件
歐拉Gamma函數(shù)是一種非常重要的特殊函數(shù),在數(shù)學(xué)的許多分支以及物理,工程等學(xué)科中都有著十分重要的重要作用.歐拉Gamma函數(shù)定義為:
函數(shù)
作為函數(shù)Γ(z)的對數(shù)的導(dǎo)數(shù),被稱為digamma函數(shù).對于i∈{0}∪N,導(dǎo)函數(shù)ψ(i)(z)被稱為polygamma函數(shù),其中N表示所有正整數(shù)的集合.特殊地,函數(shù)ψ′(z)和ψ′′(z)被稱為trigamma函數(shù)和tetragamma函數(shù).
稱函數(shù)f在區(qū)間I上完全單調(diào),如果f在區(qū)間I上存在各階導(dǎo)數(shù)且滿足:
如果不等式(1)嚴格成立,則稱函數(shù)f在區(qū)間I上嚴格完全單調(diào)[1-4].
稱函數(shù)f在區(qū)間I上對數(shù)完全單調(diào),如果它的對數(shù)lnf在區(qū)間I上存在各階導(dǎo)數(shù)且滿足:
如果不等式(2)嚴格成立,則稱函數(shù)f在區(qū)間I上嚴格對數(shù)完全單調(diào)[1-4].
為了證明主要結(jié)論,先給出下面的引理.
本文利用函數(shù)的單調(diào)性理論,指數(shù)函數(shù)的級數(shù)展開式以及一些簡單函數(shù)的積分表達式證明了函數(shù)fα(x),α∈R和函數(shù)s(x)的對數(shù)完全單調(diào)性,利用該性質(zhì),由定理3.1和定理3.2分別得出比(10)式更加精確的不等式(9)和一個雙邊不等式.通過查閱資料,還了解到q-gamma函數(shù)的一些相關(guān)概念及其與Gamma函數(shù)的關(guān)系,在今后的工作中可以考慮研究其完全單調(diào)單調(diào)性,并得出一些很好的結(jié)論.
[1]Guo S.Some classes of completely monotonic functions involving the gamma function[J].J.Pure Appl. Math.,2006,30(4):561-566.
[2]Mitrinovi? D S,Pe?ari? J E,F(xiàn)ink A M.Classical and New Inequalities in Analysis[M].London:Kluwer Academic Publishers,1993.
[3]Schillin R L,Song R,Vondra? Z.Bernstein Functions:Theory and Applications.de Gruyter Studies in Mathematics 37[M].2nd ed.Berlin:Walter de Gruyter,2012.
[4]Widder D V.The Laplace Transform[M].Princeton:Princeton University Press,1946.
[5]Chen Chaoping,Qi Fen.Completely monotonic function associated with the Gamma functions and proof of Wallis’inequality[J].Tamkang Journal of Mathematics,2005,36(4):303-307.
[6]Chen Chao ping.Complete monotonicity and logarithmically complete monotonicity properties for the gamma and psi functions[J].Mathematical Analysis and Applications,2007,336(2):812-822.
[7]Qi Feng,Guo Baini,Chen Chaoping.Some completely monotonic functions involving the gamma and polygamma functions[J].Aust.Math.Soc.,2006,80(1):81-88.
[8]Qi Feng,Chen Chaoping.A complete monotonicity property of the gamma function[J].Journal of Mathematical Analysis and Applications,2004,296(2):603-607.
Logarithmically completely monotonic functions and inequalities involving the function Γ(x)
Li Jingjing,Sun Mei
(College of Mathematics,Northwest University,Xi′an710127,China)
Based on unique properties of the gamma function,this paper proves the logarithmically complete monotonicities of the function fα(x),α∈R and the function s(x)by the monotonicity theory,the integral representations and the series expansions of some simple functions.Using the property,it concludes a inequalities that is more accurate than the original conclusion and a two-side inequality.
completely monotonicity,logarithmically completely monotonicity,Gamma function,sufficient condition
O174.6
A
1008-5513(2016)02-0182-08
10.3969/j.issn.1008-5513.2016.02.009
2015-12-10.
陜西省自然科學(xué)基金(2010JM1017).
李晶晶(1989-),碩士生,研究方向:特殊函數(shù)論.
2010 MSC:33B15