李燕藏,房德仁
(煙臺(tái)大學(xué)化學(xué)化工學(xué)院,山東 煙臺(tái) 264005)
催化劑制備與研究
制備因素對(duì)CuCl/SiO2吸附脫硫劑性能的影響
李燕藏,房德仁*
(煙臺(tái)大學(xué)化學(xué)化工學(xué)院,山東 煙臺(tái) 264005)
汽油脫硫一直是化工領(lǐng)域備受關(guān)注的熱點(diǎn),吸附脫硫是能夠達(dá)到深度脫硫和能耗較少的脫硫方法,吸附劑性能決定吸附脫硫效果。以大孔二氧化硅為載體,氯化亞銅為活性組分,采用等體積浸漬-焙燒還原法制備CuCl/SiO2吸附劑,考察焙燒溫度、焙燒時(shí)間和活性組分負(fù)載量對(duì)吸附劑吸附脫硫性能的影響。結(jié)果表明,在焙燒溫度400 ℃,焙燒時(shí)間4 h,氯化亞銅負(fù)載質(zhì)量分?jǐn)?shù)為9.4%的條件下,吸附劑對(duì)乙硫醇的吸附量最高達(dá)到26.76 mg·g-1。吸附劑對(duì)于不同的硫化物(噻吩、苯并噻吩和二苯并噻吩)均有一定的吸附,尺寸較小的硫化物,吸附呈現(xiàn)尺寸越小吸附量越多的趨勢(shì),此時(shí)起主要作用的是空間位阻效應(yīng);硫化物尺寸較大時(shí),吸附的強(qiáng)弱主要來(lái)自于電子密度的強(qiáng)弱。
催化劑工程;氯化亞銅;二氧化硅;吸附脫硫
近年來(lái),隨著人們環(huán)保意識(shí)的增強(qiáng)以及環(huán)保法規(guī)的日益嚴(yán)格,汽油中硫含量被限制在越來(lái)越小的范圍。因此,高速有效去除汽油中的硫化物引起廣泛關(guān)注。在眾多脫硫技術(shù)中,吸附脫硫以其作用條件溫和、不需要?dú)錃鈪⑴c、燃料辛烷值不降低、操作費(fèi)用低和能夠達(dá)到深度脫硫等優(yōu)點(diǎn)備受青睞。吸附劑種類繁多,吸附效果也迥異,影響吸附劑脫硫效果的因素眾多。
本文采用等體積浸漬-焙燒還原法制備吸附劑,以二氧化硅為載體,氯化亞銅為活性組分,制備不同焙燒溫度、焙燒時(shí)間和負(fù)載量的吸附劑,研究其對(duì)不同硫化物的吸附效果。
1.1 試劑和儀器
大孔徑二氧化硅;環(huán)己烷,天津富宇精細(xì)化工有限公司;氯化銅,天津市瑞金特化學(xué)品有限公司;乙硫醇、噻吩、苯并噻吩和二苯并噻吩均為阿拉丁試劑,上海晶純生化科技股份有限公司。
管式焙燒爐;RPP-200A微庫(kù)侖滴定儀,泰州市中環(huán)分析儀器有限公司;DF-101S集熱式恒溫加熱磁力攪拌器,鞏義市予華儀器有限責(zé)任公司。
1.2 吸附劑制備
采用等體積浸漬法制備不同載體的吸附劑。稱取一定量的氯化銅溶解在去離子水中,加鹽酸幾滴。稱取一定量的載體緩慢加入到氯化銅溶液中,邊加邊搖晃,使其浸漬均勻。室溫下放置一夜,第二天置于真空干燥箱中50 ℃干燥6 h,120 ℃干燥一夜,最后在氮?dú)鈿夥毡簾?,使?fù)載的氯化銅自還原成氯化亞銅。
1.3 模擬汽油的制備
分別稱取一定量的乙硫醇、噻吩、苯并噻吩、二苯并噻吩溶解或稀釋在環(huán)己烷中,配成硫含量約為80 μg·g-1的含硫模擬汽油。
1.4 分析方法
采用靜態(tài)吸附,間隔取樣,用微庫(kù)侖儀進(jìn)行濃度變化分析。
2.1 焙燒溫度
對(duì)干燥后的吸附劑進(jìn)行焙燒,一方面可以提高分散度,另一方面可以使等體積浸漬負(fù)載的氯化銅在高溫條件下分解自還原成氯化亞銅。在焙燒時(shí)間4 h、氯化亞銅負(fù)載質(zhì)量分?jǐn)?shù)3.5%、吸附溫度40 ℃和乙硫醇模擬汽油100 mL條件下,不同焙燒溫度吸附劑硫容與吸附時(shí)間的關(guān)系如圖1所示。
圖 1 不同焙燒溫度吸附劑硫容與吸附時(shí)間的關(guān)系Figure 1 Adsorption capacity of adsorbents calcined at different temperatures vs. adsorption time
從圖1可以看出,焙燒溫度400 ℃時(shí),吸附劑具有較好的活性。
2.2 焙燒時(shí)間
對(duì)干燥后的吸附劑進(jìn)行焙燒時(shí),適宜的焙燒時(shí)間既可以使吸附劑得到充分活化,又可避免吸附劑因過(guò)度焙燒導(dǎo)致結(jié)構(gòu)坍塌損壞。在焙燒溫度400 ℃、氯化亞銅負(fù)載質(zhì)量分?jǐn)?shù)3.5%、吸附溫度40 ℃和乙硫醇模擬汽油100 mL條件下,不同焙燒時(shí)間吸附劑硫容與吸附時(shí)間的關(guān)系如圖2所示。從圖2可以看出,焙燒時(shí)間4 h時(shí),吸附劑有較好的活性。
圖 2 不同焙燒時(shí)間吸附劑硫容與吸附時(shí)間的關(guān)系Figure 2 Adsorption capacity of adsorbents calcined for different time vs. adsorption time
2.3 氯化亞銅負(fù)載量
吸附劑中活性組分在吸附脫硫中起至關(guān)重要的作用,適當(dāng)?shù)呢?fù)載量不僅可以節(jié)約成本,還可以顯著提高吸附劑活性。在焙燒溫度400 ℃、焙燒時(shí)間4 h、吸附溫度40 ℃和乙硫醇模擬汽油100 mL的條件下,不同氯化亞銅負(fù)載量吸附劑硫容與吸附時(shí)間的關(guān)系如圖3所示。
圖 3 不同負(fù)載量吸附劑硫容與吸附時(shí)間的關(guān)系Figure 3 Adsorption capacity of adsorbents with different loading vs. adsorption time
從圖3可以看出,對(duì)于大孔徑的載體二氧化硅,最佳氯化亞銅負(fù)載質(zhì)量分?jǐn)?shù)為9.4%。
2.4 吸附劑對(duì)不同硫化物的吸附效果
在焙燒溫度400 ℃、焙燒時(shí)間4 h、吸附溫度40 ℃和氯化亞銅負(fù)載質(zhì)量分?jǐn)?shù)為9.4%條件下,吸附劑對(duì)100 mL不同種類含硫化合物模擬汽油的吸附效果如圖4所示。由圖4可以看出,吸附脫硫的難易程度為:乙硫醇>噻吩>二苯并噻吩>苯并噻吩。乙硫醇和噻吩分子尺寸相對(duì)較小,在進(jìn)入吸附劑孔道時(shí)遇到的位阻相應(yīng)較小,比較容易被吸附;二苯并噻吩和苯并噻吩分子尺寸與吸附劑的孔徑相差不大,因此,吸附時(shí)的位阻沒(méi)有起到?jīng)Q定性的作用,而是含硫化合物與氯化亞銅的作用力在起作用,這種作用力一般認(rèn)為是來(lái)自于π電子,且電子密度較大時(shí)吸附力較強(qiáng),二苯并噻吩相對(duì)于苯并噻吩有較強(qiáng)的電子密度,二苯并噻吩較易被吸附,此時(shí)吸附劑對(duì)乙硫醇的吸附量達(dá)26.76 mg·g-1。
圖 4 吸附劑對(duì)不同種類含硫化合物模擬汽油的吸附效果Figure 4 Adsorption capacity of the adsorbent for different sufur-containing compounds of simulated gasoline
(1) 以大孔徑二氧化硅為載體,氯化亞銅為活性組分,采用等體積浸漬-焙燒還原法制備吸附劑。
(2) 在焙燒溫度400 ℃、焙燒時(shí)間4 h、吸附溫度40 ℃和氯化亞銅負(fù)載質(zhì)量分?jǐn)?shù)為9.4%條件下,吸附劑具有較好的吸附活性,對(duì)乙硫醇的吸附量達(dá)26.76 mg·g-1。
(3) 吸附劑對(duì)于不同的硫化物均有一定的吸附。對(duì)于尺寸較小的硫化物,呈現(xiàn)出尺寸越小吸附量越多的趨勢(shì),起主要作用的是空間位阻效應(yīng);硫化物尺寸較大時(shí),吸附的強(qiáng)弱主要來(lái)自于電子密度的強(qiáng)弱。
[1]Ralph T Yang,Arturo J Hernandez-Maldonado,Frances H Yang.Desulfurization of transportation fuels with zeolites under ambient conditions[J].Science,2003,301:79-81.
[2]Chunshan Song.An overview of new approaches to deep desulfurization for ultra-clean gasoline,diesel fuel and jet fuel[J].Catalysis Today,2003,86:211-263.
[3]Jeevanandam P,Klabunde K J,Tetzler S H.Adsorption of thiophenes out of hydrocarbons using metal impregnated nanocrystalline aluminum oxide[J].Microporous and Mesoporous Materials,2005,79:101-110.
[4]Jae Hyung Kim,Ma Xiaoliang,Zhou Anning,et al.Ultra-deep desulfurization and denitrogenation of diesel fuel by slective adsorption over three different adsorbents:a study on adsorptive selectivity and mechanism[J].Catalysis Today,2006,111:74-83.
[5]Arturo J Hernandez-Maldonado,Frances H Yang,Qi Gongshin,et al.Desulfurization of transportation fuels by π-complexation sorbents:Cu(Ⅰ)-,Ni(Ⅱ)-,and Zn(Ⅱ)-zeolites[J].Applied Catalysis B:Environmental,2005,56:111-26.
[6]Arturo J Hernandez-Maldonado,Ralph T Yang.Desulfurization of liquid fuels by adsorption via π-complexation with Cu(Ⅰ)-Y and Ag-Y zeolites[J].Industrial & Engineering Chemistry Research,2003,42:123-129.
[7]劉黎明,王洪國(guó),靳玲玲,等.Cu(Ⅰ)Y分子篩對(duì)不同硫化物的選擇性吸附脫硫[J].遼寧石油化工大學(xué)學(xué)報(bào),2009,29(3):1-4. Liu Liming,Wang Hongguo,Jin Lingling,et al.Adsorptive desulfurization of different sulfur compounds on Cu(Ⅰ)Y zeolites[J].Journal of Liaoning University of Petroleum & Chemical Technology,2009,29(3):1-4.
[8]Baeza A P,Aguila B G,Vargas A G,et al.Adsorption of thiophene and dibenzothiophene on highly dispersed Cu/ZrO2adsorbents[J].Applied Catalysis B:Environmental, 2012,(111/112):133-140.
[9]王旺銀,潘明雪,秦玉才,等.Cu(I)Y 分子篩表面酸性對(duì)其吸附脫硫性能的影響[J].物理化學(xué)學(xué)報(bào),2011,27(5):1176-1180. Wang Wangyin,Pan Mingxue,Qin Yucai,et al.The influence of surface acidity of Cu(Ⅰ)-Y molecular sieve on adsorption desulfurization performance[J].Acta Physico-Chimica Sinica,2011,27 (5):1176-1180.
[10]Ali Mansouri,Abbas Ali Khodadadi,Yadollah Mortazavi.Ultra-deep adsorptive desulfurization of a model diesel fuel on regenerable Ni-Cu/γ-Al2O3at low temperatures in absence of hydrogen[J].Journal of Hazardous Materials,2014,271:120-130.
Influence of preparation factors on the properties of CuCl/SiO2adsorbents in the process of adsorption desulfurization
LiYancang,FangDeren*
(College of Chemistry and Chemical Engineering,Yantai University,Yantai 264005,Shandong,China)
The desulfurization of gasoline has been the hot spot in the field of chemical engineering.Adsorption desulfurization is one of desulfurization methods,which can reach deep or ultra-deep desulfurization with low energy consumption.The property of the adsorbents plays a leading role in adsorption desulfurization.Using macropore silicon dioxide as the carrier and cuprous chloride as the active component,CuCl/SiO2adsorbents were prepared by impregnation-calcined reduction method.The influence of calcination temperatures,calcination time and active component loadings on the adsorption desulfurization property of CuCl/SiO2adsorbents was investigated.The results showed that under the condition of calcination temperature 400 ℃,calcination time 4 h and cuprous chloride loading mass fraction 9.4%,the maximum adsorption capacity of ethyl mercaptan on the adsorbent reached 26.76 mg·g-1.Furthermore,the adsorbents could remove the sulfur-containing compounds such as thiophene,benzothiophene and dibenzothiophene.Owing to steric-hinerance effect,the smaller the size of sulfur-containing compounds was,the larger the adsorption capacity was;however,for the big size sulfur-containing compounds the adsorption capacity depended on electron density.
catalyst engineering;cuprous chloride;silicon dioxide;absorption desulfurization
TQ426.6;TE624.5+4 Document code: A Article ID: 1008-1143(2016)11-0052-04
2016-08-05
李燕藏,1989年生,男,山東省巨野縣人,在讀碩士研究生。
房徳仁,教授。
10.3969/j.issn.1008-1143.2016.11.010
TQ426.6;TE624.5+4
A
1008-1143(2016)11-0052-04
doi:10.3969/j.issn.1008-1143.2016.11.010