鄭志磊,楊爽
? 綜述 ?
胞外誘捕網(wǎng)與動(dòng)脈粥樣硬化的研究
鄭志磊1,楊爽1
動(dòng)脈粥樣硬化(AS)是危害人類健康的一種常見疾病,目前已成為人類健康的第一殺手。AS的特征是動(dòng)脈內(nèi)膜斑塊形成,斑塊內(nèi)均存在炎性細(xì)胞浸潤(rùn)和脂質(zhì)沉積[1]。近年來(lái),有研究顯示細(xì)胞外游離的DNA-蛋白復(fù)合物與動(dòng)脈粥樣硬化的發(fā)生及發(fā)展有關(guān)[2],且可能增加斑塊負(fù)荷[3],而這種DNA-蛋白復(fù)合物即為胞外誘捕網(wǎng)(ETs)。自該項(xiàng)研究結(jié)果提出以來(lái),ETs成為了近年來(lái)與動(dòng)脈粥樣硬化研究高度相關(guān)的概念。本文就胞外誘捕網(wǎng)的研究及其與動(dòng)脈粥樣硬化的相關(guān)研究進(jìn)展作一綜述。
在2004年,Zychlinsky and coauthors發(fā)現(xiàn)中性粒細(xì)胞可以在細(xì)胞外通過一種DNA-蛋白質(zhì)復(fù)合物殺死病原體,這種DNA-蛋白質(zhì)復(fù)合物被Science命名為中性粒細(xì)胞胞外誘捕網(wǎng)(neutrophil extracellular traps,NETs)[4]。NETs是中性粒細(xì)胞在被刺激因素激活后釋放其核內(nèi)的DNA,并與胞漿蛋白結(jié)合釋放至胞外形成的網(wǎng)狀結(jié)構(gòu),是細(xì)胞經(jīng)刺激后進(jìn)行的一種新型的程序性死亡[5],這種過程被Steinberg等命名為NETosis[6],因這種DNA-蛋白質(zhì)被釋放到細(xì)胞外的機(jī)制,不僅只發(fā)生在中性粒細(xì)胞,所以NETosis更確切的說應(yīng)為ETosis。ETs的形成過程是一種新型程序性死亡,既不同于凋亡也不同于壞死,被稱為“ETosis”[7]。ETosis形成的細(xì)胞通常會(huì)出現(xiàn)核染色體解聚,繼而核膜溶解,染色質(zhì)和細(xì)胞質(zhì)中的蛋白酶等混合后以擠壓的方式釋放到細(xì)胞外,最終形成ETs[8]。
目前發(fā)現(xiàn)能夠形成胞外誘捕網(wǎng)的細(xì)胞有:中性粒細(xì)胞、巨噬細(xì)胞、嗜酸性粒細(xì)胞、嗜堿性粒細(xì)胞、肥大細(xì)胞,單核細(xì)胞其釋放的ETs分別為:NETs[4],巨噬細(xì)胞胞外誘捕網(wǎng)(METs)[9],嗜酸性粒細(xì)胞胞外誘捕網(wǎng)(EETs)[10], 嗜堿性粒細(xì)胞胞外誘捕網(wǎng)(BETs)[11],肥大細(xì)胞胞外誘捕網(wǎng)(MCETs)[12],單核細(xì)胞胞外誘捕網(wǎng)[13]。
NETs有一個(gè)獨(dú)特的超微結(jié)構(gòu),由直徑為15~17 nm的平滑絲狀結(jié)構(gòu)組成[4],這種絲狀結(jié)構(gòu)是由修飾過的核小體堆疊而成[14],而NETs的這種骨架結(jié)構(gòu)上布滿直徑為50 nm的顆粒蛋白和其它細(xì)胞成分[4],令人驚訝的是,NETs不僅有細(xì)長(zhǎng)的薄絲,也可變成比初始細(xì)胞占據(jù)面積大10~15倍的云霧狀或蜘蛛網(wǎng)狀的結(jié)構(gòu)。提示我們NETs形成時(shí)空間大小的差異可影響NETs的具體形態(tài)[15]。
4.1 NETs誘導(dǎo)物 很多病原性生物均可誘導(dǎo)NETosis的發(fā)生(如細(xì)菌、真菌、原生動(dòng)物和病毒[5]),NETosis的發(fā)生可能由這些病原性生物直接刺激誘導(dǎo),也可能與這些生物細(xì)胞成分或細(xì)胞分泌的某些成分有關(guān)(如某些微生物成分、脂多糖(LPS)[16,17],來(lái)自鏈球菌的M1蛋白[18],亞馬遜利什曼原蟲的脂磷酸聚糖[19]等)。此外某些生理性或免疫性自身產(chǎn)物亦可誘導(dǎo)NETosis的發(fā)生(如TLR4激活的血小板[20]、ROS系統(tǒng)過氧化氫等[5]、抗體[21]和抗原抗體復(fù)合物[22,23]等)。
4.2 NETs形成的分子機(jī)制 NETosis是一種依賴不同刺激物刺激細(xì)胞發(fā)生不同形態(tài)變化,最終導(dǎo)致細(xì)胞死亡的復(fù)雜過程。刺激物不同,NETs的成分和進(jìn)展也有所不同。Neeli等提出MAC-1整合蛋白可能參與中性粒細(xì)胞細(xì)胞核及細(xì)胞膜崩解形成NETs的過程,當(dāng)Mac 1整合素受體被激活,細(xì)胞附著于基底意味著NETosis發(fā)生發(fā)展的開始[24]。然而,在中性粒細(xì)胞接受刺激后啟動(dòng)何種機(jī)制選擇吞噬或NETosis的精確識(shí)別,還有待于進(jìn)一步的研究發(fā)現(xiàn)。
對(duì)ROS產(chǎn)物的依賴性是NETosis發(fā)生的特征之一,其基本步驟已大致明確[25,26]。在激活的過程中,中性粒細(xì)胞通過NADPH氧化酶產(chǎn)生了大量的ROS,F(xiàn)uchs已經(jīng)證實(shí)ROS也是NETs產(chǎn)生的啟動(dòng)者[5]。例如,來(lái)自CGD患者的中性粒細(xì)胞不能產(chǎn)生NETs,因?yàn)镃GD的患者NADPH氧化酶的亞基發(fā)生突變進(jìn)而影響了酶的活性。而且,CGD患者的中性粒細(xì)胞在經(jīng)過H2O2的處理后恢復(fù)了形成NETs的能力[27]。在刺激之后,中性粒細(xì)胞通過常染色體與異染色體的混合完成了染色體的解旋,這個(gè)過程是由儲(chǔ)存在噬天清顆粒中的酶介導(dǎo)的,主要包括中性粒細(xì)胞彈性蛋白酶以及髓過氧化物酶等,它們通過一種還未明確的機(jī)制重新定位到細(xì)胞核上。首先,彈性蛋白酶降解了組蛋白H1和核心組蛋白之間的連接,導(dǎo)致染色體的解旋,解旋的過程可以被髓過氧化物酶強(qiáng)化(MPO),但不依賴后者酶的活性[28,29]。而且,在NETs形成的過程中,組蛋白H3中的精氨酸殘基被瓜氨酸化[30-32]。這組蛋白的瓜氨酸化可以被定位在中性粒細(xì)胞核酸上的PAD4促進(jìn)(peptidylarginine deiminase 4, PAD4)。PAD4基因敲除小鼠的中性粒細(xì)胞失去了釋放NET的能力并且組蛋白的瓜氨酸化也沒被觀察到[33],隨后,這核膜被破壞,細(xì)胞內(nèi)的染色體擴(kuò)張并且與顆粒抗菌因子混合,最終,細(xì)胞膜破壞釋放NETs[15]。上面提到的這些過程都提示這是一種新型的細(xì)胞死亡過程,但是NETs也能被活的中性粒細(xì)胞通過非氧化依賴的途徑在幾分鐘內(nèi)產(chǎn)生,就像在S.aureus infection中展示的一樣[34,35],考慮到其它細(xì)胞(如肥大細(xì)胞、嗜堿性粒細(xì)胞、巨噬細(xì)胞)也能產(chǎn)生胞外誘捕網(wǎng)ETs[36]這種新的防御機(jī)制,目前還沒有被研究明白統(tǒng)稱為NETosis。
在動(dòng)脈粥樣硬化中NETs的成分易被誤認(rèn)為是自身細(xì)胞成分,NETs被發(fā)現(xiàn)存在于人和小鼠的動(dòng)脈粥樣硬化管腔病變處[37]。最近Borissoff等[38]表明循環(huán)中NETs的水平與動(dòng)脈粥樣硬化的相關(guān)性。2012年4月,D?ring等[2]在Circulation發(fā)表的文章中,闡述了動(dòng)脈粥樣硬化和自身免疫疾病之間的關(guān)系,文章指出:細(xì)胞外游離的DNA-蛋白質(zhì)復(fù)合物刺激漿細(xì)胞樣樹突狀細(xì)胞導(dǎo)致動(dòng)脈粥樣硬化的發(fā)生發(fā)展。D?ring等在同年6月又發(fā)表文章表明這種DNA-蛋白質(zhì)復(fù)合物通過誘導(dǎo)樹突細(xì)胞合成并釋放促動(dòng)脈粥樣硬化物質(zhì)干擾素γ增加斑塊負(fù)荷[3]。在ApoE基因缺陷小鼠,pDCs顯示加重動(dòng)脈粥樣硬化相關(guān)炎癥[39]。此外,Villanueva等[40]觀察到在炎癥過程中NETs對(duì)內(nèi)皮細(xì)胞的細(xì)胞毒作用。Warnatsch等[41]研究表明,膽固醇結(jié)晶誘導(dǎo)NETs生成,反過來(lái)又激活Th17細(xì)胞和巨噬細(xì)胞釋放IL-1β。血小板來(lái)源的趨化因子刺激NETs生成[42]。NETs可促進(jìn)局部的凝血活性通過借助血小板促進(jìn)凝血酶的生成機(jī)制[43]。另一方面,NETs可增強(qiáng)血小板活化,促進(jìn)動(dòng)脈粥樣硬化在小鼠的下肢深靜脈血栓形成[44]。
動(dòng)脈粥樣硬化對(duì)人類健康的威脅日益增大,其病理學(xué)研究主要集中在炎性細(xì)胞浸潤(rùn)及脂質(zhì)沉積,且斑塊局部有胞外誘捕網(wǎng)的形成,胞外誘捕網(wǎng)是炎性細(xì)胞激活后的結(jié)果,那么動(dòng)脈粥樣硬化中的胞外誘捕網(wǎng)形成可能與脂質(zhì)沉積發(fā)生相互作用,協(xié)同促進(jìn)動(dòng)脈粥樣硬化的發(fā)生發(fā)展。對(duì)胞外誘捕網(wǎng)的進(jìn)一步研究,有望為動(dòng)脈粥樣硬化的形成提供新的機(jī)制,同時(shí)也為動(dòng)脈粥硬化相關(guān)疾病提供新的診斷及治療思路。
[1] Ross R. Atherosclerosis an inflammatory disease[J]. New Engl J Med,1999,340(2):115-26.
[2] D?ring Y,Manthey HD,Drechsler M,et al. Auto-antigenic protein-DNA complexes stimulate plasmacytoid dendritic cells to promote atherosclerosis[J]. Circulation,2012,125(13):1673-83.
[3] D?ring Y,Zernecke A. Plasmacytoid dendritic cells in atherosclerosis[J]. Front Physiol,2011,3(16):230.
[4] Brinkmann V,Reichard U,Goosmann C,et al. Neutrophil extracellular traps kill bacteria[J]. Science,2004,303(5663):1532-5.
[5] Fuchs TA,Abed U,Goosmann C,et al. Novel cell death program leads to neutrophil extracellular traps[J]. J Cell Biol,2007,176(2):231-41.
[6] Steinberg BE,Grinstein S. Unconventional roles of the NADPH oxidase:signaling, ion homeostasis,and cell death[J]. Science's STKE: signal transduction knowledge environment,2007,(379):pe11.
[7] Guimaraes-Costa AB,Nascimento MT,Wardini AB,et al. ETosis: A Microbicidal Mechanism beyond Cell Death[J]. J Parasitol Res,2012,929743.
[8] Remijsen Q,Vanden Berghe T,Wirawan E,et al. Neutrophil extracellular trap cell death requires both autophagy and superoxide generation[J]. Cell research, 2011,21(2):290-304.
[9] Chow OA,von Kockritz-Blickwede M,Bright AT,et al. Statins enhance formation of phagocyte extracellular traps[J]. Cell Host Microbe,2010, 8(5):445-54.
[10] Yousefi S,Gold JA,Andina N,et al. Catapult-like release of mitochondrial DNA by eosinophils contributes to antibacterial defense[J]. Nature medicine,2008,14(9):949-53.
[11] Morshed M,Hlushchuk R,Simon D,et al. NADPH oxidaseindependent formation of extracellular DNA traps by basophils[J]. J Immunol,2014,192(11):5314-23.
[12] Von K?ckritz-Blickwede M,Goldmann O,Thulin P,et al. Phagocytosisindependent antimicrobial activity of mast cells by means of extracellular trap formation[J]. Blood,2008,111(6):3070-80.
[13] Munoz-Caro T,Silva LM,Ritter C,et al. Besnoitia besnoiti tachyzoites induce monocyte extracellular trap formation[J]. Parasitology research, 2014,113(11):4189-97.
[14] Urban CF,Ermert D,Schmid M,et al. Neutrophil extracellular traps contain Calprotectin,a cytosolic protein complex involved in host defense against Candida albicans[J]. PLoS pathogens,2009,5(10): e1000639.
[15] Brinkmann V,Zychlinsky A. Neutrophil extracellular traps:is immunity the second function of chromatin?[J]. J Cell Biol,2012,198(5):773-83.
[16] Neeli I,Dwivedi N,Khan S,et al. Regulation of extracellular chromatin release from neutrophils[J]. Journal of innate immunity,2009,1(3):194 -201.
[17] Lim MB,Kuiper JW,Katchky A,et al. Rac2 is required for the formation of neutrophil extracellular traps[J]. J Leukoc Biol,2011,90(4):771-6.
[18] Oehmcke S,Morgelin M,Herwald H. Activation of the human contact system on neutrophil extracellular traps[J]. Journal of innate immunity, 2009,1(3):225-30.
[19] Guimaraes-Costa AB,Nascimento MT,Froment GS,et al. Leishmania amazonensis promastigotes induce and are killed by neutrophil extracellular traps[J]. Proc Natl Acad Sci U S A,2009,106(16):6748-53.
[20] Clark SR,Ma AC,Tavener SA,et al. Platelet TLR4 activates neutrophil extracellular traps to ensnare bacteria in septic blood[J]. Nature medicine,2007,13(4):463-9.
[21] Kessenbrock K,Krumbholz M,Schonermarck U,et al. Netting neutrophils in autoimmune small-vessel vasculitis[J]. Nature medicine,2009,15(6): 623-5.
[22] Garcia-Romo GS,Caielli S,Vega B,et al. Netting neutrophils are major inducers of type I IFN production in pediatric systemic lupus erythematosus[J]. Sci Transl Med,2011,3(73):73ra20.
[23] Lande R,Ganguly D,Facchinetti V,et al. Neutrophils activate plasmacytoid dendritic cells by releasing self-DNA-peptide complexes in systemic lupus erythematosus[J]. Sci Transl Med,2011,3(73):73ra19.
[24] Neeli I,Khan SN,Radic M. Histone deimination as a response to inflammatory stimuli in neutrophils[J]. J Immunol,2008,180(3):1895-902.
[25] Parker H,Winterbourn CC. Reactive oxidants and myeloperoxidase and their involvement in neutrophil extracellular traps[J]. Frontiers in immunology,2012,3:424.
[26] Papayannopoulos V,Zychlinsky A. NETs:a new strategy for using old weapons[J]. Trends in immunology,2009,30(11):513-21.
[27] Nishinaka Y,Arai T,Adachi S,et al. Singlet oxygen is essential for neutrophil extracellular trap formation[J]. Biochemical and biophysical research communications,2011,413(1):75-9.
[28] Papayannopoulos V,Metzler KD,Hakkim A,et al. Neutrophil elastase and myeloperoxidase regulate the formation of neutrophil extracellular traps[J]. J Cell Biol,2010,191(3):677-91.
[29] Metzler KD,Fuchs TA,Nauseef WM,et al. Myeloperoxidase is required for neutrophil extracellular trap formation:implications for innate immunity[J]. Blood,2011,117(3):953-9.
[30] Wang Y,Li M,Stadler S,et al. Histone hypercitrullination mediates chromatin decondensation and neutrophil extracellular trap formation[J]. J Cell Biol,2009,184(2):205-13.
[31] Leshner M,Wang S,Lewis C,et al. PAD4 mediated histone hypercitrullination induces heterochromatin decondensation and chromatin unfolding to form neutrophil extracellular trap-like structures[J]. Frontiers in immunology,2012,3:307.
[32] Neeli I,Radic M. Opposition between PKC isoforms regulates histone deimination and neutrophil extracellular chromatin release[J].Frontiers in immunology,2013;4:38.
[33] Li P,Li M,Lindberg MR,et al. PAD4 is essential for antibacterial innate immunity mediated by neutrophil extracellular traps[J]. The Journal of experimental medicine,2010,207(9):1853-62.
[34] Pilsczek FH,Salina D,Poon KK,et al. A novel mechanism of rapid nuclear neutrophil extracellular trap formation in response to Staphylococcus aureus[J]. J Immunol,2010,185(12):7413-25.
[35] Yipp BG,Petri B,Salina D,et al. Infection-induced NETosis is a dynamic process involving neutrophil multitasking in vivo[J]. Nature medicine,2012,18(9):1386-93.
[36] Goldmann O,Medina E. The expanding world of extracellular traps:not only neutrophils but much more[J]. Frontiers in immunology,2012,3:420. [37] Megens RTA,Vijayan S,Lievens D,et al. Presence of luminal neutrophil extracellular traps in atherosclerosis[J]. Thrombosis and haemostasis, 2012,107(3):597-8.
[38] Borissoff JI,Joosen IA,Versteylen MO,et al. Elevated levels of circulating DNA and chromatin are independently associated with severe coronary atherosclerosis and a prothrombotic state[J]. Arterioscler Thromb Vasc Biol,2013,33(8):2032-40.
[39] Macritchie N,Grassia G,Sabir SR,et al. Plasmacytoid dendritic cells play a key role in promoting atherosclerosis in apolipoprotein E-deficient mice[J]. Arterioscler Thromb Vasc Biol,2012,32(11):2569-79.
[40] Villanueva E,Yalavarthi S,Berthier CC,et al. Netting neutrophils induce endothelial damage, infiltrate tissues, and expose immunostimulatory molecules in systemic lupus erythematosus[J]. J Immunol,2011,187(1):538-52.
[41] Warnatsch A,Ioannou M,Wang Q,et al. Inflammation. Neutrophil extracellular traps license macrophages for cytokine production in atherosclerosis[J]. Science,2015,349(6245):316-20.
[42] Rossaint J,Herter JM,Van Aken H,et al. Synchronized integrin engagement and chemokine activation is crucial in neutrophil extracellular trap-mediated sterile inflammation[J]. Blood,2014,123 (16):2573-84.
[43] Gould TJ,Vu TT,Swystun LL,et al. Neutrophil extracellular traps promote thrombin generation through platelet- dependent and platelet-independent mechanisms[J]. Arterioscler Thromb Vasc Biol,2014,34(9):1977-84.
[44] Brill A, Fuchs TA, Savchenko AS,et al. Neutrophil extracellular traps promote deep vein thrombosis in mice[J]. Journal of thrombosis and haemostasis:JTH,2012,10(1):136-44.
本文編輯:孫竹
R543.5
A
1674-4055(2017)05-0638-03
作者地址:1150000 哈爾濱,哈爾濱醫(yī)科大學(xué)附屬第二醫(yī)院心內(nèi)科
楊爽,E-mail:dryangshuang@163.com
10.3969/j.issn.1674-4055.2017.05.38