王 健, 沈繼錄
·綜述·
替加環(huán)素耐藥機(jī)制的研究現(xiàn)狀
王 健, 沈繼錄
替加環(huán)素; 耐藥機(jī)制; 外排系統(tǒng); 雙組分系統(tǒng); 細(xì)胞膜
替加環(huán)素(TGC)是FDA批準(zhǔn)的用于治療復(fù)雜性皮膚和軟組織感染、復(fù)雜性腹腔感染和社區(qū)相關(guān)細(xì)菌性肺炎的抗生素。隨著應(yīng)用越來(lái)越廣泛,替加環(huán)素產(chǎn)生耐藥性不可避免。替加環(huán)素是一種新型甘氨酰環(huán)素類抗菌藥物,全稱為9-叔丁基甘氨酰氨基米諾環(huán)素,是繼多西環(huán)素、米諾環(huán)素、美他環(huán)素后開發(fā)的新一代四環(huán)素類衍生抗生素。該藥通過可逆地結(jié)合于16S rRNA,阻斷tRNA進(jìn)入A位點(diǎn),抑制了翻譯過程。替加環(huán)素與核糖體的親和力高于其他四環(huán)素類抗生素20倍[1]。同時(shí),替加環(huán)素克服了四環(huán)素的耐藥機(jī)制,如核糖體保護(hù)蛋白(tetM、tetO等)和外排泵(tetK、tetA等)[2],使得替加環(huán)素對(duì)四環(huán)素和米諾環(huán)素耐藥菌均有作用。本文通過介紹替加環(huán)素耐藥性機(jī)制,我們可以更加主動(dòng)地確定相關(guān)基因的轉(zhuǎn)移并通過當(dāng)前的新型“反突變”藥物前瞻性的阻止耐藥性的產(chǎn)生。
1.1 耐藥結(jié)節(jié)化細(xì)胞分化家族(resistance nodulation cell division, RND)
1.1.1 AdeABC外排泵 AdeABC是第1個(gè)在替加環(huán)素耐藥的鮑曼不動(dòng)桿菌中發(fā)現(xiàn)的RND型外排泵,是由AdeA、AdeB和AdeC 組成的三聯(lián)體,其中AdeA是膜融合蛋白,AdeB是外排蛋白,AdeC是外膜通道蛋白。AdeB從細(xì)胞內(nèi)膜或細(xì)胞質(zhì)中攝取底物,通過AdeC轉(zhuǎn)運(yùn)到細(xì)胞外[3],在此過程中,AdeA起協(xié)調(diào)作用,它可使細(xì)菌細(xì)胞內(nèi)膜與細(xì)胞外膜接近,并能穩(wěn)定外膜蛋白的結(jié)構(gòu)。編碼泵蛋白的adeABC基因無(wú)論在敏感或耐藥株中均普遍存在,與耐藥株的高表達(dá)相比,敏感菌株的表達(dá)卻很低[4],提示其可能是細(xì)菌產(chǎn)生獲得性耐藥的原因之一。
1.1.2 AdeIJK外排泵 在鮑曼不動(dòng)桿菌的細(xì)胞膜上還存在AdeIJK外排泵。AdeIJK外排泵由膜融合蛋白 AdeI、內(nèi)膜轉(zhuǎn)運(yùn)蛋白AdeJ和外膜蛋白AdeK共同組成。AdeN可抑制AdeIJK外排泵表達(dá),adeN基因位于adeIJK基因的上游,adeN可編碼TetR轉(zhuǎn)錄調(diào)節(jié)因子,Rosenfeld等[5]發(fā)現(xiàn)BM4587臨床菌株adeN的失活可導(dǎo)致AdeIJK的作用底物即抗生素敏感性降低以及adeJ表達(dá)上升5倍。AdeIJK外排泵與 AdeABC 外排泵的結(jié)構(gòu)及功能相似,底物也相似,且AdeIJK與AdeABC對(duì)替加環(huán)素的外排具有協(xié)同作用。
1.1.3 AdeFGH外排泵 AdeFGH也可導(dǎo)致鮑曼不動(dòng)桿菌對(duì)替加環(huán)素耐藥。AdeIJK外排泵受adeL操縱子的調(diào)節(jié),adeL操縱子位于adeFGH基因的上游,與adeFGH基因呈反向表達(dá),adeL突變可導(dǎo)致 AdeFGH外排泵的過度表達(dá),從而導(dǎo)致細(xì)菌耐藥[6]。
1.1.4 AcrAB 外排泵 研究發(fā)現(xiàn)AcrAB 外排泵的高表達(dá)可導(dǎo)致肺炎克雷伯菌對(duì)替加環(huán)素耐藥[7]。AcrAB 外排泵具有典型RND家族結(jié)構(gòu)特征,包括3個(gè)組成部分:內(nèi)膜轉(zhuǎn)運(yùn)蛋白、膜融合蛋白和外膜蛋白。AraC家族的正轉(zhuǎn)錄調(diào)節(jié)蛋白R(shí)amA、MarA、SoxS和RarA 可激活外排泵而參與對(duì)替加環(huán)素耐藥[8-9],ramR、marR、soxR編碼產(chǎn)物分別是RamA、 MarA、SoxS的阻遏蛋白。Wang等[10]也發(fā)現(xiàn)RamA是AcrAB泵的正調(diào)節(jié)蛋白,它可以導(dǎo)致AcrAB泵產(chǎn)生過度,進(jìn)而引發(fā)耐藥,而RamA可受RamB阻遏,RamA的過表達(dá)與RamR的低表達(dá)可導(dǎo)致沙門菌對(duì)替加環(huán)素的耐藥率上升4倍[11]。acrAB操縱子受到阻遏蛋白AcrR調(diào)控,AcrR編碼基因的突變也可能與替加環(huán)素耐藥相關(guān)。
1.1.5 AcrEF 外排泵 在大腸埃希菌的細(xì)胞膜上還發(fā)現(xiàn)了AcrEF外排泵,它與AcrAB-TolC外排泵有高度的同源性并有相似的底物,其中也包括了替加環(huán)素[12]。
1.1.6 OqxAB外排泵 OqxAB外排泵是第1個(gè)被發(fā)現(xiàn)的由質(zhì)粒介導(dǎo)的RND家族外排泵。OqxAB外排泵中OqxA是膜融合蛋白,OqxB是內(nèi)膜轉(zhuǎn)運(yùn)蛋白,OqxAB外排泵可能通過其他非特異性的外膜蛋白排出底物[13]。編碼OqxAB的質(zhì)??奢^容易地水平傳遞到其他腸道菌,如沙門菌和產(chǎn)氣腸桿菌。另外,肺炎克雷伯菌中發(fā)現(xiàn)RarA蛋白是OqxAB外排泵的正轉(zhuǎn)錄調(diào)節(jié)蛋白,RarA的高表達(dá)可導(dǎo)致低水平的替加環(huán)素耐藥[9]。
1.1.7 SdeXY外排泵 對(duì)于黏質(zhì)沙雷菌,內(nèi)源性的RND型外排泵SdeXY與替加環(huán)素耐藥相關(guān)。Hornsey等[14]研究發(fā)現(xiàn),SdeXY外排泵可導(dǎo)致黏質(zhì)沙雷菌對(duì)替加環(huán)素耐藥,SdeXY 泵失活后可恢復(fù)細(xì)菌對(duì)替加環(huán)素的敏感性。除了替加環(huán)素,SdeXY外排泵還介導(dǎo)黏質(zhì)沙雷菌對(duì)四環(huán)素、環(huán)丙沙星、頭孢匹羅的耐藥性。
1.1.8 MexXY外排泵 銅綠假單胞菌對(duì)替加環(huán)素天然耐藥,其細(xì)胞膜上的主動(dòng)外排系統(tǒng)是重要因素,其中RND家族的MexXY 外排泵在銅綠假單胞菌對(duì)替加環(huán)素產(chǎn)生耐藥的過程中起關(guān)鍵作用[15]。
1.2 多藥及毒性化合物外排家族(multidrug and toxic compound extrusion, MATE)
在革蘭陽(yáng)性菌中出現(xiàn)對(duì)替加環(huán)素耐藥的情況較少,MATE家族的mepA外排泵基因的過度表達(dá),可能導(dǎo)致金黃色葡萄球菌對(duì)替加環(huán)素敏感性降低[16]。
1.3 主要易化子超家族(major facilitator super, MFS)
TetA屬于MFS超家族外排泵,ramR屬于TetR家族的轉(zhuǎn)化調(diào)節(jié)因子,ramR編碼蛋白可結(jié)合啟動(dòng)子區(qū)域形成二聚體結(jié)構(gòu)而抑制ramA基因的活性。Hentschke等[17]研究表明,與轉(zhuǎn)座子Tn1721有關(guān)的tetA基因以及ramR缺失或突變均可導(dǎo)致對(duì)替加環(huán)素耐藥。轉(zhuǎn)座子Tn1721與具有接合性、傳染性的質(zhì)粒有關(guān)聯(lián),使tetA基因得以擴(kuò)散從而導(dǎo)致替加環(huán)素耐藥。
1.4 ATP結(jié)合盒超家族(ATP binding cassette, ABC)
MacAB-TolC外排泵屬于ABC家族,MacAB是內(nèi)膜蛋白,TolC是外膜蛋白。對(duì)于革蘭陰性菌來(lái)說(shuō),TolC及其家族同源蛋白是將小分子和毒素運(yùn)出外膜過程中必不可少的。野生型和臨床型替加環(huán)素耐藥的鮑曼不動(dòng)桿菌菌株,替加環(huán)素誘導(dǎo)后,AdeIJK和MacAB-TolC的表達(dá)增強(qiáng),提示其對(duì)替加環(huán)素耐藥有重要意義[18]。
雙組分系統(tǒng)由組氨酸激酶( histidine kinase ,HK)和反應(yīng)調(diào)節(jié)器(response regulator ,RR)兩個(gè)基本組分構(gòu)成。HK是一種跨膜蛋白,能發(fā)生自身磷酸化。RR是胞質(zhì)蛋白,能轉(zhuǎn)移磷酸基團(tuán)并調(diào)控DNA的轉(zhuǎn)錄。雙組分系統(tǒng)調(diào)節(jié)各種重要的細(xì)菌生理和代謝過程,如應(yīng)激反應(yīng)、營(yíng)養(yǎng)利用、信號(hào)傳導(dǎo)和細(xì)胞分裂。
2.1 AdeRS雙組分系統(tǒng)
AdeABC外排系統(tǒng)受AdeRS雙組分系統(tǒng)調(diào)節(jié)[19],其中AdeS是傳感器激酶,AdeR是反應(yīng)調(diào)節(jié)器,adeRS 操縱子位于 adeABC操縱子的上游,與adeABC基因呈反向表達(dá)。adeS和adeR基因的點(diǎn)突變或者在adeS基因前插入序列ISAba1,均可使得AdeABC外排泵過度表達(dá),導(dǎo)致鮑曼不動(dòng)桿菌對(duì)替加環(huán)素敏感性下降[20]。Hornsey等[21]和Coyne等[22]研究發(fā)現(xiàn)AdeABC外排泵系統(tǒng)中adeS突變點(diǎn)(Ala-94→Val或Gly-30→ Asp或 Gly-103→ Asp) 和 adeR突變 點(diǎn)(Asp-20→Asn或Ala-91→ Val或Pro-116→Leu)引起外排泵過度表達(dá),導(dǎo)致鮑曼不動(dòng)桿菌對(duì)替加環(huán)素耐藥。
2.2 BaeSR雙組分系統(tǒng)
BaeSR雙組分系統(tǒng)首次在大腸埃希菌中發(fā)現(xiàn),在ATP存在下,BaeR和BaeS可發(fā)生磷酸轉(zhuǎn)移反應(yīng),BaeS是傳感器激酶,BaeR是反應(yīng)調(diào)節(jié)器,BaeSR可接收環(huán)境信號(hào)而發(fā)生細(xì)菌包膜改變反應(yīng),主要是上調(diào)外排泵的表達(dá)以應(yīng)對(duì)包膜損害原的刺激。隨后發(fā)現(xiàn)BaeSR雙組分系統(tǒng)可調(diào)控AdeIJK和MacAB-TolC外排泵而導(dǎo)致對(duì)替加環(huán)素耐藥[18]。鮑曼不動(dòng)桿菌中,RND型外排泵基因adeAB也受到BaeSR積極調(diào)控[23]。
S10蛋白是核糖體30S亞基的一個(gè)組成部分,是由rpsJ基因編碼的53~60個(gè)氨基酸殘基組成,參與維持替加環(huán)素結(jié)合位點(diǎn)結(jié)構(gòu)的正常。在大腸埃希菌中,核糖體蛋白S10通過參與rRNA操縱子的轉(zhuǎn)錄抗終止的進(jìn)程而影響核糖體的生物合成,S10也是參與轉(zhuǎn)錄和翻譯少數(shù)蛋白之一[24]。核糖體蛋白S10的保守環(huán)位于30s核糖體亞基與替加環(huán)素或四環(huán)素的主要結(jié)合位點(diǎn)附近,該位點(diǎn)附近突變產(chǎn)生的輕微結(jié)構(gòu)改變可導(dǎo)致抗生素與核糖體之間的親和力下降[25]。
研究表明,在革蘭陰性和陽(yáng)性菌rpsJ基因57位置的突變[26],以及57~60位置的氨基酸替換是替加環(huán)素敏感性降低的重要機(jī)制[27]。發(fā)生rpsJ基因突變的革蘭陰性菌株(大腸埃希菌、鮑曼不動(dòng)桿菌和鏈球菌)和革蘭陽(yáng)性菌株(金黃色葡萄球菌、糞腸球菌和屎腸球菌)進(jìn)行替加環(huán)素適應(yīng)性試驗(yàn)[26,28],發(fā)現(xiàn)多種細(xì)菌通過核糖體蛋白S10來(lái)降低替加環(huán)素敏感性。核糖體蛋白S3、S10和S13相互之間非常接近四環(huán)素與核糖體亞基的結(jié)合域,核糖體蛋白S3已被證明對(duì)四環(huán)素結(jié)合域的完整性是非常重要的,因此S3蛋白的結(jié)構(gòu)修飾可能會(huì)引起替加環(huán)素耐藥[29]。
一種新的替加環(huán)素耐藥機(jī)制與依賴黃素的單加氧酶TetX有關(guān),TetX可羥化替加環(huán)素,降低其活性。替加環(huán)素是TetX的底物,TetX蛋白可修飾第一代及第二代四環(huán)素,它需要NADPH、Mg2+以及O2保持活性。在鮑曼不動(dòng)桿菌中亦檢出tetX1基因與tetX基因,并可導(dǎo)致鮑曼不動(dòng)桿菌對(duì)替加環(huán)素耐藥,其中tetX1基因僅見于對(duì)替加環(huán)素不敏感的鮑曼不動(dòng)桿菌,而在敏感菌中未檢出,提示tetX1 基因的存在對(duì)細(xì)菌產(chǎn)生替加環(huán)素耐藥性有預(yù)測(cè)價(jià)值[30],且tetX1和tetX有66%的同源序列。
5.1 甲基轉(zhuǎn)移酶
在細(xì)菌中,甲基轉(zhuǎn)移酶可以保護(hù)宿主基因組免受外來(lái)DNA的侵襲和干擾,且在表觀遺傳學(xué)和細(xì)菌耐藥性中起著關(guān)鍵作用。trm基因編碼S-腺苷-L-甲硫氨酸(SAM)依賴性的甲基轉(zhuǎn)移酶,Chen等[31]發(fā)現(xiàn)trm基因與細(xì)菌對(duì)替加環(huán)素敏感性降低有關(guān),通過電轉(zhuǎn)化將野生型質(zhì)粒pWH-trm的trm基因分別轉(zhuǎn)入鮑曼不動(dòng)桿菌的trm缺陷株19606-T2和替加環(huán)素耐藥株19606-T8,缺陷株19606-T2的替加環(huán)素最低抑菌濃度降低為原來(lái)的1/8,而耐藥株19606-T8由耐藥變?yōu)槊舾小?/p>
5.2 RecA蛋白酶
RecA是細(xì)菌DNA損傷后同源基因重組和重組修復(fù)過程的重要酶。在同源基因重組過程中,該蛋白覆蓋于單鏈DNA并引導(dǎo)其進(jìn)入雙鏈DNA,隨后催化DNA鏈之間交換修復(fù)。研究人員通過構(gòu)建鮑曼不動(dòng)桿菌recA突變菌株,證實(shí)RecA蛋白在鮑曼不動(dòng)桿菌的DNA損傷修復(fù)、抗生素耐藥、一般壓力反應(yīng)和毒力中均發(fā)揮作用。劉男男[32]在應(yīng)用亞抑制濃度的替加環(huán)素處理鮑曼不動(dòng)桿菌后,標(biāo)準(zhǔn)株ATCC19606recA基因的表達(dá)增強(qiáng),提示RecA蛋白酶介導(dǎo)鮑曼不動(dòng)桿菌免于抗生素?fù)p傷中發(fā)揮重要作用,從而產(chǎn)生耐藥。
6.1 磷脂的改變
基因plsC編碼的磷脂轉(zhuǎn)移酶,其可催化磷脂的生物合成進(jìn)而參與細(xì)胞膜的合成。Li等[33]通過流式細(xì)胞儀檢測(cè)到plsC基因突變導(dǎo)致了細(xì)胞膜的改變,細(xì)胞膜的滲透屏障動(dòng)態(tài)平衡發(fā)生變化,影響了細(xì)胞膜對(duì)替加環(huán)素的滲透性,從而導(dǎo)致鮑曼不動(dòng)桿菌的耐藥,同時(shí)利用了含有plsC野生型基因的回復(fù)試驗(yàn)對(duì)結(jié)果進(jìn)行了確認(rèn)。
6.2 脂多糖的改變
脂多糖由類脂A、核心多糖、O-抗原3部分組成,而核心多糖由庚糖、半乳糖、2-酮基-3-脫氧辛酸(2-keto-3-deoxyoctonic acid,KDO)等組成,革蘭陰性細(xì)菌都有此結(jié)構(gòu)。大腸埃希菌核心多糖生物合成途徑的相關(guān)基因(lpcA、 rfaE、 rfaD、 rfaC和 rfaF)的突變菌株也出現(xiàn)了替加環(huán)素耐藥[34],其中l(wèi)pcA、 rfaE、 rfaD參與庚糖的生物合成,rfaC和rfaF可編碼庚糖殘基的轉(zhuǎn)移蛋白。
綜上所述,細(xì)菌對(duì)替加環(huán)素的耐藥機(jī)制十分復(fù)雜,研究主要集中于主動(dòng)外排機(jī)制中RND家族外排泵,不同菌株可出現(xiàn)同一種耐藥機(jī)制,同一菌株又可存在不同耐藥機(jī)制,有必要加強(qiáng)細(xì)菌及其耐藥的檢測(cè),合理有效使用抗生素,并針對(duì)此類耐藥菌株開發(fā)新型抗菌藥物。替加環(huán)素的耐藥菌主要為革蘭陰性桿菌,耐藥機(jī)制除了與外排泵有關(guān),其他相關(guān)研究或可進(jìn)一步深入。最新研究發(fā)現(xiàn)多藥物耐受性在細(xì)菌病原體中的傳播主要是由于所謂的“persisters”[35-36]的存在,它們是表型變體,處于休眠狀態(tài),因此不易受抗生素的影響,而抗生素只對(duì)積極生長(zhǎng)的細(xì)胞有效。
[1] BAUER G, BERENS C, PROJAN SJ,et al. Comparison of tetracycline and tigecycline binding to ribosomes mapped by dimethylsulphate and drug-directed Fe2+ cleavage of 16S rRNA[J]. J Antimicrob Chemother,2004,53(4):592-599.
[2] LIVERMORE DM. Tigecycline: what is it, and where should it be used?[J]. J Antimicrob Chemother,2005,56(4):611-614.
[3] ESWARAN J, KORONAKIS E, HIGGINS MK,et al. Three's company: component structures bring a closer view of tripartite drug effux pumps[J]. Curr Opin Struct Biol,2004,14(6):741-747.
[4] COYNE S, COURVALIN P, PéRICHON B. Efflux-mediated antibiotic resistance in Acinetobacter spp[J]. Antimicrob Agents Chemother,2011,55(3):947-953.
[5] ROSENFELD N, BOUCHIER C, COURVALIN P,et al. Expression of the resistance-nodulation-cell division pump AdeIJK in Acinetobacter baumannii is regulated by AdeN, a TetR-type regulator [J]. Antimicrob Agents Chemother,2012,56(5):2504-2510.
[6] COYNE S, ROSENFELD N, LAMBERT T,et al. Overexpression of resistance-nodulation-cell division pump AdeFGH confers multidrug resistance in Acinetobacter baumannii[J]. Antimicrob Agents Chemother,2010,54(10):4389-4393.
[7] ZHONG X, XU H, CHEN D, et al. First emergence of acrAB and oqxAB mediated tigecycline resistance in clinical isolates of Klebsiella pneumoniae pre-dating the use of tigecycline in a Chinese hospital[J]. PLoS One,2014,9(12):e115185.
[8] BRATU S, LANDMAN D, GEORGE A,et al. Correlation of the expression of acrB and the regulatory genes marA,soxS and ramA with antimicrobial resistance in clinical isolates of Klebsiella pneumoniae endemic to New York City[J]. J Antimicrob Chemother,2009, 64(2):278-283.
[9] VELEBA M, SCHNEIDERS T. Tigecycline resistance can occur independently of the ramA gene in Klebsiella pneumoniae[J]. Antimicrob Agents Chemother, 2012, 56(8):4466-4467.
[10] WANG X, CHEN H, ZHANG Y,et al. Genetic characterisation of clinical Klebsiella pneumoniae isolates with reduced susceptibility to tigecycline: Role of the global regulator RamA and its local repressor RamR[J]. Int J Antimicrob Agents,2015,45(6):635-640.
[11] HORIYAMA T, NIKAIDO E, YAMAGUCHI A,et al. Roles of Salmonella multidrug effux pumps in tigecycline resistance[J]. J Antimicrob Chemother,2011,66(1):105-110.
[12] HIRATA T, SAITO A, NISHINO K,et al. Effects of efflux transporter genes on susceptibility of Escherichia coli to tigecycline (GAR-936)[J]. Antimicrob Agents Chemother, 2004 ,48(6):2179-2184.
[13] VELEBA M, DE MAJUMDAR S, HORNSEY M,et al. Genetic characterization of tigecycline resistance in clinical isolates of Enterobacter cloacae and Enterobacter aerogenes[J]. J Antimicrob Chemother,2013,68(5):1011-1018.
[14] HORNSEY M,ELLINGTON MJ,DOUMITH M,et al. Tigecycline resistance in Serratia marcescens associated with upregulation of the SdeXY–HasF effux system also active against ciprofoxacin and cefpirome[J]. J Antimicrob Chemother,2010,65(3):479-482.
[15] DEAN CR, VISALLI MA, PROJAN SJ,et al. Effluxmediated resistance to tigecycline(GAR-936) in Pseudomonas aeruginosa PAO1[J]. Antimicrob Agents Chemother,2003,47(3):972-978.
[16] MCALEESE F, PETERSEN P, RUZIN A,et al. A novel MATE family efflux pump contributes to the reduced susceptibility of laboratory-derived Staphylococcus aureus mutants to tigecycline[J]. Antimicrob Agents Chemother, 2005,49(5):1865-1871.
[17] HENTSCHKE M, CHRISTNER M, SOBOTTKA I,et al. Combined ramR mutation and presence of a Tn1721-associated tet(A) variant in a clinical isolate of Salmonella enterica serovar Hadar resistant to tigecycline[J]. Antimicrob Agents Chemother,2010, 54(3):1319-1322.
[18] LIN MF, LIN YY, LAN CY. The role of the two-component system BaeSR in disposing chemicals through regulating transporter systems in Acinetobacter baumannii[J]. PLoS One,2015,10(7):e0132843.
[19] LI TJ, LI CX, CHENG SP,et al. Separation and confrmation of nine Enterobacteriaceae strains that carry the bla NDM-1 gene[J]. Exp Ther Med,2015,9(4):1241-1246.
[20] SUN JR, PERNG CL, CHAN MC,et al. A truncated AdeS kinase protein generated by ISAba1 insertion correlates with tigecycline resistance in Acinetobacter baumannii[J]. PLoS One,2012,7(11):e49534.
[21] HORNSEY M, ELLINGTON MJ, DOUMITH M,et al. AdeABC-mediated efflux and tigecycline MICs for epidemic clones of Acinetobacter baumannii[J]. J Antimicrob Chemother,2010 ,65(8):1589-1593.
[22] COYNE S, GUIGON G, COURVALIN P,et al. Screening and quantification of the expression of antibiotic resistance genes in Acinetobacter baumannii with a microarray[J]. Antimicrob Agents Chemother,2010,54(1):333-340.
[23] LIN MF, LIN YY, YEH HW,et al. Role of the BaeSR twocomponent system in the regulation of Acinetobacter baumannii adeAB genes and its correlation with tigecycline susceptibility[J]. BMC Microbiol,2014,9(14):119-130.
[24] WEISBERG RA. Transcription by moonlight: structural basis of an extraribosomal activity of ribosomal protein S10[J]. Mol Cell,2008,32(6):747-748.
[25] JENNER L, STAROSTA AL, TERRY DS,et al. Structural basis for potent inhibitory activity of the antibiotic tigecycline during protein synthesis[J]. Proc Natl Acad Sci U S A,2013,110(10):3812-3816.
[26] CATTOIR V, ISNARD C, COSQUER T,et al. Genomic analysis of reduced susceptibility to tigecycline in Enterococcus faecium[J]. Antimicrob Agents Chemother,2015, 59(1):239-244.
[27] BEABOUT K, HAMMERSTROM TG, PEREZ AM,et al. The ribosomal S10 protein is a general target for decreased tigecycline susceptibility[J]. Antimicrob Agents Chemother,2015,59(9):5561-5566.
[28] VILLA L, FEUDI C, FORTINI D,et al. Genomics of KPC-producing Klebsiella pneumoniae sequence type 512 clone highlights the role of RamR and ribosomal S10 protein mutations in conferring tigecycline resistance[J]. Antimicrob Agents Chemother,2014,58(3):1707-1712.
[29] LUPIEN A, GINGRAS H, LEPROHON P,et al. Induced tigecycline resistance in Streptococcus pneumoniae mutants reveals mutations in ribosomal proteins and rRNA[J]. J Antimicrob Chemother,2015,70(11):2973-2980.
[30] BARTHA NA, SóKI J, URBáN E,et al. Investigation of the prevalence of tetQ,tetX and tetX1 genes in Bacteroides strains with elevated tigecycline minimum inhibitory concentrations[J]. Int J Antimicrob Agents,2011,38(6):522-525.
[31] CHEN Q, LI X, ZHOU H, JIANG Y,et al. Decreased susceptibility to tigecycline in Acinetobacter baurnannii mediated by a mutation in trm encoding SAM -dependent methyltransferase[J]. J Antimicrob Chemother,2014,69(1):72-76.
[32] 劉男男.多重耐藥鮑曼不動(dòng)桿菌RecA介導(dǎo)的對(duì)亞抑制濃度替加環(huán)素適應(yīng)性耐藥機(jī)制研究[D].南充市:川北醫(yī)學(xué)院,2014.
[33] LI X, LIU L, JI J, CHEN Q,et al. Tigecycline resistance in Acinetobacter baumannii mediated by frameshift mutation in plsC,encoding 1-acyl-sn-glycerol-3-phosphate acyltransferase[J]. Eur J Clin Microbiol Infect Dis,2015,34(3):625-631.
[34] LINKEVICIUS M, SANDEGREN L, ANDERSSON DI. Mechanisms and fitness costs of tigecycline resistance in Escherichia coli[J]. J Antimicrob Chemother,2013, 68(12):2809-2819.
[35] MAISONNEUVE E,GERDES K. Molecular mechanisms underlying bacterial persisters[J]. Cell,2014,157(3):539-548.
[36] SCHUMACHER MA,MIN J,CHINNAM NB,et al. HipBA–promoter structures reveal the basis of heritable multidrug tolerance[J]. Nature,2015,524(7563):59-64.
Current insight into the mechanisms of tigecycline resistance
WANG Jian, SHEN Jilu. (Department of Laboratory Medicine, the First Affliated Hospital of Anhui Medical University, Hefei 230022, China)
R978.1
A
1009-7708 ( 2017 ) 02-0219-05
10.16718/j.1009-7708.2017.02.021
2016-04-18
2016-06-03
國(guó)家自然科學(xué)基金項(xiàng)目(81171618)。
安徽醫(yī)科大學(xué)第一附屬醫(yī)院檢驗(yàn)科,合肥 230022。
王健(1993—),男,碩士研究生,主要從事臨床微生物耐藥機(jī)制研究。
沈繼錄,E-mail:shenjilu@126.com。