龍瑞華
摘 要:精心設(shè)問貫穿在課堂教學(xué)的各個(gè)環(huán)節(jié),教師的知識(shí)傳授與學(xué)生的學(xué)習(xí)在疑問中開始,探索、論證、小結(jié)、發(fā)展,則學(xué)生的思維習(xí)慣得以養(yǎng)成,求知的熱忱得以激發(fā),學(xué)習(xí)興趣得以培養(yǎng),思維品質(zhì)、能力得以全面發(fā)展。精心設(shè)問,刺激學(xué)生心智不斷向前追求,主動(dòng)探索,自主學(xué)習(xí),全面提高數(shù)學(xué)課堂教學(xué)效率。
關(guān)鍵詞:高中數(shù)學(xué);課堂設(shè)問;情境創(chuàng)設(shè);策略
在新課的引入過程中,教師要對(duì)教材內(nèi)容進(jìn)行二次開發(fā),精心創(chuàng)設(shè)問題情境,通過教師的適當(dāng)引導(dǎo),使學(xué)生進(jìn)入最佳的學(xué)習(xí)狀態(tài),同時(shí)還要激活學(xué)生的主體意識(shí),充分調(diào)動(dòng)學(xué)生的積極性、主動(dòng)性和創(chuàng)造性,使學(xué)生最大限度地參與探究新知識(shí)活動(dòng),讓學(xué)生在參與中感受成功的興奮和學(xué)習(xí)的樂趣,促使學(xué)生全身心地投入學(xué)習(xí),注意把知識(shí)內(nèi)容與生活實(shí)踐結(jié)合起來,精心設(shè)問。那么,創(chuàng)設(shè)引人問題情境的基本策略是什么呢?如何在引人中設(shè)問呢?
一、引疑激趣策略
教育近代教育學(xué)家斯賓塞指出:“教育要使人愉快,要讓一切教育有樂趣”。烏辛斯基也指出:“沒有絲毫興趣的強(qiáng)制性學(xué)習(xí),將會(huì)扼殺學(xué)生探求真理的欲望”。因此,教師設(shè)計(jì)問題時(shí),要新穎別致,使學(xué)生學(xué)習(xí)有趣味感、新鮮感。
案例1:“二分法”的引入。
在央視由著名節(jié)目主持人李泳主持的“非常6+1”中有一個(gè)欄目叫“競(jìng)猜價(jià)格”,你知道如何才能最快速度猜準(zhǔn)價(jià)格嗎?
“一石激起千層浪”學(xué)生紛紛議論,趁機(jī)我又設(shè)計(jì)了一個(gè)小游戲:同位同學(xué)相互合作猜生日,看那一組能用“最少的次數(shù)”猜出對(duì)方同學(xué)的生日?你共用了多少次?
通過創(chuàng)設(shè)趣味性的問題情境,增強(qiáng)了學(xué)生的有意注意,調(diào)動(dòng)學(xué)生學(xué)習(xí)的主動(dòng)性和積極性,激發(fā)了學(xué)生學(xué)習(xí)的求知欲和學(xué)習(xí)數(shù)學(xué)的興趣。
二、設(shè)置坡度策略
心理學(xué)家把問題從提出到解決的過程稱為“解答距”。并根據(jù)解答距的長(zhǎng)短把它分為“微解答距”、“短解答距”、“長(zhǎng)解答距”和“新解答距”四個(gè)級(jí)別。所以,教師設(shè)計(jì)問題應(yīng)合理配置幾個(gè)級(jí)別的問題。對(duì)知識(shí)的重點(diǎn)、難點(diǎn),應(yīng)象攀登階梯一樣,由淺入深,由易到難,由簡(jiǎn)到繁,已達(dá)到掌握知識(shí)、培養(yǎng)能力的目的。
案例2:已知函數(shù)y=x-2。
(1)它是奇函數(shù)還是偶函數(shù)?
(2)它的圖象具有怎樣的對(duì)稱性?
(3)它在(0,+∞)上是增函數(shù)還是減函數(shù)?
(4)它在(-∞,0)上是增函數(shù)還是減函數(shù)?
上述第(3)、(4)問的解決實(shí)際上為偶函數(shù)在對(duì)稱區(qū)間單調(diào)性的關(guān)系揭示提供了一個(gè)具體示例。在這樣的感性認(rèn)識(shí)下,接著可安排如下訓(xùn)練題:
(1)已知奇函數(shù)f(x)在[[a,b]]上是減函數(shù),試問:它在[[-b,-a]]上是增函數(shù)還是減函數(shù)?
(2)已知偶函數(shù)f(x)在[[a,b]]上是增函數(shù),試問:它在[[-b,-a]]上是增函數(shù)還是減函數(shù)?
(3)奇、偶函數(shù)在關(guān)于原點(diǎn)對(duì)稱區(qū)間上的單調(diào)性有何規(guī)律?
根據(jù)“解答距”的四個(gè)級(jí)別,層層設(shè)問,步步加難,把學(xué)生思維一步一個(gè)臺(tái)階引向求知的高度。在面對(duì)這樣一個(gè)題目時(shí),學(xué)生心理已經(jīng)有了準(zhǔn)備,不會(huì)感覺到無從下手。同時(shí)上一個(gè)問題解決也為一般結(jié)論的得出提供了一個(gè)思考的方向。這樣知識(shí)的掌握的過程是一種平緩的過程,新的知識(shí)的形成不是一蹴而就的,理解起來就顯得比較容易接受,掌握起來就會(huì)顯得更加牢固。
三、巧設(shè)懸念策略
懸念是一種學(xué)習(xí)心理的強(qiáng)刺激,使學(xué)生產(chǎn)生“欲罷不能”的期待情境,能引起學(xué)生學(xué)習(xí)的興趣、調(diào)動(dòng)學(xué)生的思維和引發(fā)求知?jiǎng)訖C(jī)。
案例3:今天以后的22006天是星期幾?這樣的問題喚起了學(xué)生對(duì)二項(xiàng)式定理應(yīng)用的濃厚興趣。通過在學(xué)生的認(rèn)識(shí)沖突中提出問題導(dǎo)入新課,使學(xué)生產(chǎn)生“欲知而后快”的期待情境,以激起不斷探求的興趣,既喚起學(xué)生對(duì)知識(shí)的愉悅,又喚起學(xué)生參與的熱情。事實(shí)上,現(xiàn)階段所使用的新教材在每一章的引言均有這樣的設(shè)置。同時(shí),教材增加了不少與現(xiàn)實(shí)聯(lián)系十分緊密的內(nèi)容,為數(shù)學(xué)教師提供了寬廣的知識(shí)平臺(tái),為新課引人的設(shè)問創(chuàng)造了有利的條件。
四、以形助數(shù)策略
華羅庚說過:“數(shù)缺形時(shí)少直觀,形少數(shù)時(shí)難入微”。數(shù)形結(jié)合是研究數(shù)學(xué)的重要方法,“以形助數(shù)”是數(shù)形結(jié)合的主要方面,它借助圖形的性質(zhì),可以加深對(duì)概念、公式、定理的理解,體會(huì)概念、公式、定理的幾何意義
案例4:已知函數(shù)f(x)是定義在R上的奇函數(shù),當(dāng)x≥0時(shí),f(x)=x(1+x)。畫出函數(shù)f(x)的圖象,并求出函數(shù)的解析式。
學(xué)生在完成此題的過程中,通過作圖,找到特殊點(diǎn),然后再確定x<0時(shí)的解析式。顯然他們并不會(huì)滿足于這樣“拄著拐杖走路”,很希望能脫離函數(shù)圖象這一中介的輔助,“脫離拐杖而獨(dú)立行走”。于是他們會(huì)問(或者老師啟發(fā))若不作函數(shù)圖象,能求出f(x)的解析式嗎?在完成此題目的基礎(chǔ)上他們也許還會(huì)盡一步發(fā)問:此方法可以推廣嗎?對(duì)一般的奇函數(shù)也適用嗎?若f(x)為偶函數(shù)又該怎么處理?經(jīng)過這樣一連串的發(fā)問,那么該題目的解決過程就顯得豐滿、充實(shí)。達(dá)到了以點(diǎn)帶面、把“薄書讀厚”的目的,這樣知識(shí)的升華就顯得潤(rùn)物細(xì)無聲。
五、聯(lián)系實(shí)際策略
在數(shù)學(xué)教學(xué)中教師應(yīng)根據(jù)生活和生產(chǎn)的實(shí)際而提出問題,創(chuàng)設(shè)實(shí)際問題情境,使學(xué)生認(rèn)識(shí)到數(shù)學(xué)學(xué)習(xí)的現(xiàn)實(shí)主義,認(rèn)識(shí)到數(shù)學(xué)知識(shí)的價(jià)值,這樣也更容易激發(fā)學(xué)生的好奇心和興趣,培養(yǎng)學(xué)生的主體意識(shí)。在我們身邊有許多數(shù)學(xué)問題,如銀行分期付款、商品打折、最優(yōu)化等經(jīng)濟(jì)問題;市政建設(shè)與環(huán)保問題;時(shí)政新聞;計(jì)劃決策問題;廣告的可信度問題等。
案例5:某氣象研究中心觀測(cè)一場(chǎng)沙塵暴從發(fā)生到結(jié)束的全過程,開始時(shí)風(fēng)速平均每小時(shí)增加2千米/時(shí),4小時(shí)后,沙塵暴經(jīng)過開闊荒漠地,風(fēng)速變?yōu)槠骄啃r(shí)增加4千米/時(shí),一段時(shí)間,風(fēng)速保持不變,當(dāng)沙塵暴遇到綠色植被區(qū)時(shí),其風(fēng)速平均每小時(shí)減少1千米/時(shí),最終停止.結(jié)合風(fēng)速與時(shí)間的圖象,回答下列問題:
(1)在y軸( )內(nèi)填入相應(yīng)的數(shù)值;
(2)沙塵暴從發(fā)生到結(jié)束,共經(jīng)過多少小時(shí)?
(3)求出當(dāng)x≥25時(shí),風(fēng)速y(千米/時(shí))與時(shí)間x(小時(shí))之間的函數(shù)關(guān)系式.
(面對(duì)實(shí)際情境,教師給予引導(dǎo),根據(jù)所給條件,建立一次函數(shù)模型,步步深入,最終轉(zhuǎn)換到不等式,解決問題)。
在新課引人時(shí),多為學(xué)生提供一些數(shù)學(xué)史或其它有趣的知識(shí),既能激發(fā)學(xué)生的學(xué)習(xí)興趣,又能擴(kuò)大學(xué)生的知識(shí)面并在穿插數(shù)學(xué)史介紹的過程中,加強(qiáng)對(duì)學(xué)生數(shù)學(xué)思想的滲透和數(shù)學(xué)文化的浸潤(rùn),讓學(xué)生在東西方數(shù)學(xué)文化觀的對(duì)比中,感受到數(shù)學(xué)理性精神對(duì)人類進(jìn)步的偉大作用,從而提高學(xué)習(xí)數(shù)學(xué)的興趣。
參考文獻(xiàn):
[1]中華人民共和國(guó)教育部.普通高中數(shù)學(xué)課程標(biāo)準(zhǔn).
[2]唐瑞芬.數(shù)學(xué)教學(xué)理論選講[M].華東師范大學(xué)出版社.
[3]潘振嶸.課堂教學(xué)中創(chuàng)設(shè)問題情境的嘗試[J].數(shù)學(xué)通訊.