• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看

      ?

      組織定居記憶性T細(xì)胞的免疫學(xué)特征研究進(jìn)展①

      2017-08-07 10:17:24余思菲吳長(zhǎng)有
      中國(guó)免疫學(xué)雜志 2017年7期
      關(guān)鍵詞:記憶性表型抗原

      余思菲 吳長(zhǎng)有

      (中山大學(xué)中山醫(yī)學(xué)院免疫研究所,廣東省器官捐獻(xiàn)和移植免疫重點(diǎn)實(shí)驗(yàn)室,廣州510080)

      ·專題綜述·

      組織定居記憶性T細(xì)胞的免疫學(xué)特征研究進(jìn)展①

      余思菲 吳長(zhǎng)有

      (中山大學(xué)中山醫(yī)學(xué)院免疫研究所,廣東省器官捐獻(xiàn)和移植免疫重點(diǎn)實(shí)驗(yàn)室,廣州510080)

      記憶性T細(xì)胞通過(guò)表達(dá)或不表達(dá)趨化因子受體CCR7和血管L-選擇素CD62(CD62L)來(lái)實(shí)現(xiàn)在機(jī)體外周血和淋巴組織間的循環(huán),分為中央型記憶性T細(xì)胞(Central memory T cells,TCM)和效應(yīng)型記憶性T細(xì)胞(Effector memory T cells,TEM)[1,2]。一般情況下TCM細(xì)胞表達(dá)CCR7和CD62L,主要分布于外周組織免疫器官和淋巴結(jié),當(dāng)再次受抗原刺激時(shí)可迅速分裂增殖和分化;TEM細(xì)胞低水平表達(dá)或不表達(dá)CCR7和CD62L,主要存在于非淋巴組織和器官,參與周身循環(huán),可遷移至外周炎癥組織發(fā)生速發(fā)性效應(yīng)功能。組織定居記憶性T細(xì)胞(Tissue-resident memory T cells,TRM)則不表達(dá)CCR7和CD62L,高表達(dá)CD69和/或CD103且不參與體循環(huán)[1,3,4](圖1)。早在2001年,就有文獻(xiàn)報(bào)道小鼠流感病毒感染后,肺中定居著一群長(zhǎng)壽命的CD8+T細(xì)胞。李斯特菌和水皰性口炎病毒(Vesicular stomatitis virus,VSV)感染后,抗原特異性CD8+T細(xì)胞可遷移至非淋巴結(jié)組織并長(zhǎng)期存活[5,6]。Gebhardt[7]和Walkim[8]等團(tuán)隊(duì)先后在LCMV感染的小腸黏膜和HSV感染的背根神經(jīng)節(jié)及皮膚中發(fā)現(xiàn),記憶性CD8+T細(xì)胞在感染后可停留于此而不參與血液循環(huán)。此后,人們?cè)谄つw、腸黏膜、肺組織、陰道黏膜G[7]和W[8]甚至大腦等組織中先后鑒定出具有同樣特征和功能的記憶性T細(xì)胞亞群,即TRM細(xì)胞。在過(guò)去十幾年中,我們實(shí)驗(yàn)室對(duì)人呼吸系統(tǒng)中多種淋巴細(xì)胞亞群的記憶性細(xì)胞的免疫學(xué)功能進(jìn)行了全面的研究,包括正常人外周血、鼻黏膜、結(jié)核性胸水等[9-12]。本文將結(jié)合國(guó)際上最新的研究成果和本實(shí)驗(yàn)室的相關(guān)研究結(jié)果,從表型、網(wǎng)絡(luò)分化調(diào)控機(jī)制、功能等方面討論TRM細(xì)胞的免疫學(xué)特征。

      1 TRM細(xì)胞的表型特征及組織定居

      TCM和TEM細(xì)胞參與體循環(huán),是機(jī)體監(jiān)視、預(yù)防和及時(shí)清除病原微生物再感染的關(guān)鍵[13,14]。然而,不同于TCM和TEM細(xì)胞,TRM細(xì)胞不表達(dá)趨化因子受體CCR7和歸巢分子CD62L,不參與體循環(huán),而是長(zhǎng)期定居于某特定組織中,在局部組織中發(fā)揮快速而關(guān)鍵的保護(hù)性免疫應(yīng)答。

      除了不表達(dá)CCR7和CD62L外,不同組織中TRM細(xì)胞的表型特征具有明顯的異質(zhì)性[15]。我們?nèi)”窍⑷?Nasal polyps,NPs)、肺正常組織(lung normal tissue)、腸道淋巴結(jié)(lymph nodes)、扁桃體(tonsil)和外周血等樣本,分離其中的單個(gè)核細(xì)胞,用流式細(xì)胞術(shù)分析記憶性(CD45RO+)T細(xì)胞的表型(圖2)。與國(guó)際報(bào)道一致,結(jié)果顯示鼻息肉、肺組織和淋巴結(jié)等低表達(dá)或不表達(dá)CD62L和CCR7,外周血中CD69和CD103的表達(dá)水平較低;鼻息肉、肺組織、扁桃體和淋巴結(jié)中的T細(xì)胞高表達(dá)CD69,鼻息肉、肺組織和扁桃體部分CD69+細(xì)胞表達(dá)CD103,其中以CD8+T細(xì)胞表達(dá)較高;淋巴結(jié)僅CD8+T細(xì)胞表達(dá)低水平的CD103。由此可見(jiàn),特定組織定居的TRM細(xì)胞均高表達(dá)CD69分子,部分表達(dá)整合素E鏈(CD103)[15-17]。

      圖1 記憶性T細(xì)胞的形成和體內(nèi)循環(huán)Fig.1 Development and recirculation of memory T cellsNote: Naive T cells (TN cells) are activated by antigen presented by antigen presenting cells (APCs),and develop into effector T cells (TEff cells) to play immunological effects.More than 90% of TEff cells enter programmed apoptosis,only 5 to 10% cells develop into long-lived memory cells.Effector memory T cells do not express CCR7 and CD62L in nonlymphoid tissues;central memory T cells express CCR7 and CD62L,mostly in peripheral lymphoid tissues and lymph nodes;both of TCM and TEM cells can recirculate from peripheral blood to second lymphoid organs or nonlymphoid tissues.In local tissues,such as skin,intestines,lungs,brain,female reproductive tract,and so on,KLRG1-CD127hi precursor cells differentiate into TRM cells under the induction of inflammatory molecules,the expression of CD69 or CD103 on nonrecirculating TRM cells are up-regulated,and KLF2 and S1PR1 are down-regulated.

      CD69是存在于許多不同組織部位TRM細(xì)胞的共同標(biāo)志,如皮膚、肺、胃腸道的TRM細(xì)胞都表達(dá)CD69。最初,人們認(rèn)為CD69是淋巴細(xì)胞早期活化的一個(gè)重要標(biāo)志,與TCR信號(hào)的啟動(dòng)有密切關(guān)系[18]。但是,越來(lái)越多的研究證實(shí)TRM細(xì)胞上高表達(dá)的CD69不依賴于TCR的啟動(dòng),與TRM細(xì)胞的組織定居密切相關(guān)[19]。有實(shí)驗(yàn)證明,T細(xì)胞上表達(dá)的CD69抑制1-磷酸鞘氨酸受體1(Sphingosine-1-phosphate receptor 1,S1PR1)的活性[20-22]。在人類和小鼠體內(nèi)1-磷酸鞘氨醇(S1P)的分布水平是梯度分布的,由低到高依次為周圍組織、淋巴結(jié)和血液。一方面,TRM細(xì)胞表面的CD69可結(jié)合到S1PR1的跨膜區(qū)域并促進(jìn)其降解,從而阻止了這些T細(xì)胞識(shí)別S1P梯度的變化使得TRM細(xì)胞能夠長(zhǎng)期定居在組織當(dāng)中。另一方面,組織中低水平的S1P亦影響了外周循環(huán)記憶性T細(xì)胞的進(jìn)入。轉(zhuǎn)錄因子KLF2是調(diào)控S1PR1的上游關(guān)鍵因子,TRM細(xì)胞中觀察到KLF2的表達(dá)水平明顯降低[20]。CD103是TRM細(xì)胞另外一個(gè)重要的標(biāo)志,在CD8+TRM細(xì)胞上的表達(dá)水平明顯高于CD4+T細(xì)胞(圖2)。CD103是與β7結(jié)合的整合素鏈,是屏障組織上皮細(xì)胞上表達(dá)的E鈣黏蛋白的配體[23]。值得注意的是,并不是所有的TRM細(xì)胞均表達(dá)CD103,在腸道黏膜、次級(jí)淋巴結(jié)(脾臟)和肝臟等組織中均發(fā)現(xiàn)CD103-的TRM細(xì)胞[15,24-26]。小鼠病毒感染模型發(fā)現(xiàn),小鼠近氣道部位定居的TRM細(xì)胞不表達(dá)CD103,而高水平表達(dá)CD69和CD11a[27,28]。在某些組織中,除了定居的TRM細(xì)胞表達(dá)CD103外,組織中定居的固有淋巴樣細(xì)胞(Innate lymphoid cells,ILCs)等其他細(xì)胞亞群也部分表達(dá)CD103[15,29]。我們分離鼻息肉組織中浸潤(rùn)的單個(gè)核細(xì)胞,用多色流式細(xì)胞術(shù)分析淋巴細(xì)胞中CD103+細(xì)胞的亞群(圖 3)。結(jié)果顯示,CD103主要表達(dá)于CD3+的T細(xì)胞中;進(jìn)一步分析CD103+T細(xì)胞中CD4+、CD8+、NKT和γδ T細(xì)胞的百分比,結(jié)果顯示以CD8+T細(xì)胞為主;非T細(xì)胞中,CD103+細(xì)胞以NK和單核細(xì)胞為主要。當(dāng)首先設(shè)門于NK、B、單核細(xì)胞、CD4+、CD8+、NKT和γδ T細(xì)胞中,分析各細(xì)胞亞群中CD103的百分比,結(jié)果顯示各細(xì)胞亞群中均部分表達(dá)CD103,其中以CD8+T細(xì)胞和γδ T細(xì)胞表達(dá)CD103的百分比最高。其他組織是否也存在類似的結(jié)果,還需要進(jìn)一步的研究。

      2 TRM細(xì)胞形成的調(diào)控機(jī)制

      當(dāng)病原微生物初次入侵機(jī)體,在淋巴結(jié)活化成熟的效應(yīng)性T細(xì)胞游走至炎癥部位,大部分效應(yīng)性T細(xì)胞發(fā)揮作用后會(huì)進(jìn)入一個(gè)程序性的凋亡過(guò)程,僅不到10%的細(xì)胞存活下來(lái)分化成為具有長(zhǎng)壽命的記憶性T細(xì)胞(圖1)。效應(yīng)性T細(xì)胞分化為記憶性T細(xì)胞,與周圍微環(huán)境及其自身轉(zhuǎn)錄因子的調(diào)控、歸巢分子、細(xì)胞因子受體和其他表面分子的表達(dá)密切相關(guān)。已知,細(xì)胞接受TCR信號(hào)的刺激強(qiáng)度越大、炎癥性細(xì)胞因子分泌越多,則分化為記憶性細(xì)胞的能力越低[30-33]。與外周循環(huán)記憶性CD8+T細(xì)胞不同,CD8+TRM細(xì)胞中EOMES和TCF1的表達(dá)降低,同時(shí)T-bet的表達(dá)也降低[19,34]。亦有研究發(fā)現(xiàn),在肺組織CD103+TRM細(xì)胞的分化與T-bet密切相關(guān)[35]。皮膚中,T-bet的缺失將誘導(dǎo)KLRG-1低表達(dá)的TRM前體細(xì)胞的產(chǎn)生,并促進(jìn)CD103的表達(dá)[19,36]。轉(zhuǎn)錄因子表達(dá)的高低,進(jìn)一步調(diào)控細(xì)胞中其他分子的表達(dá)。klf2GFP轉(zhuǎn)基因熒光示蹤小鼠體內(nèi)實(shí)驗(yàn)發(fā)現(xiàn),參與調(diào)控S1P1表達(dá)的轉(zhuǎn)錄因子KLF表達(dá)降低后,T細(xì)胞表面S1PR1的表達(dá)明顯降低,使得T細(xì)胞定居于組織部位而無(wú)法游走至外周[20]。細(xì)胞因子TGF-β、IL-33和TNF-α通過(guò)磷脂酰肌醇3激酶(Phosphatidylinositol-3-OH kinase,PI3K)和激酶Akt抑制KLF2的表達(dá)。此外,微環(huán)境中TGF-β與皮膚、腸道和肺組織中CD69+CD103+TRM細(xì)胞的分化密切相關(guān)[19,35,37-39],而CD103-TRM細(xì)胞的生成不依賴于TGF-β[40]。TGF-β亦可降低T-box轉(zhuǎn)錄因子T-bet和EOMES的表達(dá),對(duì)皮膚表皮TRM細(xì)胞的形成至關(guān)重要[36]。然而,關(guān)于TGF-β調(diào)控CD69和CD103表達(dá)的分子機(jī)制還不明確。

      細(xì)胞因子IL-15被認(rèn)為在維持記憶性T細(xì)胞的穩(wěn)定中發(fā)揮重要的作用,研究發(fā)現(xiàn)IL-15亦與TRM細(xì)胞的生成和維持有關(guān)。在HSV感染的皮膚中,IL-15的缺失將影響TRM細(xì)胞的生成[36]。在HSV感染前(7~14 d注射IL-15和/或IL-15R的中和抗體,TRM細(xì)胞的生成均將受到抑制。也有研究證實(shí),IL-15只影響TRM細(xì)胞的分裂增殖而不參與調(diào)控TRM細(xì)胞的存活和維持[41]。除上述提到的細(xì)胞因子TGF-β、IL-33、TNF-α和IL-15參與TRM細(xì)胞的分化和組織定居以外,CD4+T細(xì)胞在組織中對(duì)CD8+TRM細(xì)胞的生成和定居至關(guān)重要[42,43]。Laidlaw等證實(shí)在TRM細(xì)胞形成的早期,未被CD4+T細(xì)胞輔助的CD8+T細(xì)胞無(wú)法正常的定居至氣道上皮,且由于細(xì)胞表面與TGF-β作用的信號(hào)太弱導(dǎo)致CD8+T細(xì)胞表面CD103的表達(dá)降低。研究發(fā)現(xiàn),CD4+T細(xì)胞產(chǎn)生大量的細(xì)胞因子IFN-γ促進(jìn)肺CD103+CD8+TRM細(xì)胞的產(chǎn)生,并降低轉(zhuǎn)錄因子T-bet的表達(dá)而促進(jìn)趨化因子受體CXCR3的表達(dá)。

      圖2 不同組織中CD4+和CD8+記憶性T細(xì)胞的表型Fig.2 Phenotypical characteristics of memory CD4+ and CD8+ T cells from different tissuesNote: Mononuclear cells were isolated from nasal polyps, lung tissue,tonsil,lymph node,peripheral blood,and then flow cytometry was used to analyze the co-expression of CD103,CD69,CD62L and CCR7 on CD4+CD45RO+ (A) and CD8+CD45RO+ (B) T cells.

      圖3 鼻息肉組織中CD103+細(xì)胞的亞群分析Fig.3 Sub-population analysis of CD103+ T cells in nasal polypsNote: Mononuclear cells were isolated from nasal polyps,and then flow cytometry was used to analyze the sub-populations of CD103+ lymphocytes (A),and the frequencies of CD103+ on distinct sub-populations were also detected (B).

      3 不同組織中的TRM細(xì)胞及其功能特性

      在功能方面與TEM和TCM細(xì)胞相比較,TRM細(xì)胞能在病原微生物入侵機(jī)體的早期快速感應(yīng)和識(shí)別抗原物質(zhì),不需要特異性增殖即可產(chǎn)生強(qiáng)烈的免疫效應(yīng)[15,16]。一方面是TRM細(xì)胞定居位置更接近抗原,大部分抗原通過(guò)皮膚、黏膜等與外界接觸的部位進(jìn)入體內(nèi)后,TRM細(xì)胞能快速感應(yīng)并識(shí)別抗原,不需增殖即可發(fā)生特異性免疫應(yīng)答,而循環(huán)的記憶性T細(xì)胞則需要經(jīng)過(guò)定位、黏附、滲出的全過(guò)程才能到達(dá)感染部位。此外,TRM細(xì)胞可啟動(dòng)天然免疫而發(fā)揮廣泛的組織抗病毒功能[44]。另一方面TRM細(xì)胞還可通過(guò)產(chǎn)生IFN-γ等細(xì)胞因子來(lái)募集循環(huán)的記憶性T細(xì)胞到達(dá)感染部位[28]。以下,我們將逐一分析皮膚、肺、腸道黏膜和陰道等不同組織中TRM細(xì)胞的基本特征和功能。

      3.1 皮膚 正常成年人皮膚表面存在約20億的T細(xì)胞,是整個(gè)血管系統(tǒng)細(xì)胞數(shù)量的2倍之多[45]。人皮膚中定居的T細(xì)胞全部表達(dá)CD45RO,同時(shí)表達(dá)皮膚相關(guān)的歸巢分子CLA和CCR4,而生長(zhǎng)于完全無(wú)菌環(huán)境的小鼠皮膚中T細(xì)胞的數(shù)量則極少[46,47]。TRM細(xì)胞而非其他的循環(huán)記憶性T細(xì)胞在皮膚局部發(fā)揮更為重要和快速的保護(hù)免疫效應(yīng)[7]。同時(shí),皮膚中的TRM細(xì)胞雖不參與體循環(huán),卻可以在皮膚局部不斷地游走,快速識(shí)別再次入侵的病原微生物,對(duì)整個(gè)皮膚系統(tǒng)發(fā)揮重要的保護(hù)性作用[48]。在人皮膚組織中,表皮層和真皮層的TRM細(xì)胞在表型上略有差異[37]。表皮中以CD103+CD69+TRM細(xì)胞為主,真皮中以CD103-CD69+TRM細(xì)胞為主要,其中CD103+CD69+TRM細(xì)胞產(chǎn)生更高水平的效應(yīng)性細(xì)胞因子,可快速啟動(dòng)天然免疫細(xì)胞,發(fā)揮廣泛的抗病毒功能。除TRM細(xì)胞外,人和鼠皮膚中部分記憶性T細(xì)胞表達(dá)CCR7和CD62L,為中央型記憶性T細(xì)胞,依賴CCR7的表達(dá)可進(jìn)出皮膚組織參與外周循環(huán)[37,49-51]。

      3.2 肺 流感病毒感染小鼠是國(guó)內(nèi)外研究TRM細(xì)胞的形成機(jī)制、表型特征和抗感染作用最早和最常用的模型之一,許多研究發(fā)現(xiàn)鼻滴感染比皮下感染病原體后更容易誘導(dǎo)肺組織產(chǎn)生免疫應(yīng)答和肺TRM細(xì)胞[52,53]。在肺部流感病毒感染中,記憶性CD8+TRM的數(shù)量與抗流感的免疫保護(hù)作用成一定的正相關(guān)性[5,28,54];同時(shí),肺部的CD4+TRM細(xì)胞比循環(huán)系統(tǒng)的CD4+記憶性T細(xì)胞在抗流感的免疫保護(hù)作用方面發(fā)揮更重要的作用[42,43]。TGF-β被證實(shí)促進(jìn)CD103的表達(dá),但是并不依賴于TGF-β活化的下游信號(hào)Smad4,雖然Smad4促進(jìn)效應(yīng)性和循環(huán)記憶性CD8+T細(xì)胞的分化[55]。肺CD4+TRM細(xì)胞表現(xiàn)出強(qiáng)烈的肺組織趨化性,過(guò)繼轉(zhuǎn)輸給小鼠過(guò)后,肺組織來(lái)源的CD4+TRM細(xì)胞游走并定居于肺組織,比脾臟來(lái)源的記憶性CD4+T細(xì)胞提供更好的保護(hù)作用。選擇性過(guò)表達(dá)IFN誘導(dǎo)轉(zhuǎn)膜蛋白3(IFN-induced transmembrane protein,IFITM3)能夠明顯增強(qiáng)肺組織定居TRM細(xì)胞的抗流感病毒能力[56]。結(jié)核性胸膜炎胸液?jiǎn)蝹€(gè)核細(xì)胞中CD4+和CD8+T細(xì)胞均高表達(dá)CD69分子,與CD69-T細(xì)胞相比較,CD69+T細(xì)胞經(jīng)結(jié)核特異性抗原肽刺激后,產(chǎn)生更高水平的細(xì)胞因子和顆粒性分子,并表現(xiàn)出功能的多樣性[57,58]。肺纖維化的小鼠模型中,鼻腔內(nèi)疫苗接種,可以恢復(fù)原有的病理特征,疫苗誘導(dǎo)的肺TRM細(xì)胞發(fā)揮了至關(guān)重要的作用[59]。肺部過(guò)敏性疾病中,TRM細(xì)胞在過(guò)敏性哮喘中發(fā)揮的是一個(gè)調(diào)節(jié)作用,與其他的天然免疫細(xì)胞構(gòu)成一個(gè)細(xì)胞網(wǎng)絡(luò),從而調(diào)控疾病的發(fā)生與發(fā)展[60]。肺部腫瘤中,CD8+CD103+淋巴細(xì)胞是一群腫瘤特異的TRM細(xì)胞,是肺部腫瘤生存和預(yù)后的一個(gè)重要調(diào)控因子[61]。

      3.3 腸道黏膜 腸道黏膜組織是許多細(xì)菌和病毒易侵襲的部位,口腔單核細(xì)胞增多性李斯特菌感染機(jī)體后,效應(yīng)性CD8+T細(xì)胞表達(dá)整合素α4β7和趨化因子受體CCR9并遷移至黏膜組織中,包括腸道黏膜[62,63]。遷移至腸道組織的CD8+T細(xì)胞表達(dá)CD127而不表達(dá)KLRG1,成為記憶性前體效應(yīng)性T細(xì)胞(Memory precursor effector cells,MPECs)。CD127+KLRG1-CD8+T細(xì)胞在內(nèi)源性TGF-β信號(hào)的作用下可快速表達(dá)CD69和CD103分子,其中CD103分子誘導(dǎo)細(xì)胞定居于腸道組織中,但是與TRM細(xì)胞在腸道組織中的長(zhǎng)期定居無(wú)關(guān)[38]。此外,TGF-β信號(hào)也可以誘導(dǎo)α4β7的表達(dá)。與皮膚TRM細(xì)胞類似,腸道上皮層和固有層中TRM細(xì)胞的表型有一定的差異性。上皮層中主要以CD103+CD69+TRM細(xì)胞為主,而固有層中則包含CD103+和CD103-兩群TRM細(xì)胞,在分化調(diào)控機(jī)制上兩群細(xì)胞間也存在一定的差異性[40]。不同于CD103+TRM細(xì)胞的表型和分化條件,固有層中CD103-RM細(xì)胞高表達(dá)Klf2 mRNA、CD69分子、顆粒性殺傷分子Granzyme B和抗凋亡分子Bcl-2,其生成不依賴于TGF-β-TGF-βR信號(hào)及抗原刺激,而與局部炎癥微環(huán)境相關(guān)。CXCR3-CXCL-10信號(hào)誘導(dǎo)CD8+T細(xì)胞遷移至炎癥部位,影響CD103-TRM細(xì)胞的分化和病原體的清除。

      3.4 陰道 女性陰道是生殖系統(tǒng)性疾病傳染的主要通道,陰道作為一個(gè)限制性的免疫組織,在沒(méi)有炎癥和感染的情況下阻止活化的T細(xì)胞進(jìn)入[64]。在改進(jìn)HSV-2疫苗的免疫效果研發(fā)中,科學(xué)家發(fā)現(xiàn)皮下免疫疫苗合并陰道滴注趨化因子CXCR3單抗處理后,陰道黏膜中CD4+和CD8+T細(xì)胞明顯高于單純的皮下免疫組小鼠[65]。處理過(guò)后12周,定居于陰道黏膜中CD8+T細(xì)胞仍然明顯高于單純的皮下免疫組,而CD4+T細(xì)胞無(wú)長(zhǎng)期定居特性。功能研究證實(shí),陰道黏膜中長(zhǎng)期定居的CD8+T細(xì)胞并不影響陰道中HSV-2的復(fù)制,而是通過(guò)抑制神經(jīng)系統(tǒng)中HSV-2的復(fù)制來(lái)控制感染。同樣,鼻滴免疫胸腺激酶缺陷的HSV-2后,亦可以誘導(dǎo)效應(yīng)性CD8+T細(xì)胞遷移并長(zhǎng)期定居于陰道黏膜,并在HSV-2感染早期發(fā)揮重要的免疫清除作用[66]。人乳頭狀瘤病毒載體經(jīng)陰道免疫2次后,將誘導(dǎo)陰道中聚集大量的抗原特異性CD8+T細(xì)胞[67]。CD8+T細(xì)胞主要分布于陰道黏膜的內(nèi)皮和上皮,高表達(dá)CD103而不表達(dá)CD62L,可在陰道組織中存活6個(gè)月之久,產(chǎn)生效應(yīng)性細(xì)胞因子IFN-γ和TNF-α,在體內(nèi)表現(xiàn)出顯著的細(xì)胞毒性。誘導(dǎo)陰道內(nèi)CD8+TRM細(xì)胞的產(chǎn)生,成為越來(lái)越多預(yù)防宮頸癌疫苗研發(fā)的關(guān)鍵點(diǎn),并取得重大的突破[68]。

      3.5 其他組織 除上述皮膚、肺、腸道和陰道組織以外,胃內(nèi)皮及淋巴結(jié)、心臟、腎臟和前列腺甚至中樞神經(jīng)腦組織中亦發(fā)現(xiàn)了表達(dá)CD69和/或CD103的TRM細(xì)胞[69]。正常情況下,淋巴細(xì)胞無(wú)法通過(guò)腦屏障,大腦被認(rèn)為是免疫豁免區(qū)。然而,一旦發(fā)生感染,抗原特異性的CD8+T細(xì)胞將進(jìn)入并長(zhǎng)期定居于腦組織中,即腦TRM細(xì)胞[70]。滴鼻免疫水皰性口炎病毒VSV后,CD8+T細(xì)胞浸潤(rùn)至腦組織,在顱內(nèi)樹(shù)突狀細(xì)胞(Dendritic cells,DCs)的信號(hào)提呈作用下表達(dá)CD103。但是,值得一提的是CD103的表達(dá)不依賴于抗原物質(zhì)。CD103不僅對(duì)腦TRM細(xì)胞的表型特征有顯著的影響,同時(shí)將影響TRM細(xì)胞的功能。腦CD103+TRM細(xì)胞分裂增殖能力弱,不參與外周循環(huán),組織特異性要求高,一旦從組織中分離后將快速死亡[34,70]?;蚪M學(xué)分析腦CD103+TRM細(xì)胞的調(diào)控分子,與腦CD103-TRM細(xì)胞和脾臟CD103-TRM細(xì)胞相比較,腦CD103+TRM細(xì)胞高表達(dá)效應(yīng)性分子Granzyme B、IL-2Ra和抑制性分子CTLA-4、PD-1,IFITM3的表達(dá)亦增加,轉(zhuǎn)錄因子EOSEM、T-bet和TCF-1表達(dá)下降[34]。此外趨化因子CCL3、CCL4和CXCL10在腦TRM細(xì)胞中的基因表達(dá)水平增加。

      4 TRM細(xì)胞與疾病

      TRM細(xì)胞對(duì)于局部組織中病原微生物的再感染具有強(qiáng)烈的保護(hù)性免疫應(yīng)答作用,亦參與調(diào)控腫瘤的保護(hù)性免疫應(yīng)答。同時(shí),TRM細(xì)胞對(duì)變應(yīng)原、自身抗體等病原體具有同樣的免疫效應(yīng)功能,這些抗原特異性的TRM細(xì)胞在局部組織一旦被激活,將造成嚴(yán)重的炎癥反應(yīng),對(duì)機(jī)體造成傷害[71,72]。由于其組織定居、不參與外周循環(huán)、無(wú)需抗原提成細(xì)胞激活即可發(fā)生快速的免疫效應(yīng)等特征,TRM細(xì)胞介導(dǎo)的炎癥性疾病在臨床上具有明顯的特征,如病灶界限明顯、持續(xù)時(shí)間長(zhǎng),對(duì)局部抗炎癥治療明顯有效等。牛皮癬個(gè)典型的皮膚TRM細(xì)胞介導(dǎo)的自身免疫性疾病,其發(fā)現(xiàn)與臨床抗E-選擇素抗體藥物CDP850的臨床試驗(yàn)和皮膚移植實(shí)驗(yàn)有關(guān)[73,74]。CDP850已證實(shí)可以阻斷血液中的T細(xì)胞游走至皮膚組織中,盡管CDP850的應(yīng)用可以很好地清除體循環(huán)中的T細(xì)胞,但是并不能很好的改善牛皮癬炎癥性病灶。提示,皮膚局部長(zhǎng)久定居的TRM細(xì)胞而非循環(huán)系統(tǒng)來(lái)源的Tc17細(xì)胞(CD8+IL-17+TRM細(xì)胞)和Th22細(xì)胞(CD4+IL-22+TRM細(xì)胞)是頑固性牛皮癬的主要病因[75]。

      5 結(jié)語(yǔ)

      TRM細(xì)胞廣泛地在各種外周組織中被鑒定及其不同于TEM和TCM細(xì)胞的分子調(diào)控機(jī)制和表型特征,使得人們?cè)絹?lái)越關(guān)注TRM細(xì)胞在臨床的應(yīng)用價(jià)值。特別是抗原特異性TRM細(xì)胞的發(fā)現(xiàn),對(duì)研發(fā)特異性疫苗的作用價(jià)值不可估量。傳統(tǒng)上,疫苗主要誘導(dǎo)機(jī)體體液免疫產(chǎn)生中和抗體發(fā)揮抗感染作用,但是對(duì)于很多病原體如真菌、胞內(nèi)結(jié)核分枝桿菌(Mycobacterium tuberculosis,Mtb)、人免疫缺陷病毒(Human immunodeficiency virus 1,HIV-1)等,細(xì)胞免疫應(yīng)答才是控制感染的關(guān)鍵。如何提高疫苗誘導(dǎo)機(jī)體局部組織中產(chǎn)生穩(wěn)定而持久的抗原特異性TRM細(xì)胞的能力,將是科學(xué)家研發(fā)新型疫苗的重要突破口。目前,人們?cè)谛∈髮?shí)驗(yàn)中已經(jīng)發(fā)現(xiàn)皮下注射和特異性趨化因子誘導(dǎo)可以促進(jìn)陰道HSV-2和HPV特異性TRM細(xì)胞的生成,該免疫方法同時(shí)不會(huì)引起陰道局部和全身性的炎癥反應(yīng)[65,67]。這些研究基礎(chǔ),將是人們研發(fā)抗HIV-1疫苗的重要參考依據(jù)。

      [1] Mueller SN,Gebhardt T,Carbone FR,etal.Memory T cell subsets,migration patterns,and tissue residence[J].Annu Rev Immunol,2013,31(0):137-161.

      [2] 吳長(zhǎng)有.初始和記憶T細(xì)胞的研究進(jìn)展[J].現(xiàn)代免疫學(xué),2005,25(5):353-356.

      [3] Gebhardt T,Mueller SN,Heath WR,etal.Peripheral tissue surveillance and residency by memory T cells[J].Trends Immunol,2013,31(1):27-32.

      [4] Carbone FR,Mackay LK,Heath WR,etal.Distinct resident and recirculating memory T cell subsets in non-lymphoid tissues[J].Curr Opin Immunol,2013,25(3):329-333.

      [5] Hogan RJ,Usherwood EJ,Zhong W,etal.Activated antigen-specific CD8+T cells persist in the lungs following recovery from respiratory virus infections[J].J Immunol,2001,166(3):1813-1822.

      [6] Masopust D,Vezys V,Marzo AL,etal.Preferential localization of effector memory cells in nonlymphoid tissue[J].Science,2001,291(5512):2413-2417.

      [7] Gebhardt T,Wakim LM,Eidsmo L,etal.Memory T cells in nonlymphoid tissue that provide enhanced local immunity during infection with herpes simplex virus[J].Nat Immunol,2009,10(5):524-530.

      [8] Wakim LM,Waithman J,van Rooijen N,etal.Dendritic cell-induced memory T cell activation in nonlymphoid tissues[J].Science,2008,319(5860):198-202.

      [9] Xiao L,Jia L,Zhang Y,etal.Human IL-21+IFN-gamma+CD4+T cells in nasal polyps are regulated by IL-12[J].Sci Rep,2015,5:12781-12781.

      [10] Yu SF,Zhang YN,Yang BY,etal.Human memory,but not naive,CD4+T cells expressing transcription factor T-bet might drive rapid cytokine production[J].J Biol Chem,2014,289(1):35561-35569.

      [11] Fu X,Yang B,Lao S,etal.Human memory-like NK cells migrating to tuberculous pleural fluid via IP-10CXCR3 and SDF-1CXCR4 axis produce IFN-gamma in response to Bacille Calmette Guerin[J].Clin Immunol,2013,148(1):113-123.

      [12] Yu S,Jia L,Zhang Y,etal.IL-12 induced the generation of IL-21-and IFN-gamma-co-expressing poly-functional CD4+T cells from human naive CD4+T cells[J].Cell Cycle,2015,14(21):3362-3372.

      [13] Sallusto F,Lenig D,Forster R,etal.Two subsets of memory T lymphocytes with distinct homing potentials and effector functions[J].Nature,1999,401(6754):708-712.

      [14] Ahmed R,Gray D.Immunological memory and protective immunity:understanding their relation[J].Science,1996,272(5258):54-60.

      [15] Mueller SN,Mackay LK.Tissue-resident memory T cells:local specialists in immune defence[J].Nat Rev Immunol,2016,16(2):79-89.

      [16] Schenkel JM,Masopust D.Tissue-resident memory T cells[J].Immunity,2014,41(6):886-897.

      [17] Shin H,Iwasaki A.Tissue-resident memory T cells[J].Immunol Rev,2013,255(1):165-181.

      [18] Shiow LR,Rosen DB,Brdickova N,etal.CD69 acts downstream of interferon-alphabeta to inhibit S1P1 and lymphocyte egress from lymphoid organs[J].Nature,2006,440(7083):540-544.

      [19] Mackay LK,Rahimpour A,Ma JZ,etal.The developmental pathway for CD103(+)CD8+tissue-resident memory T cells of skin[J].Nat Immunol,2013,14(12):1294-1301.

      [20] Skon CN,Lee JY,Anderson KG,etal.Transcriptional downregulation of S1pr1 is required for the establishment of resident memory CD8+T cells[J].Nat Immunol,2013,14(12):1285-1293.

      [21] Mackay LK,Braun A,Macleod BL,etal.Cutting edge:CD69 interference with sphingosine-1-phosphate receptor function regulates peripheral T cell retention[J].J Immunol,2015,194(5):2059-2063.

      [22] Cyster JG,Schwab SR.Sphingosine-1-phosphate and lymphocyte egress from lymphoid organs[J].Annu Rev Immunol,2012,30:69-94.

      [23] Hadley GA,Higgins JM.Integrin alphaEbeta7:molecular features and functional significance in the immune system[J].Adv Exp Med Biol,2014,819:97-110.

      [24] Schenkel JM,Fraser KA,Masopust D.Cutting edge:resident memory CD8 T cells occupy frontline niches in secondary lymphoid organs[J].J Immunol,2014,192(7):2961-2964.

      [25] Anderson KG,Sung H,Skon CN,etal.Cutting edge:intravascular staining redefines lung CD8 T cell responses[J].J Immunol,2012,189(6):2702-2706.

      [26] Tse SW,Cockburn IA,Zhang H,etal.Unique transcriptional profile of liver-resident memory CD8+T cells induced by immunization with malaria sporozoites[J].Genes Immun,2013,14(5):302-309.

      [27] Turner DL,Bickham KL,Thome JJ,etal.Lung niches for the generation and maintenance of tissue-resident memory T cells[J].Mucosal Immunol,2014,7(3):501-510.

      [28] Mcmaster SR,Wilson JJ,Wang H,etal.Airway-resident memory CD8 T cells provide antigen-specific protection against respiratory virus challenge through rapid IFN-gamma production[J].J Immunol,2015,195(1):203-209.

      [29] Fuchs A,Vermi W,Lee JS,etal.Intraepithelial type 1 innate lymphoid cells are a unique subset of IL-12-and IL-15-responsive IFN-gamma-producing cells[J].Immunity,2013,38(4):769-781.

      [30] Chang JT,Wherry EJ,Goldrath AW.Molecular regulation of effector and memory T cell differentiation[J].Nat Immunol,2014,15(12):1104-1115.

      [31] Obar JJ,Lefrancois L.Memory CD8+T cell differentiation[J].Ann N Y Acad Sci,2010,1183:251-266.

      [32] Sallusto F,Geginat J,Lanzavecchia A.Central memory and effector memory T cell subsets:function,generation,and maintenance[J].Annu Rev Immunol,2004,22:745-763.

      [33] Angelosanto JM,Wherry EJ.Transcription factor regulation of CD8+T-cell memory and exhaustion[J].Immunol Rev,2010,236:167-175.

      [34] Wakim LM,Woodward-Davis A,Liu R,etal.The molecular signature of tissue resident memory CD8 T cells isolated from the brain[J].J Immunol,2012,189(7):3462-3471.

      [35] Laidlaw BJ,Zhang N,Marshall HD,etal.CD4+T cell help guides formation of CD103+lung-resident memory CD8+T cells during influenza viral infection[J].Immunity,2014,41(4):633-645.

      [36] Mackay LK,Wynne-Jones E,Freestone D,etal.T-box transcription factors combine with the cytokines TGF-beta and IL-15 to control tissue-resident memory T cell fate[J].Immunity,2015,43(6):1101-1111.

      [37] Watanabe R,Gehad A,Yang C,etal.Human skin is protected by four functionally and phenotypically discrete populations of resident and recirculating memory T cells[J].Sci Transl Med,2015,7(279):279r39.

      [38] Sheridan BS,Pham QM,Lee YT,etal.Oral infection drives a distinct population of intestinal resident memory CD8(+)T cells with enhanced protective function[J].Immunity,2014,40(5):747-757.

      [39] Zhang N,Bevan MJ.Transforming growth factor-beta signaling controls the formation and maintenance of gut-resident memory T cells by regulating migration and retention[J].Immunity,2013,39(4):687-696.

      [40] Bergsbaken T,Bevan MJ.Proinflammatory microenvironments within the intestine regulate the differentiation of tissue-resident CD8(+)T cells responding to infection[J].Nat Immunol,2015,16(4):406-414.

      [41] Schenkel JM,Fraser KA,Casey KA,etal.IL-15-independent maintenance of tissue-resident and boosted effector memory CD8 T cells[J].J Immunol,2016,196(9):3920-3926.

      [42] Laidlaw BJ,Zhang N,Marshall HD,etal.CD4+T cell help guides formation of CD103+ lung-resident memory CD8+T cells during influenza viral infection[J].Immunity,2014,41(4):633-645.

      [43] Mackay LK,Carbone FR.CD4 helpers put tissue-resident memory cells in their place[J].Immunity,2014,41(4):514-515.

      [44] Slutter B,Harty JT.Instructing the instructor:tissue-resident T cells activate innate immunity[J].Cell Host Microbe,2014,16(4):421-423.

      [45] Clark RA,Chong B,Mirchandani N,etal.The vast majority of CLA+T cells are resident in normal skin[J].J Immunol,2006,176(7):4431-4439.

      [46] Clark RA.Skin-resident T cells:the ups and downs of on site immunity[J].J Invest Dermatol,2010,130(2):362-370.

      [47] Booth JS,Toapanta FR,Salerno-Goncalves R,etal.Characterization and functional properties of gastric tissue-resident memory T cells from children,adults,and the elderly[J].Front Immunol,2014,5:294-294.

      [48] Jiang X,Clark RA,Liu L,etal.Skin infection generates non-migratory memory CD8+T(RM)cells providing global skin immunity[J].Nature,2012,483(7388):227-231.

      [49] Clark RA,Watanabe R,Teague JE,etal.Skin effector memory T cells do not recirculate and provide immune protection in alemtuzumab-treated CTCL patients[J].Sci Transl Med,2012,4(117):117r-117r.

      [50] Debes GF,Arnold CN,Young AJ,etal.Chemokine receptor CCR7 required for T lymphocyte exit from peripheral tissues[J].Nat Immunol,2005,6(9):889-894.

      [51] Bromley SK,Yan S,Tomura M,etal.Recirculating memory T cells are a unique subset of CD4+T cells with a distinct phenotype and migratory pattern[J].J Immunol,2013,190(3):970-976.

      [52] Wu T,Hu Y,Lee YT,etal.Lung-resident memory CD8 T cells(TRM)are indispensable for optimal cross-protection against pulmonary virus infection[J].J Leukoc Biol,2014,95(2):215-224.

      [53] Zhao J,Zhao J,Mangalam AK,etal.Airway memory CD4(+)T cells mediate protective immunity against emerging respiratory coronaviruses[J].Immunity,2016,44(6):1379-1391.

      [54] Lee YN,Lee YT,Kim MC,etal.A novel vaccination strategy mediating the induction of lung-resident memory CD8 T cells confers heterosubtypic immunity against future pandemic influenza virus[J].J Immunol,2016,196(6):2637-2645.

      [55] Hu Y,Lee YT,Kaech SM,etal.Smad4 promotes differentiation of effector and circulating memory CD8 T cells but is dispensable for tissue-resident memory CD8 T cells[J].J Immunol,2015,194(5):2407-2414.

      [56] Wakim LM,Gupta N, mintern JD,etal.Enhanced survival of lung tissue-resident memory CD8(+)T cells during infection with influenza virus due to selective expression of IFITM3[J].Nat Immunol,2013,14(3):238-245.

      [57] Li L,Qiao D,Fu X,etal.Identification of M.tuberculosis-specific Th1 cells expressing CD69 generated in vivo in pleural fluid cells from patients with tuberculous pleurisy[J].PLoS One,2011,6(8):e23700-e23700.

      [58] Li L,Yang B,Zhang X,etal.Mycobacterium tuberculosis-specific polyfunctional cytotoxic CD8+T cells express CD69[J].Tuberculosis,2014,94(3):219-225.

      [59] Collins SL,Chan-Li Y,Oh M,etal.Vaccinia vaccine-based immunotherapy arrests and reverses established pulmonary fibrosis[J].JCI Insight,2016,1(4):e83116-e83116.

      [60] Hondowicz BD,An D,Schenkel JM,etal.Interleukin-2-dependent allergen-specific tissue-resident memory cells drive asthma[J].Immunity,2016,44(1):155-166.

      [61] Djenidi F,Adam J,Goubar A,etal.CD8+CD103+tumor-infiltrating lymphocytes are tumor-specific tissue-resident memory T cells and a prognostic factor for survival in lung cancer patients[J].J Immunol,2015,194(7):3475-3486.

      [62] Masopust D,Choo D,Vezys V,etal.Dynamic T cell migration program provides resident memory within intestinal epithelium[J].J Exp Med,2010,207(3):553-564.

      [63] Hamann A,Andrew DP,Jablonski-Westrich D,etal.Role of alpha 4-integrins in lymphocyte ho ming to mucosal tissues in vivo[J].J Immunol,1994,152(7):3282-3293.

      [64] Nakanishi Y,Lu B,Gerard C,etal.CD8(+)T lymphocyte mobilization to virus-infected tissue requires CD4(+)T-cell help[J].Nature,2009,462(7272):510-513.

      [65] Shin H,Iwasaki A.A vaccine strategy that protects against genital herpes by establishing local memory T cells[J].Nature,2012,491(7424):463-467.

      [66] Sato A,Suwanto A,Okabe M,etal.Vaginal memory T cells induced by intranasal vaccination are critical for protective T cell recruitment and prevention of genital HSV-2 disease[J].J Virol,2014,88(23):13699-13708.

      [67] Cuburu N,Graham BS,Buck CB,etal.Intravaginal immunization with HPV vectors induces tissue-resident CD8+T cell responses[J].J Clin Invest,2012,122(12):4606-4620.

      [68] Sun YY,Peng S,Han L,etal.Local HPV recombinant vaccinia boost following pri ming with an HPV DNA vaccine enhances local HPV-Specific CD8+T-cell-mediated tumor control in the genital tract[J].Clin Cancer Res,2016,22(3):657-669.

      [69] Casey KA,Fraser KA,Schenkel JM,etal.Antigen-independent differentiation and maintenance of effector-like resident memory T cells in tissues[J].J Immunol,2012,188(10):4866-4875.

      [70] Wakim LM,Woodward-Davis A,Bevan MJ.Memory T cells persisting within the brain after local infection show functional adaptations to their tissue of residence[J].Proc Natl Acad Sci U S A,2010,107(42):17872-17879.

      [71] Park CO,Kupper TS.The emerging role of resident memory T cells in protective immunity and inflammatory disease[J].Nat Med,2015,21(7):688-697.

      [72] Clark RA.Resident memory T cells in human health and disease[J].Sci Transl Med,2015,7(269):261r-269r.

      [73] Bhushan M,Bleiker TO,Ballsdon AE,etal.Anti-E-selectin is ineffective in the treatment of psoriasis:a randomized trial[J].Br J Dermatol,2002,146(5):824-831.

      [74] Boyman O,Hefti HP,Conrad C,etal.Spontaneous development of psoriasis in a new animal model shows an essential role for resident T cells and tumor necrosis factor-alpha[J].J Exp Med,2004,199(5):731-736.

      [75] Cheuk S,Wiken M,Blomqvist L,etal.Epidermal Th22 and Tc17 cells form a localized disease memory in clinically healed psoriasis[J].J Immunol,2014,192(7):3111-3120.

      [收稿2017-03-07]

      (編輯 張曉舟)

      10.3969/j.issn.1000-484X.2017.07.030

      ①本文為國(guó)家自然科學(xué)基金面上項(xiàng)目(No.31470888)。

      余思菲(1987年-),女,博士,副研究員,主要從事T細(xì)胞的記憶性、功能多樣性、分泌可塑性及臨床意義方面的研究,E-mail:sifei_yu@163.com。

      R392.1 R392.2

      A

      1000-484X(2017)07-1093-08

      猜你喜歡
      記憶性表型抗原
      器官移植中記憶性T細(xì)胞的研究進(jìn)展
      黏膜記憶性T 細(xì)胞功能
      建蘭、寒蘭花表型分析
      記憶性B細(xì)胞體外擴(kuò)增影響因素的研究進(jìn)展①
      GABABR2基因遺傳變異與肥胖及代謝相關(guān)表型的關(guān)系
      梅毒螺旋體TpN17抗原的表達(dá)及純化
      超聲修復(fù)有記憶性鉛蓄電池研究
      結(jié)核分枝桿菌抗原Lppx和MT0322人T細(xì)胞抗原表位的多態(tài)性研究
      慢性乙型肝炎患者HBV基因表型與血清學(xué)測(cè)定的臨床意義
      APOBEC-3F和APOBEC-3G與乙肝核心抗原的相互作用研究
      兰考县| 利辛县| 遵义县| 罗城| 东山县| 子洲县| 慈溪市| 金阳县| 长阳| 万全县| 富锦市| 策勒县| 平乡县| 上林县| 扎鲁特旗| 清新县| 德令哈市| 肃南| 报价| 常山县| 余姚市| 东阳市| 株洲县| 高台县| 朝阳区| 瑞金市| 白城市| 夏津县| 化州市| 邛崃市| 云梦县| 黎平县| 天峨县| 雷州市| 巴楚县| 荔浦县| 九龙坡区| 马尔康县| 宜良县| 宁陕县| 丽江市|