李文婷,鄒偉,曹琳,張平(南華大學(xué)附屬南華醫(yī)院,湖南衡陽(yáng)421002)
?
miR-145靶向抑制MMP-9表達(dá)對(duì)大鼠腦動(dòng)脈血管平滑肌細(xì)胞增殖和遷移的影響
李文婷,鄒偉,曹琳,張平
(南華大學(xué)附屬南華醫(yī)院,湖南衡陽(yáng)421002)
目的 觀(guān)察miR-145對(duì)大鼠腦動(dòng)脈血管平滑肌細(xì)胞(VSMC)增殖和遷移的影響,并探討其作用機(jī)制。方法 利用組織貼塊法分離大鼠腦基底動(dòng)脈VSMC,將細(xì)胞分為3組,對(duì)照組轉(zhuǎn)染空載體;miR-145組轉(zhuǎn)染miR-145;miR-145+MMP-9組轉(zhuǎn)染miR-145后再轉(zhuǎn)染MMP-9。采用qPCR方法檢測(cè)各組MMP-9 mRNA表達(dá),Western blotting法檢測(cè)MMP-9蛋白表達(dá)。向三組細(xì)胞中加入50 ng/mL TNF-α刺激細(xì)胞增殖,采用CCK8法檢測(cè)細(xì)胞增殖情況,Transwell小室檢測(cè)細(xì)胞遷移能力。根據(jù)TargetScan和miRanda數(shù)據(jù)庫(kù)預(yù)測(cè),野生型MMP-9的3′-UTR區(qū)域含有miR-145靶向結(jié)合片段,采用雙熒光素酶報(bào)告基因檢測(cè)驗(yàn)證miR-145和MMP-9的靶向關(guān)系。結(jié)果 miR-145組MMP-9 mRNA和蛋白表達(dá)均低于對(duì)照組(P均<0.05),miR-145+MMP-9組MMP-9 mRNA和蛋白表達(dá)均高于miR-145組(P均<0.01)。加入TNF-α處理后,miR-145組的細(xì)胞增殖OD值低于對(duì)照組,miR-145+MMP-9組的細(xì)胞增殖OD值高于miR-145組(P均<0.01);miR-145組細(xì)胞遷移數(shù)低于對(duì)照組,miR-145+MMP-9組細(xì)胞遷移數(shù)高于miR-145組(P均<0.01)。雙熒光素酶報(bào)告檢測(cè)結(jié)果顯示,miR-145能夠抑制野生型MMP-9的熒光素酶活性(P<0.01),但不能抑制突變型MMP-9的熒光素酶活性。結(jié)論 miR-145能夠通過(guò)下調(diào)MMP-9抑制TNF-α誘導(dǎo)的大鼠腦動(dòng)脈VSMC增殖和遷移。
腦梗死;血管平滑肌細(xì)胞;微小RNA;miRNA-145;基質(zhì)金屬蛋白酶9;細(xì)胞增殖;細(xì)胞遷移
腦梗死的發(fā)病率、病死率和致殘率均很高,嚴(yán)重影響人類(lèi)的身體健康和生活質(zhì)量[1]。在我國(guó),超過(guò)30%的腦梗死是由顱內(nèi)動(dòng)脈粥樣硬化性狹窄所致[2]。在動(dòng)脈粥樣硬化(AS)斑塊形成的不同階段,血管平滑肌細(xì)胞(VSMC)的結(jié)構(gòu)和功能都發(fā)生異常改變[3],其釋放的基質(zhì)金屬蛋白酶(MMP)是AS斑塊形成和破裂的重要因子[4]。MMP-9作為MMP家族成員,不僅可以充分降解Ⅳ型膠原-細(xì)胞基底膜成分,而且能夠促進(jìn)炎癥反應(yīng)和VSMC增殖、遷移,導(dǎo)致AS斑塊不穩(wěn)定,從而形成血栓[5]。因此,探討MMP-9在AS中的調(diào)節(jié)機(jī)制,對(duì)預(yù)防AS的發(fā)生發(fā)展具有重要意義。微小RNA(miRNA)是由21~22個(gè)核苷酸組成的非編碼小RNA片段,通過(guò)與靶蛋白mRNA的3′-UTR結(jié)合發(fā)揮負(fù)向調(diào)控作用,參與細(xì)胞增殖、凋亡和分化的過(guò)程[6, 7]。腫瘤壞死因子TNF-α能夠通過(guò)與受體TNFR結(jié)合,激活NF-κB、MAPK和JNK等多條信號(hào)通路,來(lái)調(diào)節(jié)炎癥反應(yīng)以及細(xì)胞增殖和轉(zhuǎn)移。miR-145作為VSMC中含量最多的miRNA,能夠通過(guò)KLF5和CD40及其下游信號(hào)因子來(lái)調(diào)節(jié)血管新生內(nèi)膜病變形成[8, 9]。2016年6~12月,我們從大鼠腦基底動(dòng)脈分離VSMC,轉(zhuǎn)染miR-145和MMP-9,加入TNF-α刺激細(xì)胞增殖,觀(guān)察細(xì)胞增殖和遷移能力的變化;并假設(shè)MiR-145靶向作用于MMP-9,對(duì)此假設(shè)進(jìn)行驗(yàn)證。
1.1 材料 雄性SD大鼠2~3只,體質(zhì)量150~250 g,購(gòu)自上海斯萊克實(shí)驗(yàn)動(dòng)物中心。20%胎牛血清(Bioind公司),DMEM培養(yǎng)液(Gibco公司),抗MMP-9抗體和山羊抗兔二抗(Goodhere生物公司),質(zhì)粒DNA(上海吉瑪制藥公司合成空載體NC和miR-145 mimics;美國(guó)Invitrogen公司合成miR-145 mimics和pcDNA3.1+HA-MMP-9),脂質(zhì)體2000(Invitrogen公司),雙熒光素酶報(bào)告檢測(cè)試劑盒(Promega生物技術(shù)公司),細(xì)胞增殖檢測(cè)試劑盒(日本同仁公司),二氧化碳培養(yǎng)箱(美國(guó)Thermo公司),光學(xué)顯微鏡(美國(guó)Olympus公司),多功能酶標(biāo)儀(美國(guó)Thermo公司),流式細(xì)胞儀(美國(guó)BD公司),熒光定量PCR儀(美國(guó)ABI公司)。
1.2 大鼠腦基底動(dòng)脈VSMC的分離和原代培養(yǎng) 將大鼠腹腔注射50 mg/kg戊巴比妥鈉麻醉,并放血處死。迅速取出整腦,解剖顯微鏡下分離大腦基底動(dòng)脈。將基底動(dòng)脈剪成0.5 mm×0.5 mm的組織塊,置入細(xì)胞培養(yǎng)瓶中,加入含20%胎牛血清和1%青鏈霉素混合液的DMEM培養(yǎng)液,豎直放置于37 ℃、5% CO2培養(yǎng)箱內(nèi)培養(yǎng)3~5 h。待組織塊與瓶底貼附后,將培養(yǎng)瓶輕輕翻轉(zhuǎn)平放,繼續(xù)培養(yǎng)3 d。培養(yǎng)10 d左右觀(guān)察到組織塊周?chē)募?xì)胞相互融合且融合度達(dá)80%,即可進(jìn)行傳代,取3代后細(xì)胞用于進(jìn)一步實(shí)驗(yàn)。
1.3 細(xì)胞分組與處理 將VSMC分為對(duì)照組(轉(zhuǎn)染空載體)、miR-145組(轉(zhuǎn)染miR-145)、miR-145+MMP-9組(轉(zhuǎn)染miR-145后再轉(zhuǎn)染MMP-9)共3組。將細(xì)胞接種于24孔板中,待細(xì)胞生長(zhǎng)融合度達(dá)80%時(shí)進(jìn)行轉(zhuǎn)染。將質(zhì)粒DNA與脂質(zhì)體2000以1∶2.5的比例混合后加入到培養(yǎng)板中,6 h后更換為含10%胎牛血清和500 mg/mL G418的DMEM培養(yǎng)基,培養(yǎng)15 d左右觀(guān)察轉(zhuǎn)染效率,挑出克隆細(xì)胞進(jìn)行鑒定和擴(kuò)大培養(yǎng)。miR-145+MMP-9組先加入miR-145 mimics,篩選出穩(wěn)定表達(dá)miR-145的細(xì)胞,再加入pcDNA3.1+HA-MMP-9,挑選共表達(dá)miR-145和MMP-9的細(xì)胞進(jìn)行實(shí)驗(yàn)。
1.4 MMP-9 mRNA檢測(cè) 采用qPCR方法。取三組細(xì)胞,TRIzol法提取細(xì)胞總RNA,逆轉(zhuǎn)錄合成cDNA。以β-actin為內(nèi)參基因,設(shè)計(jì)并合成引物。引物序列:MMP-9上游5′-GATCATTCCTCAGTGCCGGA-3′,下游5′-TTCAGGGCGAGGACCATAGA-3′;β-actin上游5′-AGCGAGCATCCCCCAAAGTT-3′,下游5′-GGGCACGAAGGCTCATCATT-3′。qPCR反應(yīng)條件:95 ℃ 5 min,95 ℃ 10 s,60 ℃ 30 s,共40個(gè)循環(huán)。讀取基因擴(kuò)增的Ct值,采用2-ΔΔCt法計(jì)算MMP-9 mRNA的相對(duì)表達(dá)量。
1.5 MMP-9蛋白檢測(cè) 采用Western blotting法。取三組細(xì)胞,加入細(xì)胞裂解液提取細(xì)胞總蛋白;BCA法測(cè)定蛋白濃度;聚丙烯酰胺凝膠(SDS-PAGE)電泳分離蛋白,分離膠濃度為10%;將蛋白質(zhì)濕轉(zhuǎn)到醋酸纖維素膜上,脫脂牛奶室溫封閉2 h;加入一抗(1∶1 000稀釋)4 ℃孵育過(guò)夜;二抗(辣根過(guò)氧化物標(biāo)記的羊抗兔抗體)室溫下孵育1 h;目的條帶經(jīng)ECL顯色后在BIO-RAD熒光成像儀檢測(cè)分析。Image Lab軟件對(duì)蛋白條帶進(jìn)行半定量分析,以目標(biāo)蛋白與β-actin的比值表示蛋白的相對(duì)表達(dá)量。
1.6 細(xì)胞增殖能力觀(guān)察 采用CCK8法。取三組細(xì)胞,加入胰酶消化后制備單細(xì)胞懸液,以8×103/孔加入96孔板中。細(xì)胞貼壁后,分別加入50 ng/mL TNF-α刺激細(xì)胞增殖,培養(yǎng)72 h后加入10 μL CCK8試劑,檢測(cè)各孔吸光度值。
1.7 細(xì)胞遷移能力觀(guān)察 取三組細(xì)胞,分別加入50 ng/mL TNF-α培養(yǎng)48 h。取細(xì)胞鋪在Transwell小室中,培養(yǎng)液換成不含血清的DMEM培養(yǎng)基,下室加入含20%胎牛血清的培養(yǎng)液。細(xì)胞在血清的吸引下向下室遷移。48 h后,4%多聚甲醛溶液固定小室下表面的細(xì)胞,并進(jìn)行結(jié)晶紫染色,鏡下觀(guān)察遷移至小室下表面的細(xì)胞,隨機(jī)選取5個(gè)視野進(jìn)行計(jì)數(shù)。
1.8 miR-145對(duì)MMP-9的靶向作用觀(guān)察 采用雙熒光素酶報(bào)告實(shí)驗(yàn)。經(jīng)過(guò)TargetScan和miRanda數(shù)據(jù)庫(kù)預(yù)測(cè),野生型MMP-9的3′-UTR區(qū)域含有miR-145靶向結(jié)合的片段(圖1)。合成突變型MMP-9 3′-UTR質(zhì)粒,插入pGL3空載體中。取VSMC接種于24孔板中,將野生型MMP-9 3′-UTR質(zhì)粒(WT)、突變型MMP-9 3′-UTR質(zhì)粒(MUT)與miR-145 mimics(WT miR-145組、MUT miR-145組)或空載體(WT對(duì)照組、MUT對(duì)照組)共轉(zhuǎn)染。雙熒光素酶報(bào)告檢測(cè)試劑盒檢測(cè)各組熒光素酶的活性。
圖1 野生型MMP-9的3′-UTR區(qū)域含有miR-145靶向結(jié)合片段
2.1 三組MMP-9 mRNA及蛋白表達(dá)比較 對(duì)照組、miR-145組、miR-145+MMP-9組MMP-9 mRNA的相對(duì)表達(dá)量分別為1、0.42±0.23、1.24±0.23,MMP-9蛋白表達(dá)量分別為0.89±0.12、0.34±0.13、1.16±0.06。miR-145組MMP-9 mRNA和蛋白表達(dá)均低于對(duì)照組(P均<0.05),miR-145+MMP-9組MMP-9 mRNA和蛋白表達(dá)均高于miR-145組(P均<0.01)。
2.2 TNF-α處理后三組細(xì)胞增殖情況比較 對(duì)照組、miR-145組、miR-145+MMP-9組的細(xì)胞增殖OD值分別為2.32±0.15、1.84±0.18、2.37±0.11,miR-145組OD值低于對(duì)照組,miR-145+MMP-9組OD值高于miR-145組(P均<0.01)。
2.3 TNF-α處理后三組細(xì)胞遷移情況比較 對(duì)照組、miR-145組、miR-145+MMP-9組的遷移細(xì)胞數(shù)分別為(102±3)、(36±8)、(110±5)個(gè),miR-145組細(xì)胞遷移數(shù)低于對(duì)照組,miR-145+MMP-9組細(xì)胞遷移數(shù)高于miR-145組(P均<0.01)。
2.4 miR-145對(duì)MMP-9 mRNA的靶向作用結(jié)果 WT對(duì)照組、WT miR-145組、MUT對(duì)照組、MUT miR-145組的熒光素酶相對(duì)活性分別為5.24±0.35、2.28±0.19、5.19±0.48、5.16±0.36。WT miR-145組的熒光素酶相對(duì)活性低于WT對(duì)照組(P<0.01),MUT miR-145組與MUT對(duì)照組比較無(wú)統(tǒng)計(jì)學(xué)差異(P>0.01)。
AS是一種炎癥性疾病,其發(fā)生發(fā)展始終伴隨著炎癥反應(yīng)[10]。miRNA通過(guò)轉(zhuǎn)錄后水平調(diào)節(jié)蛋白質(zhì)的表達(dá)從而參與動(dòng)脈粥樣硬化的發(fā)生發(fā)展,內(nèi)皮細(xì)胞和平滑肌細(xì)胞中miRNA的表達(dá)與AS斑塊的形成密切相關(guān)[8]。血管內(nèi)皮細(xì)胞的損傷與活化是AS的啟動(dòng)因素,活化后的內(nèi)皮細(xì)胞分泌血管細(xì)胞黏附分子1,促使中性粒細(xì)胞滲入內(nèi)皮細(xì)胞層。SPRED1是一種細(xì)胞內(nèi)血管新生信號(hào)的抑制子,破壞內(nèi)皮細(xì)胞的完整性[11]。miR-126能夠靶向作用于血管細(xì)胞黏附分子1和SPRED1,當(dāng)miR-126在內(nèi)皮細(xì)胞中表達(dá)增高時(shí),血管細(xì)胞黏附分子1和SPRED1表達(dá)下調(diào),從而調(diào)控血管炎癥[12, 13]。VSMC的增生和遷移也是AS斑塊形成的重要因素。在miRNA與VSMC增生關(guān)系的研究中發(fā)現(xiàn),當(dāng)小鼠頸動(dòng)脈管壁受損時(shí),miR-221和miR-222表達(dá)上調(diào);而在體外和活體小鼠頸動(dòng)脈低表達(dá)miR-221和miR-222時(shí),VSMC的增殖會(huì)受到抑制[14]。
研究表明,miR-145是血管壁及其新分離出來(lái)的VSMC上含量最為豐富的miRNA。miR-145的表達(dá)在血管新生內(nèi)膜損傷時(shí)明顯下降,而體外過(guò)表達(dá)miR-145會(huì)顯著抑制VSMC的增殖和遷移[15]。冠狀動(dòng)脈疾病患者體內(nèi)miR-145會(huì)發(fā)生顯著變化,其在外周血中的表達(dá)水平與梗死灶面積相關(guān),這表明miR-145在AS的研究中是很有價(jià)值的標(biāo)志物,靶向調(diào)節(jié)miR-145對(duì)AS的治療具有很好的應(yīng)用前景。Cheng等[16]發(fā)現(xiàn),miR-145可以作為VSMC的表面標(biāo)記調(diào)節(jié)細(xì)胞的表型轉(zhuǎn)化并參與細(xì)胞的功能調(diào)節(jié),同時(shí)還通過(guò)KLF5、CD40等及下游信號(hào)分子參與血管新生內(nèi)膜的損傷形成。
本研究從大鼠腦基底動(dòng)脈中分離并鑒定VSMC,首先對(duì)該細(xì)胞進(jìn)行miR-145轉(zhuǎn)染,發(fā)現(xiàn)MMP-9 mRNA和蛋白表達(dá)均受到明顯抑制,對(duì)穩(wěn)定表達(dá)miR-145的VSMC繼續(xù)轉(zhuǎn)染MMP-9后,細(xì)胞中MMP-9 mRNA和蛋白表達(dá)升高。向三組細(xì)胞加入TNF-α刺激細(xì)胞增殖,結(jié)果顯示對(duì)照組和miR-145+MMP-9組的細(xì)胞增殖和細(xì)胞遷移均高于對(duì)照組。表明miR-145能夠減少VSMC內(nèi)MMP-9表達(dá),抑制由TNF-α誘導(dǎo)的細(xì)胞增殖和細(xì)胞遷移,而細(xì)胞內(nèi)MMP-9的高表達(dá)又能夠顯著逆轉(zhuǎn)miR-145的作用。在AS斑塊形成過(guò)程中,VSMC釋放的MMP是斑塊形成和破裂的重要因子[4,17]。有研究顯示,脂聯(lián)素能夠通過(guò)抑制MMP-9表達(dá)降低心腦血管的發(fā)生風(fēng)險(xiǎn)[18]。Guo等[19]在對(duì)新生內(nèi)膜異常增生機(jī)制研究過(guò)程中發(fā)現(xiàn),TNF-α可通過(guò)上調(diào)MMP-9表達(dá)而促進(jìn)VSMC的遷移作用。另外,雙熒光素酶報(bào)告基因檢測(cè)結(jié)果顯示,MMP-9 mRNA含有miR-145的作用靶點(diǎn),miR-145能夠顯著抑制野生型MMP-9(WT)的熒光素酶活性,但不能抑制突變型MMP-9(MUT)的熒光素酶活性。進(jìn)一步證實(shí)了miR-145很可能是通過(guò)下調(diào)MMP-9來(lái)抑制大鼠腦動(dòng)脈血管平滑肌細(xì)胞的增殖和遷移。
綜上所述,miR-145能夠抑制VSMC中的MMP-9 mRNA和蛋白表達(dá),降低TNF-α對(duì)VSMC的增殖和遷移誘導(dǎo)增加作用;對(duì)穩(wěn)定轉(zhuǎn)染miR-145的VSMC進(jìn)行MMP-9轉(zhuǎn)染后,MMP-9能夠有效逆轉(zhuǎn)miR-145對(duì)于TNF-α誘導(dǎo)的細(xì)胞增殖和遷移抑制作用;miR-145很可能是通過(guò)下調(diào)MMP-9來(lái)抑制VSMC的增殖和遷移。另外,miR-145對(duì)于靶基因MMP-9的具體調(diào)節(jié)機(jī)制還不清楚,仍需進(jìn)一步探索。miR-145對(duì)于MMP-9的靶向調(diào)節(jié)關(guān)系為進(jìn)一步研究miRNA對(duì)動(dòng)脈粥樣硬化的靶向治療提供新的思路,同時(shí)為腦梗死的治療帶來(lái)新的希望。
[1] Bonita R, Mendis S, Truelsen T, et al. The global stroke initiative[J]. Lancet Neurol, 2004,3(7):391-393.
[2] Yu F, Lu J, Li Z, et al. Correlation of Plasma Vascular Endothelial Growth Factor and Endostatin Levels with Symptomatic Intra- and Extracranial Atherosclerotic Stenosis in a Chinese Han Population[J]. J Stroke Cerebrovasc Dis, 2017,26(5):1061-1070.
[3] Ross R. Atherosclerosis--an inflammatory disease[J]. N Engl J Med, 1999,340(2):115-126.
[4] Popovic S, Canovic F, Ilic M, et al. Matrix metalloproteinase-9 index as a possible parameter for predicting acute coronary syndrome in diabetics[J]. Vojnosanit Pregl, 2015,72(5):421-426.
[5] Kim HS, Kim HJ, Park KG, et al. Alpha-lipoic acid inhibits matrix metalloproteinase-9 expression by inhibiting NF-kappaB transcriptional activity[J]. Exp Mol Med, 2007,39(1):106-113.
[6] Paul P, Chakraborty A, Sarkar D, et al. Interplay between miRNAs and Human Diseases: A Review[J]. J Cell Physiol, 2017,232(10):617-624.
[7] Gu H, Liu Z, Zhou L. Roles of miR-17-92 Cluster in Cardiovascular Development and Common Diseases[J]. Bio Med Res Int, 2017,2017:9102909.
[8] Hutcheson R, Terry R, Chaplin J, et al. MicroRNA-145 restores contractile vascular smooth muscle phenotype and coronary collateral growth in the metabolic syndrome[J]. Arterioscler Thromb Vasc Biol, 2013,33(4):727-736.
[9] Shimizu C, Kim J, Stepanowsky P, et al. Differential expression of miR-145 in children with Kawasaki disease[J]. PLoS One, 2013,8(3):e58159.
[10] Guo X, Li D, Chen M, et al. miRNA-145 inhibits VSMC proliferation by targeting CD40[J]. Sci Rep, 2016,6:35302.
[11] Harris TA, Yamakuchi M, Kondo M, et al. Ets-1 and Ets-2 regulate the expression of microRNA-126 in endothelial cells[J]. Arterioscler Thromb Vasc Biol, 2010,30(10):1990-1997.
[12] Kar S, Bali KK, Baisantry A, et al. Genome-Wide Sequencing Reveals MicroRNAs Downregulated in Cerebral Cavernous Malformations[J]. J Mol Neurosci, 2017,61(2):178-188.
[13] Chu M, Wu R, Qin S, et al. Bone Marrow-Derived MicroRNA-223 Works as an Endocrine Genetic Signal in Vascular Endothelial Cells and Participates in Vascular Injury From Kawasaki Disease[J]. J Am Heart Assoc, 2017,6(2):e004878.
[14] Liu X, Cheng Y, Zhang S, et al. A necessary role of miR-221 and miR-222 in vascular smooth muscle cell proliferation and neointimal hyperplasia[J]. Circ Res, 2009,104(4):476-487.
[15] Ji R, Cheng Y, Yue J, et al. MicroRNA expression signature and antisense-mediated depletion reveal an essential role of MicroRNA in vascular neointimal lesion formation[J]. Circ Res, 2007,100(11):1579-1588.
[16] Cheng Y, Liu X, Yang J, et al. MicroRNA-145, a novel smooth muscle cell phenotypic marker and modulator, controls vascular neointimal lesion formation[J]. Circ Res, 2009,105(2):158-166.
[17] Peeters W, Moll FL, Vink A, et al. Collagenase matrix metalloproteinase-8 expressed in atherosclerotic carotid plaques is associated with systemic cardiovascular outcome[J]. Eur Heart J, 2011,32(18):2314-2325.
[18] Ohashi K, Ouchi N, Matsuzawa Y. Anti-inflammatory and anti-atherogenic properties of adiponectin[J]. Biochimie, 2012,94(10):2137-2142.
[19] Guo L, Ning W, Tan Z, et al. Mechanism of matrix metalloproteinase axis-induced neointimal growth[J]. J Mol Cell Cardiol, 2014,66:116-125.
Effects of microRNA-145 on proliferation and migration of rat arterial vascular smooth muscle cells through targeting MMP-9
LIWenting,ZOUWei,CAOLin,ZHANGPing
(NanhuaHospitalAffiliatedtoUniversityofSouthChina,Hengyang421002,China)
Objective To observe the effects of microRNA-145 on proliferation and migration of rat arterial vascular smooth muscle cells (VSMC) and its mechanism.Methods The rat brain basilar arterial VSMC was isolated by tissue patch assay. Then the cells were divided into three groups: the control group (transfection with empty carrier), miR-145 group (transfection with miR-145 mimics), and miR-145+MMP-9 group (transfection with miR-145 mimics and MMP-9). The mRNA and protein expression of MMP-9 was detected by qPCR and Western blotting, respectively. We added 50 ng/mL TNF-α to stimulate the cell proliferation, which was then examined by CCK8 assay. Transwell chamber was used to detect the cell migration ability. TargetScan and miRNAda identified 3′-UTR of MMP-9 mRNA had the target sequence of miR-145 in VSMCs. Luciferase reporter gene was used to validate the correlation between miR-145 and MMP-9.Results The MMP-9 mRNA and protein expression of the miR-145 group was significantly lower than that of the control group (bothP<0.05), while the MMP-9 mRNA and protein expression in miR-145+MMP-9 group was higher than that of the miR-145 group (bothP<0.05). After TNF-α treatment, OD value of the miR-145 group was lower than that of the control group, and OD value in miR-145+MMP-9 group was higher than that of miR-145 group (bothP<0.05). Meanwhile, the miR-145 group had a significantly smaller number of migration cells than the control group, while the migration cells in miR-145+MMP-9 group were more than those of the miR-145 group (bothP<0.01). Luciferase reporter revealed that miR-145 inhibited the relative luciferase activity of wild type MMP-9, but did not inhibit the mutant MMP-9.Conclusion MiR-145 inhibits the proliferation and migration of rat basilar arterial VSMC through down-regulating MMP-9.
cerebral infarction; vascular smooth muscle cell; microRNA; miR-145; matrix metalloproteinase 9; cell proliferation; cell migration
湖南省醫(yī)藥衛(wèi)生科研計(jì)劃項(xiàng)目(C2016087)。
李文婷(1983-),女,主治醫(yī)師,主要研究方向?yàn)槟X血管疾病及神經(jīng)退行性疾病。E-mail: liwentinghnhy@163.com
10.3969/j.issn.1002-266X.2017.26.007
R743.3
A
1002-266X(2017)26-0025-04
2017-02-19)