韋 林,洪天求,李如忠,張 強,陳天虎*
海藻酸鈉對鳥糞石結(jié)晶的影響及機理研究
韋 林1,洪天求1,李如忠1,張 強2,陳天虎1*
(1.合肥工業(yè)大學(xué)納米礦物與環(huán)境材料實驗室,資源與環(huán)境工程學(xué)院,安徽合肥 230009;2.合肥工業(yè)大學(xué)分析測試中心,安徽合肥 230009)
鳥糞石結(jié)晶沉淀法回收剩余污泥中磷工藝具有良好應(yīng)用前景,然而污泥中的一些有機物,特別是胞外聚合物(EPS)將對鳥糞石結(jié)晶產(chǎn)生一定的影響.海藻酸鈉(SA)在物化性質(zhì)上接近于EPS,為較深入地探究此影響機理,以SA作為EPS的代用化合物采用恒組分、恒pH實驗來考察EPS對鳥糞石結(jié)晶的影響,并借助紅外光譜(FTIR)和X射線光電子能譜(XPS)分析來探討SA與鳥糞石晶體之間的作用機理.結(jié)果表明,在SA濃度0~250mg/L范圍內(nèi),隨其濃度的增大鳥糞石結(jié)晶生長速率降低,鳥糞石晶體的尺寸有所減小,其原因是海藻酸陰離子吸附并掩蔽鳥糞石表面生長活性點上阻礙晶體生長.這種吸附作用是由鳥糞石表面Mg2+、磷酸羥基團(POH)分別與SA中COOH、C=O、COC鍵合共同引起的,而鳥糞石表面的NH4+并未參與反應(yīng).
鳥糞石;海藻酸鈉;恒組分實驗;晶體生長
隨著磷排放標(biāo)準(zhǔn)不斷提高,含磷廢水一般需經(jīng)過污水處理廠強化生物除磷工藝處理后方可達標(biāo)排放.此時污水中90%以上的磷被轉(zhuǎn)移到污泥中,污泥中磷含量可達6%~12%左右[1].鳥糞石是一種高品質(zhì)的富磷礦,其P2O5含量高達50.3%[2];同時也是一種高效緩釋復(fù)合肥料,常用于農(nóng)業(yè)生產(chǎn).因此,鳥糞石結(jié)晶沉淀法回收污泥中磷的潛力巨大,可緩解當(dāng)前磷礦資源短缺問題,在污泥資源化方面也取得很好的經(jīng)濟效益[3].
對鳥糞石結(jié)晶沉淀法而言,要想高效地回收污泥中磷,首要是對污泥進行預(yù)處理使其中的磷轉(zhuǎn)化為正磷酸鹽形態(tài)充分地釋放出來,隨后投加鎂鹽進行鳥糞石結(jié)晶反應(yīng),最終通過沉淀分離回收磷[4].污泥預(yù)處理過程中不可避免地釋放一定量的重金屬和較大量的有機質(zhì)[5].重金屬對鳥糞石結(jié)晶影響已有較深入研究[6-7],但污泥中有機質(zhì)對其影響的研究甚少.Uysal等[8]指出污泥中的重金屬和多氯聯(lián)苯對鳥糞石結(jié)晶影響不大,其原因之一是它們在污泥中含量較低.而污泥中大量的胞外聚合物[9]可能對鳥糞石結(jié)晶產(chǎn)生較大的影響.由于胞外聚合物成分復(fù)雜和結(jié)構(gòu)的不確定性,其物化性質(zhì)接近海藻酸鈉(SA)[10],以SA作為EPS的代用化合物采用恒組分、恒pH實驗來考察EPS對鳥糞石結(jié)晶的影響,并利用FTIR和XPS分析初步探討鳥糞石晶體表面與SA之間的作用機理.
1.1 儀器及試劑
907型瑞士萬通多通道自動電位滴定儀,配置3個自動加液單元,加液單元1為0.1mol/L NaOH溶液,加液單元2為0.096mol/L NH4H2PO4和0.096mol/L MgCl2×6H2O混合液,加液單元3為0.2mol/L NaCl和0.2mol/L NaOH混合液.實驗所用試劑均為優(yōu)級純,所有儲備液用超純水配制.SA儲備液配制是將一定量的海藻酸(Alrich)加入0.1mol/L NaOH溶液中,在室溫下攪拌至完全溶解,再將pH調(diào)至9后備用[11].
1.2 鳥糞石結(jié)晶實驗
鳥糞石晶體生長實驗是采用恒組分、恒pH法在自動電位滴定儀上完成的[12-13].首先量取50mL 6mmol/L NH4H2PO4和50mL 6mmol/L MgCl2×6H2O與0.2mol/L NaCl混合液置于150mL滴定杯,并投加一定量的SA后密封置于磁力攪拌器進行攪拌.實驗開始前,加液單元1用0.1mol/L NaOH將反應(yīng)液pH快速調(diào)節(jié)至8.5.如反應(yīng)式(1)所示,當(dāng)結(jié)晶反應(yīng)開始時,pH值隨之下降.
Mg2++ NH4++ H2PO4ˉ= MgNH4PO4·6H2O + 2H+(1)
當(dāng)溶液pH每下降0.001單位時,電位滴定儀自動從加液單元2、3同時向滴定杯中補加反應(yīng)液,維持溶液恒定組分、pH值,從而保持整個反應(yīng)過程中鳥糞石過飽和度不變、生長速率基本不變.反應(yīng)過程中pH始終維持在8.5 ± 0.005,溫度為25 ℃.反應(yīng)2h自動停止,用0.45μm濾膜過濾,沉淀物去離子水清洗3次,置于40℃烘箱內(nèi)干燥24h,放入干燥器內(nèi)保存.每組實驗均重復(fù)3次.軟件將自動記錄pH和加液單元的加液體積隨時間變化.加液體積與時間成線性關(guān)系,鳥糞石晶體的生長速率(mol/min)可通過其斜率d/d由式(2)求出.
=tirant×d/d(2)
式中:titrant為加液單元2中Mg2+濃度(mol/L), d/d為加液體積與時間的擬合直線斜率.
利用場發(fā)式掃描電鏡(SEM,SU8020,日本Hitachi公司),傅里葉變換紅外光譜儀(NEXUS870型,美國NICOLET公司)和X射線光電子能譜(ESCALAB250Xi,美國Thermo公司)進行產(chǎn)物性質(zhì)分析. XPS分析中礦物表面的結(jié)合能以284.8eV進行C1s校準(zhǔn),并采用XPSPEAKER41軟件進行擬合分峰,用Shirley背景扣除, 峰型采用Lorentzian-Gaussian 函數(shù)(兩者比率設(shè)定為20%).鳥糞石晶體和海藻酸鈉的表面電勢均采用馬爾文zeta電位儀(Nano ZS90,英國Malvern公司)測定.
2.1 SA對鳥糞石結(jié)晶的影響
SA對鳥糞石晶體生長速率及抑制率如圖1所示,其生長速率隨SA濃度在0~250mg/L范圍內(nèi)增大而降低,即從3.92×10-6mol/min降低到1.30×10-6mol/min,最大抑制率可高達60%以上.由鳥糞石SEM圖(圖2)可見,當(dāng)溶液中無SA時,鳥糞石呈較粗的棒狀結(jié)構(gòu).隨著SA加入量提高,鳥糞石晶體呈明顯的減小趨勢.說明SA可以減小鳥糞石晶體尺寸和降低鳥糞石晶體生長速率,對鳥糞石結(jié)晶具有較強抑制作用.
基于一些文獻關(guān)于有機物對礦物抑制作用機理[14-15],這種抑制作用可能有兩方面原因加以解釋.一方面,SA通過降低溶液的離子強度或與Mg2+生成絡(luò)合物,從而導(dǎo)致溶液中鳥糞石飽和度的下降,鳥糞石晶體生長速率也相應(yīng)地減小.另一方面,海藻酸鹽可吸附、掩蔽在鳥糞石晶體表面生長活性點阻礙晶體生長,從而降低晶體生長速率.為檢驗鳥糞石結(jié)晶過程中溶液的Mg2+和SA是否發(fā)生絡(luò)合作用,在相同實驗條件(pH=8.5, 0.1mol/L NaCl和25℃)下,在自動電位滴定儀上利用0.1mol/L NaOH溶液分別對有、無添加3mmol/L MgCl2×6H2O時的100mL 200mg/L海藻酸溶液進行等體積(0.02mL)滴定.其結(jié)果如圖3所示,兩種滴定曲線偏移很小,說明SA與Mg2+絡(luò)合作用很弱,可忽略不計.再者, SA是一種聚合物,其分子量一般在12000~80000之間,因而溶液中SA物質(zhì)的量濃度遠低于離子強度(0.1mol/L NaCl)幾個數(shù)量級,說明SA加入并沒有明顯改變?nèi)芤弘x子強度.綜上所述,這種抑制作用可推論為海藻酸陰離子吸附并掩蔽鳥糞石晶體表面活性生長點上,從而抑制鳥糞石晶體的生長.
通常聚合物在礦物表面上吸附作用可能是由靜電作用力、氫鍵、化學(xué)鍵和疏水性等作用而引起的[16-17]. Zeta電位測定結(jié)果表明,在pH 8.5和離子強度0.1mol/L NaCl條件下,鳥糞石和SA表面電勢均為負值,分別為(-11.2±0.5)mv和(-21.4±0.7)mV.兩者之間存在靜電排斥力,由此說明這種吸附作用是由靜電作用力之外作用力引起的.為推測SA與鳥糞石晶體表面之間作用機理,分別對SA濃度為0mg/L、100mg/L和200mg/ L, pH=8.5時合成的鳥糞石(分別記作Str0、Str1和Str2)進行FTIR和XPS光譜分析.
2.2 FTIR分析
鳥糞石和SA的FTIR圖譜如圖4所示,無論溶液是否存在SA時,其合成物的紅外光譜主要特征吸收峰的強度和位置變化不大,與先前文獻中的鳥糞石的FTIR圖譜基本吻合[18-19]. 572cm-1和1006cm-1處檢測到顯著的磷酸鹽特征吸收峰;水分子之間和氨與水分之間的氫鍵吸收峰出現(xiàn)在762cm-1和887cm-1處;同時在3800cm-1與2200cm-1之間出現(xiàn)較寬的吸收峰為O-H和N-H的伸縮振動峰的重疊峰.說明SA僅吸附在鳥糞石表面且沒有改變鳥糞石晶體結(jié)構(gòu). SA的FITR圖譜中1178cm-1和1246cm-1是SA的COC對稱和不對稱伸縮振動峰[20-21].當(dāng)溶液加入SA時,鳥糞石的FTIR圖譜都在1168~1170cm-1和1236~1238cm-1范圍出現(xiàn)新的吸收峰,可能是SA的COC與鳥糞石表面羥基形成氫鍵作用所致[22].1631cm-1和1429cm-1是SA的COOH反對稱和對稱伸縮振動峰[23],當(dāng)溶液加入SA時,鳥糞石的FTIR圖譜在1616~1608cm-1和1434~1440cm-1處也發(fā)生較小地偏移,其原因是SA的COOH與鳥糞石表面上Mg2+發(fā)生表面絡(luò)合作用或與H2O和PO43-的水合羥基(POH)形成氫鍵作用[24].
2.3 XPS分析
鳥糞石XPS Mg1s窄掃描圖譜如圖5所示,當(dāng)溶液pH 8.5且不含SA時,結(jié)合能為1304.4eV處出現(xiàn)一個左右對稱的單峰.隨著加入100mg/L SA和200mg/L SA時,峰形明顯變寬,證明鳥糞石表面Mg和SA之間存在一定相互作用力.結(jié)合能為1303.5eV、1303.7eV和1304.4eV處均為MgO鍵[25-26],說明鳥糞石表面的Mg是以水合形式Mg(H2O)6存在[27].而結(jié)合能為1305.2eV和1305.0eV處鳥糞石表面的Mg是以非金屬形態(tài)存在[28-30],推測鳥糞石表面Mg2+與SA的COOH形成了內(nèi)層絡(luò)合物.鳥糞石的N1sXPS窄掃描圖譜如圖6所示,無論溶液是否存在SA,其結(jié)合能均401.5eV處出現(xiàn)一個左右對稱的單峰,其對應(yīng)的基團為NH4+[31].隨SA濃度增加到100mg/L和200mg/L時,其峰的位置和強度都無明顯變化,說明鳥糞石晶體表面NH4+與SA基本不發(fā)生反應(yīng).
SA是一種水溶性陰離子聚合物,具有3種主要官能團即C=O、COC和COH,且易于與鳥糞石表面羥基形成氫鍵[32-33].為驗證海藻酸陰離子與鳥糞石表面的POH或P=O基團是否存在氫鍵作用,需對鳥糞石表面P2p窄掃描譜擬合分峰,其結(jié)果如圖7所示.P2p譜分出兩個峰,位于134eV和133eV左右,對應(yīng)的是POH和P=O[34-35].隨SA濃度從0mg/L增加到200mg/L時,POH結(jié)合能也有所增強,分別為134.3eV、134.5eV和134.7eV,但結(jié)合能133.3eV處未發(fā)生明顯化學(xué)位移,表明鳥糞石表面磷是以POH形式和海藻酸陰離子發(fā)生作用,而P=O并未參與反應(yīng).SA的C1s窄掃描圖譜如圖8所示,SA在284.8eV、286.5eV、288.0eV和289.2eV出現(xiàn)特征峰,對應(yīng)的分別是污染峰(C-C,C-H)、COH或COC、C=O和O-C=O[36-38].當(dāng)SA與鳥糞石作用時,鳥糞石的C1s譜除在284.8eV處出現(xiàn)C的污染峰外,其C=O和COC結(jié)合能隨SA濃度增加均有所降低.C=O結(jié)合能由288.0ev降低到287.3eV、287.0eV;COC結(jié)合能從286.5eV減小到286.2eV、286.1eV.基于礦物與有機物氫鍵作用原理[39-40],可推測鳥糞石表面POH與SA中COC或C=O形成氫鍵作用.
3.1 SA存在會減小鳥糞石晶體的尺寸,對鳥糞石晶體生長速率有明顯地抑制作用,其最大抑制率可高達60%以上.
3.2 SA沒有和溶液中Mg2+發(fā)生絡(luò)合反應(yīng),也沒有降低離子強度,對鳥糞石的過飽和度沒有明顯的影響;其抑制作用可推測為海藻酸陰離子吸附并掩蔽鳥糞石表面生長活性點上并阻礙鳥糞石晶體生長.
3.3 SA影響鳥糞石結(jié)晶的作用機理是一方面鳥糞石表面Mg2+與SA中COOH發(fā)生絡(luò)合作用,另一方面鳥糞石表面POH與SA中C=O、COC發(fā)生氫鍵作用.
[1] 陳文玲,王如意,李詠梅.富磷污泥厭氧發(fā)酵過程中乙酸濃度對磷釋放的影響[J]. 中國環(huán)境科學(xué), 2015,35(6):1763-1770.
[2] 楊 露,平 倩,李詠梅.低磷濃度下鳥糞石結(jié)晶成粒及反應(yīng)器流態(tài)模擬[J]. 中國環(huán)境科學(xué), 2016,36(4):1017-1026.
[3] 吳 健,平 倩,李詠梅.鳥糞石結(jié)晶成粒技術(shù)回收污泥液中磷的中試研究[J]. 中國環(huán)境科學(xué), 2017,37(3):941-947.
[4] Xiao D, Huang H, Jiang Y, et al. Recovery of phosphate from the supernatant of activated sludge pretreated by microwave irradiation through chemical precipitation [J]. Environmental Science and Pollution Research, 2015:1-9.
[5] 陳漢龍,嚴媛媛,何群彪,等.酸堿法預(yù)處理低有機質(zhì)污泥的效果研究及條件優(yōu)化 [J]. 環(huán)境科學(xué)學(xué)報, 2013,33(2):458-463.
[6] Rouff A A, Ma N, Kustka A B. Adsorption of arsenic with struvite and hydroxylapatite in phosphate-bearing solutions [J]. Chemosphere, 2016,146:574-581.
[7] Rouff A A, Ramlogan M V, Rabinovich A. Synergistic Removal of Zinc and Copper in Greenhouse Waste Effluent by Struvite [J]. ACS Sustainable Chemistry & Engineering, 2016,4(3):1319- 1327.
[8] Uysal A, Yilmazel Y D, Demirer G N. The determination of fertilizer quality of the formed struvite from effluent of a sewage sludge anaerobic digester [J]. Journal of Hazardous Materials, 2010,181(1):248-254.
[9] 姚煒婷,孫水裕,鄭 莉,等.超聲波-缺氧/好氧消化過程污泥胞外聚合物和溶出物的變化研究 [J]. 環(huán)境科學(xué), 2011,32(6): 1665-1672.
[10] Lin Y M, Sharma P K, van Loosdrecht M C M. The chemical and mechanical differences between alginate-like exopolysaccharides isolated from aerobic flocculent sludge and aerobic granular sludge [J]. Water research, 2013,47(1):57-65.
[11] Preis J, Ashwell G. Alginic acid metabolism in bacteria [J]. J. Biol. Chem, 1962,237:309-316.
[12] Tomson M B, Nancollas G H. Mineralization kinetics: a constant composition approach [J]. Science, 1978,200(4345):1059-1060.
[13] Kofina A N, Demadis K D, Koutsoukos P G. The effect of citrate and phosphocitrate on struvite spontaneous precipitation [J]. Crystal Growth & Design, 2007,7(12):2705-2712.
[14] Ak?n B, ?ner M, Bayram Y, et al. Effects of carboxylate- modified,“green” inulin biopolymers on the crystal growth of calcium oxalate [J]. Crystal Growth & Design, 2008,8(6):1997- 2005.
[15] Koutsopoulos S, Dalas E, Klouras N. Inhibition of hydroxyapatite crystal growth by substituted titanocenes [J]. Langmuir, 2000, 16(16):6745-6749.
[16] Dalas E, Barlos K, Gatos D, et al. Effect of the cysteine-rich Mdm2peptide in the crystal growth of hydroxyapatite in aqueous solution [J]. Crystal Growth & Design, 2007,7(1):132-135.
[17] Rath R K, Subramanian S, Laskowski J S. Adsorption of dextrin and guar gum onto talc. A comparative study [J]. Langmuir, 1997, 13(23):6260-6266.
[18] Kurtulus G, Tas A C. Transformations of neat and heated struvite (MgNH4PO4×6H2O) [J]. MaterialsLetters, 2011,65(19):2883- 2886.
[19] Stefov V, ?optrajanov B, Spirovski F, et al. Infrared and Raman spectra of magnesium ammonium phosphate hexahydrate (struvite) and its isomorphous analogues. I. Spectra of protiated and partially deuterated magnesium potassium phosphate hexahydrate [J]. Journal of Molecular Structure, 2004,689(1): 1-10.
[20] Dianawati D, Mishra V, Shah N P. Role of calcium alginate and mannitol in protecting Bifidobacterium [J]. Applied and Environmental Microbiology, 2012,78(19):914-6921.
[21] Karuppuswamy P, Venugopal J R, Navaneethan B, et al. Functionalized hybrid nanofibers to mimic native ECM for tissue engineering applications [J]. Applied Surface Science, 2014,322: 162-168.
[22] Ba?ak??lardan-Kabakc? S, Thompson A, Cartmell E, et al. Adsorption and precipitation of tetracycline with struvite [J]. Water Environment Research, 2007,79(13):2551-2556.
[23] Coleman R J, Lawrie G, Lambert L K, et al. Phosphorylation of alginate: synthesis, characterization, and evaluation of in vitro mineralization capacity [J]. Biomacromolecules, 2011,12(4):889- 897.
[24] Downey J A, Nickel J C, Clapham L, et al. In vitro inhibition of struvite crystal growth by acetohydroxamic acid [J]. British Journal of Urology, 1992,70(5):355-359.
[25] Castro R H R, Marcos P J B, Lorriaux A, et al. Interface excess and polymorphic stability of nanosized zirconia-magnesia [J]. Chemistry of Materials, 2008,20(10):3505-3511.
[26] Chen J, Song Y, Shan D, et al. Study of the in situ growth mechanism of Mg–Al hydrotalcite conversion film on AZ31magnesium alloy [J]. Corrosion Science, 2012,63:148-158.
[27] Arjunan V, Lamb J, Chandra D, et al. Electrochemical corrosion behavior of low-carbon I-beam steels in a simulated Yucca Mountain repository environment [J]. Corrosion, 2005,61(4):381- 391.
[28] Nowak S, Collaud M, Dietler G, et al. X-ray photoelectron spectroscopy study of the polypropylene–magnesium interface after in situ plasma and ion treatment: Sticking, bonding, and film growth [J]. Journal of Vacuum Science & Technology A, 1993, 11(3):481-489.
[29] Jung S C, Lee K, Seo K W, et al. Effect of Mg ion bioactivity on the TiO2nano-network surface [J]. Journal of Nanoscience and Nanotechnology, 2013,13(1):617-620.
[30] Gao H F, Zhang S T, Liu C L, et al. Phytic acid conversion coating on AZ31B magnesium alloy [J]. Surface Engineering, 2012,28(5):387-392.
[31] Tan Y, Shao Z B, Chen X F, et al. Novel multifunctional organic–inorganic hybrid curing agent with high flame-retardant efficiency for epoxy resin [J]. ACS applied materials & interfaces, 2015,7(32):17919-17928.
[32] Chen J P, Hong L, Wu S, et al. Elucidation of interactions between metal ions and Ca alginate-based ion-exchange resin by spectroscopic analysis and modeling simulation [J]. Langmuir, 2002,18(24):9413-9421.
[33] Lim S F, Zheng Y M, Chen J P. Organic arsenic adsorption onto a magnetic sorbent [J]. Langmuir, 2009,25(9):4973-4978.
[34] Viornery C, Chevolot Y, Léonard D, et al. Surface modification of titanium with phosphonic acid to improve bone bonding: characterization by XPS and ToF-SIMS [J]. Langmuir, 2002, 18(7):2582-2589.
[35] Bai J, Nagashima T, Yajima T. XPS Study of apatite formed from simulated body fluid on a titanium substrate surface nitrided by an atmospheric pressure nitrogen microwave plasma [J]. Journal of Photopolymer Science and Technology, 2015,28(3): 455-459.
[36] Kosynkin D V, Higginbotham A L, Sinitskii A, et al. Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons [J]. Nature, 2009,458(7240):872-876.
[37] Marriott A S, Hunt A J, Bergstr?m E, et al. Investigating the structure of biomass-derived non-graphitizing mesoporous carbons by electron energy loss spectroscopy in the transmission electron microscope and X-ray photoelectron spectroscopy [J]. Carbon, 2014,67:514-524.
[38] Chen K, Shi B, Yue Y, et al. Binary synergy strengthening and toughening of bio-inspired nacre-like graphene oxide/sodium alginate composite paper [J]. ACS nano, 2015,9(8):8165-8175.
[39] Zhou S, Zheng X, Yu X, et al. Hydrogen bonding interaction of poly (D, L-lactide)/hydroxyapatite nanocomposites [J]. Chemistry of Materials, 2007,19(2):247-253.
[40] Yuan X, Wei Y, Chen S, et al. Bio-based graphene/sodium alginate aerogels for strain sensors [J]. RSC Advances, 2016, 6(68):64056-64064.
Effect and mechanism of sodium alginate on struvite crystallization.
WEI Lin1, HONG Tian-qiu1, LI Ru-zhong1, ZHANG Qiang2, CHEN Tian-hu1*
(1.Laboratory for Nanomineralogy and Environmental Material, School of Resources & Environmental Engineering, Hefei University of Technology, Hefei 230009, China;2.Analysis and Measurement Center, Hefei University of Technology, Hefei 230009, China), 2017,37(8):2941~2946
The recovery of phosphorus from excess sludge by the crystallization of struvite has a good prospect. However, it may be influenced by some organic matter in excess sludge, especially by extracellular polymeric substances (EPS). To elucidate the effect mechanism of EPS, struvite crystallization from supersaturated solutions was investigated in the presence of sodium alginate (SA) presenting similar properties to EPS based on the characterization of Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS) analysis. The results indicated that the growth rate and crystal size of struvite crystals significantly decreased with an increase of the SA concentration in a range of 0mg/L to 250mg/L. This phenomenon was assigned to the adsorption of SA on the growth site of struvite. Moreover, the adsorption was attributed to the interaction between Mg2+, POH in struvite crystals and the groups of COOH, C=O, COC in SA, whereas NH4+was not involved in the interaction.
struvite;sodium alginate;constant composition experiment;crystal growth
X703
A
1000-6923(2017)08-2941-06
韋 林(1980-),男,安徽廬江人,合肥工業(yè)大學(xué)博士研究生,主要從事水污染控制與資源化利用研究.發(fā)表論文10余篇.
2017-01-14
國家自然科學(xué)基金資助項目(41130206,51579061)
* 責(zé)任作者, 教授, chentianhu@hfut.edu.cn