楊丞杰,宋東明
1.昆明冶研新材料股份有限公司,云南 曲靖 655000
2.云南省光電子硅材料制備技術(shù)企業(yè)重點實驗室,云南 曲靖 655000
氫還原后三氯氫硅的雜質(zhì)控制
楊丞杰1,2,宋東明1,2
1.昆明冶研新材料股份有限公司,云南 曲靖 655000
2.云南省光電子硅材料制備技術(shù)企業(yè)重點實驗室,云南 曲靖 655000
表2 調(diào)整回流量塔釜TCS中副產(chǎn)物及雜質(zhì)含量Table 2 The by-product and impurity content in the tower kettle TCS after adjustment of the reflux quantity
固定提純塔進(jìn)料量為9 540 kg/h,塔頂采出量為600 kg/h,考察不同回流量對塔釜中副產(chǎn)物DCS以及雜質(zhì)PH3和BCl3含量的影響,結(jié)果見表3。由表可知,當(dāng)提純塔進(jìn)料量不變,增加塔頂采出量,對比表2的計算結(jié)果,對降低氫還原后回收的TCS中PH3,BCl3和DCS含量有相似的結(jié)論。在相同回流量,塔頂采出量增加的情況下,氫還原后TCS中副產(chǎn)物DCS含量變化不大,但雜質(zhì)PH3,BCl3含量明顯降低。
表3 調(diào)整回流量塔釜TCS中副產(chǎn)物及雜質(zhì)含量Table 3 The by-product and impurity content in the tower kettle TCS after adjustment of the reflux quantity
固定回流量為3 500 kg/h,塔頂采出量為600 kg/h,考察進(jìn)料量對塔釜中副產(chǎn)物DCS以及雜質(zhì)PH3和BCl3的影響,結(jié)果見表4。由表可知,隨著提純塔進(jìn)料量的降低,塔釜回收的還原后TCS中的DCS、PH3和BCl3明顯下降。
表4 進(jìn)料量對塔釜TCS中副產(chǎn)物及雜質(zhì)含量的影響Table 4 The by-product impurity content in the tower kettle TCS after adjustment of the feed flow
還原后 TCS中碳雜質(zhì)主要是由于石墨夾頭和電極四氟墊片在高溫下?lián)]發(fā)進(jìn)入還原爐,與還原爐中大量的氫氣反應(yīng)生成 CH4[7]和甲基氯硅烷[8],CH4進(jìn)入尾氣回收系統(tǒng)后,存在于回收氫氣中無法分離出來,而甲基氯硅烷則進(jìn)入還原后的氯硅烷,最后再次進(jìn)入還原爐,并沉積在硅棒上。為控制回收氫氣和還原后TCS中雜質(zhì)碳的含量,采取一些措施:(1)將石墨夾頭在1 200 ℃下進(jìn)行煅燒,除去里面殘留的水分和灰分;(2)當(dāng)還原爐運行一個周期后,石墨夾頭表面一般沉積一層致密的多晶硅,經(jīng)過工藝和石墨夾頭結(jié)構(gòu)調(diào)整,將石墨夾頭回收使用,可以減少碳雜質(zhì)的帶入;(3)將還原電極用四氟墊片改為金屬石墨纏繞墊片,避免四氟材質(zhì)在高溫下融化揮發(fā)進(jìn)入還原爐。
多晶硅還原系統(tǒng)帶入的金屬雜質(zhì)主要來自于還原爐鐘罩和電極基盤,在還原爐停爐倒棒,鐘罩清洗和基盤擦拭過程都將會帶入金屬雜質(zhì)。在操作中主要采取以下措施來減少金屬雜質(zhì)的帶入:(1)減少還原爐停爐倒棒率。通過不同的硅棒形態(tài)研究不同的還原爐倒棒率,將還原倒棒率降低15%,硅棒表面金屬雜質(zhì)大幅度下降,進(jìn)而也避免了金屬雜質(zhì)進(jìn)入還原后氯硅烷系統(tǒng)。生產(chǎn)中每月產(chǎn)品表面金屬雜質(zhì)含量明顯下降,如圖2所示。
圖2 硅棒表面金屬含量趨勢Fig.2 Trend of the metal content on surface of silicon rod
圖3 還原爐鐘罩內(nèi)壁拋光處理效果Fig.3 The inner surface of bell jar after polishing and chemical vapor deposition
(2)對還原爐鐘罩進(jìn)行機(jī)械打磨拋光,然后經(jīng)過酸洗鈍化,對鐘罩內(nèi)部進(jìn)行電化學(xué)鍍膜處理,如圖3所示,增加鐘罩的光潔度和清洗后的潔凈度。
(3)在清洗鐘罩、基盤的過程中,嚴(yán)禁使用鋼絲球、水砂紙,清洗液使用脫鹽水或超純水,避免帶入金屬雜質(zhì)。
a)生產(chǎn)高品質(zhì)多晶硅所需要的氫還原后三氯氫硅,可通過對其提純塔的模擬計算分析,獲得優(yōu)化操作工藝,能有效控制其中雜質(zhì)含量。采用Aspen Plus模擬軟件對還原后三氯氫硅提純塔進(jìn)行模擬計算,當(dāng)提純塔進(jìn)料量、回流量和塔頂采出量分別為6 000,3 500,600 kg/h時,可有效降低氫還原后三氯氫硅中DCS,PH3和BCl3的含量;
b)還原爐電極墊片使用金屬纏繞墊和經(jīng)過高溫煅燒的回收石墨夾頭,能減少碳元素對多晶硅的污染;對還原爐鐘罩進(jìn)行拋光處理,降低倒棒率,能降低多晶硅產(chǎn)品中金屬雜質(zhì)含量。
[1]黃小明, 楊光美. 高純TCS生產(chǎn)中硼磷雜質(zhì)的去除 [J]. 化工生產(chǎn)與技術(shù), 2012, 19(5):55-56, 64.Huang Xiaoming, Yang Guangmei. Remove the B and P impurities in the high purity TCS [J]. Chemical Production and Technology,2012, 19(5):55-56, 64.
[2]李群生, 張滿霞, 白 潔, 等. 三氯氫硅精餾過程的計算機(jī)模擬及優(yōu)化設(shè)計[C]//北京化工大學(xué)學(xué)報(自然學(xué)科版). 北京: 京臺化學(xué)工程與技術(shù)學(xué)術(shù)研討會, 2011: 18-23.
[3]王寶華. 三氯氫硅精餾過程的模擬與優(yōu)化 [J]. 北京化工大學(xué)學(xué)報: 自然科學(xué)版, 2012, 39(1):1-5.Wang Baohua. Simulation and optimization of trichlorosilane distillation process [J]. Journal of Beijing University of Chemical Technology: Natural Science Edition, 2012, 39(1):1-5.
[4]江慶云. 改良西門子法生產(chǎn)多晶硅中反應(yīng)精餾除硼的模擬研究 [J]. 中國化工貿(mào)易, 2015, 7(26):10-15.Jiang Qingyun. Simulation study on boron removal by reactive distillation in polysilicon production by modified SIEMENS process [J].China Chemical Trade, 2015, 7(26):10-15.
[5]王作民. 超純硅制備工藝中雜質(zhì)行為的探討 [J]. 上海有色金屬, 1983, 4(2):58-65.Wang Zuomin. Discuss of impurities in the preparation of high purity silicon [J]. Shanghai Metal, 1983, 4(2):58-65.
[6]陳 文, 徐 昱, 陳衛(wèi)強(qiáng), 等. 三氯氫硅精餾新過程的研究及其節(jié)能降耗的應(yīng)用 [J]. 化工進(jìn)展, 2009, 28(S2):297-300.Chen Wen, Xu Yu, Chen Weiqiang, et al The application of new energy saving process of trichlorosilane distillation [J]. Chemical Progress, 2009, 28(S2):297-300.
[7]楊 晟. 關(guān)于多晶硅生產(chǎn)中碳元素形成的研究 [C]// 多晶硅及太陽能電池技術(shù)發(fā)展研討會論文集. 西安: 多晶硅及太陽能電池技術(shù)發(fā)展研討會, 2011:253-258.
[8]蔡延國, 魏東亮, 祝永強(qiáng), 等. 多晶硅碳含量對產(chǎn)品質(zhì)量的影響及處理工藝 [J]. 化學(xué)反應(yīng)工程與工藝, 2016, 32(4):373-377.Cai Yanguo, Wei Dongliang, Zhu Yongqiang, et al. Effects of carbon content on quality of polysilicon products and treatment process [J].Chemical Reaction Engineering and Technology, 2016, 32(4):373-377.
Impurity Control of Trichlorosilane after Hydrogen Reduction
Yang Chengjie1,2, Song Dongming1,2
1. Kunming Yeyan New-Material Company Limited, Qujing 655000, China;2. Key Lab of Yunnan Province Optoelectronic Silicon Materials Preparation Technology Enterprises, Qujing 655000, China
In order to control the content of impurity in trichlorosilane after reduction, simulation calculations of trichlorosilane purification tower was carried out by Aspen Plus simulation software. The effects of the feed, back flow and recovery amount on the boron and phosphorus impurities in the trichlorosilane were investigated. The control measures of carbon and metal impurities in trichlorosilane after reduction were explored in the practical production. The results showed that the content of boron and phosphorus impurities in trichlorosilane can be reduced effectively after reduction of trichlorosilane by reducing the feed amount, improving the recovery and back flow rate in the purifying tower. Effectively control of the impurity content of carbon and metal after hydrogen reduction in trichlorosilane can also be made by reasonable maintenance and selection of reduction furnace bell jar, base plate and spare parts.
silicon reduction; trichlorosilane; impurities control
1001—7631 ( 2017 ) 03—0284—05
10.11730/j.issn.1001-7631.2017.03.0284.05