楊承源 楊惠林 許麗珍 朱奕潼△
蘇州大學(xué)附屬第一醫(yī)院 1)骨科 2)博習(xí)診療中心,江蘇 蘇州 215000
阿爾茨海默病(Alzheimer’s disease,AD)是一種進(jìn)行性神經(jīng)系統(tǒng)退行性病變,以細(xì)胞外淀粉樣蛋白沉積及細(xì)胞內(nèi)神經(jīng)元纖維纏結(jié)為病理學(xué)特征,并有皮質(zhì)神經(jīng)元及軸突的丟失。事實上,早在神經(jīng)退行性變發(fā)生之前,突觸已出現(xiàn)明顯的功能障礙[1]。突觸可塑性指的是神經(jīng)活動引起的神經(jīng)元之間信息傳遞效能增強或減弱的現(xiàn)象[2]。Aβ低聚肽可破壞突觸可塑性[3],誘導(dǎo)細(xì)胞凋亡[4],抑制嚙齒類動物的學(xué)習(xí)[5]。在海馬的神經(jīng)通路上,高頻電刺激可以使海馬神經(jīng)元興奮性突觸后電位(excitation postsynaptic potential,EPSP)增強,稱為長時程增強(long-term potentiation,LTP),它是突觸可塑性的一種重要形式,被公認(rèn)為與學(xué)習(xí)和記憶相關(guān)?;钚哉{(diào)節(jié)細(xì)胞骨架相關(guān)蛋白(activity-regulated cytoskeletal protein,Arc)/活性調(diào)節(jié)基因3.1蛋白同系物(activity-regulated gene 3.1 protein homolog,Arg3.1)是一種獨特的即早基因(immediate early gene,IEG),與LTP密切相關(guān)[6-8]。AD轉(zhuǎn)基因大鼠模型中敲除Arc/Arg3.1基因可以減少Aβ的聚集[9]。同樣,臨床AD患者反常地表達(dá)過高的Arc/Arg3.1,因此,我們推測,Arc/Arg3.1參與AD的病理過程。
Arc/Arg3.1 cDNA約含3 000個堿基對,最早于1995由LINK和LYFORD所在實驗室相繼發(fā)現(xiàn),并分別命名為Arc和Arg3.1,此后被用作大腦神經(jīng)活動的分子標(biāo)記物。Arc/Arg3.1蛋白在海馬神經(jīng)元的樹突上含量豐富,并與樹突上的細(xì)胞骨架蛋白相關(guān)[10]。Arc/Arg3.1基因是單拷貝基因,在脊椎動物中高度保守。有趣的是,Arc/Arg3.1基因缺少序列同源性,在非脊椎動物中尚未發(fā)現(xiàn)功能同源染色體[11],提示Arc/Arg3.1在進(jìn)化晚期出現(xiàn),對于神經(jīng)系統(tǒng)可能存在特殊的意義[12]。
癲癇發(fā)作[13]、神經(jīng)活動增加[14]、腦源性神經(jīng)營養(yǎng)因子(brain derived neurotrophic factor,BDNF)[15]、LTP[16]、長時程抑制(long-term depression,LTD)[17]和其他的刺激均可以誘導(dǎo)Arc/Arg3.1基因的表達(dá)。Arc/Arg3.1基因表達(dá)后能夠被迅速運送到活躍的樹突區(qū)域,并被翻譯成對應(yīng)蛋白,定位在樹突突起的底部。當(dāng)突觸活動增強時,Arc/Arg3.1 mRNA和表達(dá)的蛋白都顯著增加,具有明顯的活性依賴性[18]。
1.1 Arc/Arg3.1轉(zhuǎn)錄的調(diào)控Arc/Arg3.1基因在刺激發(fā)生后的5 min內(nèi)迅速轉(zhuǎn)錄,故稱其為“即早”基因[14]。這類基因在起始位點下游裝有轉(zhuǎn)錄裝置,故神經(jīng)元在刺激發(fā)生后得以最快的速度發(fā)生轉(zhuǎn)錄[19]。通常,Arc/Arg3.1以相對低的水平發(fā)生轉(zhuǎn)錄,AMPA受體激活后其轉(zhuǎn)錄水平進(jìn)一步降低[20]。BDNF TrkB受體[15]、1組代謝型谷氨酸受體[21]、毒蕈堿型乙酰膽堿受體[22]和NMDA受體[23]的激活可極大上調(diào)Arc/Arg3.1的轉(zhuǎn)錄。細(xì)胞外信號調(diào)節(jié)激酶(extracellular signal-regulated kinase,ERK)是上述信號傳導(dǎo)途徑下游的一個中心位點,為Arc/Arg3.1轉(zhuǎn)錄增強所必需的因子。ERK一旦被激活,即可磷酸化血清反應(yīng)因子的一個共激活劑,如三元復(fù)合物因子中的Elk1。這種復(fù)合物結(jié)合于啟動子區(qū)域血清反應(yīng)元件上,起轉(zhuǎn)錄激活的作用[24]。雖然我們并不完全了解Arc/Arg3.1轉(zhuǎn)錄過程中受體、信號通路間以及啟動子區(qū)的相互聯(lián)系,但Arc/Arg3.1顯然為我們了解不同形式的突觸活動引發(fā)的神經(jīng)元反應(yīng)提供了一個特別的切入點。
1.2 Arc/Arg3.1蛋白的產(chǎn)生和降解和Arc/Arg3.1轉(zhuǎn)錄類似,Arc/Arg3.1翻譯似乎也受活動水平和特定的信號級聯(lián)反應(yīng)的高度調(diào)控。在體外培養(yǎng)的神經(jīng)元中刺激NMDA受體和Gs偶聯(lián)受體可通過蛋白激酶A作用上調(diào)Arc/Arg3.1的翻譯水平[25]。體內(nèi)LTP誘導(dǎo)的Arc/Arg3.1翻譯需要ERK信號通路的參與,通過MAP激酶交互激酶磷酸化aIF4E而發(fā)揮作用[26]。代謝型谷氨酸受體mGluR-LTD可通過真核細(xì)胞延長因子2(eEF2)的磷酸化作用使原有的Arc/Arg3.1 mRNA迅速翻譯[17]。翻譯后,其穩(wěn)定性可能受PEST序列和泛素蛋白連接酶E3A(UBE3A)的調(diào)控。前者可將翻譯好的蛋白質(zhì)靶向輸送至蛋白酶。刺激發(fā)生6 h后,UBE3A合成并泛素化Arc/Arg3.1,致其降解[20]。故長時間刺激后,Arc/Arg3.1蛋白水平可恢復(fù)至基線水平。
1949年,HEBB提出著名的Hebbian突觸假說,即相互連接的兩個神經(jīng)元在經(jīng)歷同步放電活動后,它們之間的突觸連接就會得到增強。這種由神經(jīng)活動引起的神經(jīng)元之間信息傳遞效能增強或減弱的現(xiàn)象被稱為神經(jīng)突觸可塑性。
Arc/Arg3.1不僅修飾突觸結(jié)構(gòu),還可以調(diào)節(jié)突觸強度。研究顯示,LTP后期需要Arc/Arg3.1的參與。Arc/Arg3.1基因敲除小鼠接受高頻刺激,在起始反應(yīng)增強后出現(xiàn)穩(wěn)步減弱的現(xiàn)象,而正常Arc/Arg3.1水平的急性調(diào)控中并未出現(xiàn)起始反應(yīng)增強的現(xiàn)象,因此,它可能是終身Arc/Arg3.1表達(dá)缺陷所引起的后天性發(fā)育補償。短時間Arc/Arg3.1水平的降低也可導(dǎo)致LTP后期的缺失。GUZOWSKI等[27]將Arc/Arg3.1反義寡核苷酸(ODNs)在LTP誘導(dǎo)前1.5 h注入大鼠海馬,發(fā)現(xiàn)LTP的維持階段缺失而早期階段則不受影響。MESSAOUDI等在LTP誘導(dǎo)后2 h注射Arc/Arg3.1反義寡核苷酸可致LTP后期階段永久缺失,并徹底消除BDNF誘導(dǎo)的LTP形式。關(guān)于Arc/Arg3.1作用于LTP的分子機制,有研究已經(jīng)證實,Arc/Arg3.1可與鈣-鈣調(diào)蛋白依賴的蛋白激酶Ⅱ(Calcium/Calmodulin-dependent protein kinase Ⅱ,CaMKⅡ)發(fā)生相互作用,并可以增加其活性以及促進(jìn)CaMKⅡ的神經(jīng)元軸突生長。而CaMKⅡ是一個關(guān)鍵的信號蛋白分子,被稱作“記憶的分子開關(guān)",是LTP誘導(dǎo)與維持中的重要分子基礎(chǔ),在神經(jīng)系統(tǒng)中具有非常重要的生物學(xué)作用[28]。Arc/Arg3.1作用于LTP的分子機制還包括細(xì)胞骨架動態(tài)變化的調(diào)節(jié)和樹突棘形態(tài)的維持。Arc/Arg3.1定位于肌動蛋白細(xì)胞骨架,LTP可使致肌動蛋白聚合并增加其穩(wěn)固性,反過來肌動蛋白穩(wěn)定劑Jasplakinolide可防止Arc/Arg3.1基因受抑制所造成的LTP維持期缺失[29]。
Arc/Arg3.1除對LTP有關(guān)鍵的作用外,對于LTD來說亦必不可少。代謝型谷氨酸受體mGluR誘導(dǎo)的LTD需要Arc/Arg3.1發(fā)揮調(diào)節(jié)AMPA受體的內(nèi)吞作用[21]。Arc/Arg3.1通過endophilin1和dynamin2促進(jìn)AMPAR的胞吞作用從而降低了AMPAR介導(dǎo)的突觸電流的幅度[30]。目前還不清楚Arc/Arg3.1作用于AMPA受體上GluA1還是 GluA2亞基,也有可能這兩個亞基均受Arc/Arg3.1的調(diào)節(jié)。此外,Arc/Arg3.1還可以和Notch1發(fā)生共同免疫沉淀并激活Notch1受體。該受體在成熟神經(jīng)元形態(tài)和突觸可塑性的調(diào)節(jié)方面具有重要的作用。海馬切片研究發(fā)現(xiàn)Notch1信號通路的阻斷同時影響LTP和LTD[31]。
研究發(fā)現(xiàn),抑制Arc/Arg3.1蛋白的表達(dá)破壞了LTP的維持,而未影響其誘導(dǎo)。實驗動物經(jīng)水迷宮的訓(xùn)練后,并未影響其信息的采集和短時程記憶,但卻影響了其長時程記憶(long-term memory,LTM)。Arc/Arg3.1表達(dá)可以推斷動物學(xué)習(xí)任務(wù)的完成情況。紋狀體或海馬中Arc/Arg3.1含量高的動物其逆反學(xué)習(xí)機動應(yīng)答任務(wù)[32]和空間學(xué)習(xí)任務(wù)[33]完成得更快。然而,有研究觀察到海馬中表達(dá)較高水平Arc/Arg3.1動物學(xué)習(xí)杠桿的速度更慢[34]。這種明顯的差異可能是由于后一種學(xué)習(xí)并不依賴于海馬。還有一項研究發(fā)現(xiàn),過度杠桿訓(xùn)練的動物其眾多腦區(qū)的Arc/Arg3.1表達(dá)水平均低于新訓(xùn)練的動物[35]。雖然Arc/Arg3.1水平和學(xué)習(xí)能力之間的確切關(guān)系尚未明了,但Arc/Arg3.1的精確調(diào)制顯然有助于眾多形式的學(xué)習(xí)和行為反應(yīng)。
AD正日益被稱為“synaptopathy”[36],反映了疾病的發(fā)展過程中突觸的丟失或損傷,從而產(chǎn)生特定神經(jīng)回路功能的退化和隨之發(fā)生的神經(jīng)網(wǎng)絡(luò)活動的減少[37]。AD早期病理研究主要集中于淀粉樣前體蛋白通路及其蛋白裂解產(chǎn)物Aβ形成的斑塊。近幾年來,越來越多的研究表明,神經(jīng)毒性Aβ低聚體沉積可干擾突觸功能,而突觸功能與Arc/Arg3.1密切相關(guān)。
LANDGREN等調(diào)查人類Arc/Arg3.1遺傳變異性和罹患AD的風(fēng)險,對健康組成員進(jìn)行Arc/Arg3.1測序發(fā)現(xiàn),SNP+2852(G/A)與AD的患病風(fēng)險、簡易精神狀態(tài)量表(MMSE)分?jǐn)?shù)、腦脊液(CSF)的生物標(biāo)志物、總tau(T-tau蛋白)、過度磷酸化的tau181和Aβ142有關(guān)。且新發(fā)現(xiàn)的3’-UTR SNP+2852(A/G)中的AA基因型與AD發(fā)病風(fēng)險降低相關(guān)。
GINSBERG等[38]發(fā)現(xiàn)AD 患者出現(xiàn)神經(jīng)元纖維纏結(jié)的CA1區(qū),其Arc/Arg3.1 mRNA水平較正常組明顯下降,而WU等[39]尸檢AD患者的大腦發(fā)現(xiàn)額中回Arc/Arg3.1蛋白水平出現(xiàn)極大的上調(diào)。在動物模型的研究中,ECHEVERRIA等[40]以人工合成Aβ建造AD小鼠模型,在原代皮質(zhì)神經(jīng)元的培養(yǎng)中發(fā)現(xiàn)Arc/Arg3.1表達(dá)水平下降。以人工合成Aβ建造大鼠模型,WANG等[41]和CHEN等[42]均在原代培養(yǎng)的皮質(zhì)神經(jīng)元中觀測到Arc/Arg3.1表達(dá)的下調(diào),而LACOR等[43]卻在原代培養(yǎng)的海馬神經(jīng)元中發(fā)現(xiàn)Arc/Arg3.1表達(dá)上升。WEGENAST-BRAUN等[44]利用多種轉(zhuǎn)基因小鼠模型研究發(fā)現(xiàn),年輕和年老的小鼠海馬和皮質(zhì)中Arc/Arg3.1的表達(dá)均下降,這與DICKEY等[45-46]的研究一致。有趣的是,PALOP等[47]在4~7月齡的小鼠海馬中同時觀測到Arc/Arg3.1表達(dá)上升和下降的現(xiàn)象??梢?,目前研究者對AD患者體內(nèi)Arc/Arg3.1表達(dá)的變化趨勢觀點不一,但可以確定的是,AD患者大腦神經(jīng)元中Arc/Arg3.1表達(dá)的失調(diào)干擾了正常的神經(jīng)生理活動,參與了AD的發(fā)病。RUDINSKIY等[48]提出,Arc/Arg3.1 的表達(dá)模式影響了神經(jīng)系統(tǒng)對行為體驗的反應(yīng),也干擾了行為體驗的生理性增強。破壞Arc/Arg3.1表達(dá)模式出現(xiàn)的斑塊沉積干擾神經(jīng)元網(wǎng)絡(luò)的集成,最終導(dǎo)致AD的突觸功能受損。
Arc/Arg3.1不僅為AD的研究打開了一扇窗,也為AD的其他發(fā)病機制假說提供了一個切入點。神經(jīng)炎癥與AD等眾多神經(jīng)病理性疾病有關(guān),且可以由活化的小膠質(zhì)細(xì)胞檢測。早期AD 病人便可在涉及學(xué)習(xí)和記憶的腦區(qū)觀察到小膠質(zhì)細(xì)胞發(fā)生最大程度的激活。ROSI等[49]在試驗性炎癥的誘導(dǎo)下觀察海馬中活動誘導(dǎo)性即早基因Arc/Arg3.1的表達(dá)。腦室中注入脂多糖的大鼠齒狀回和CA3區(qū)Arc/Arg3.1和OX-6(主要組織相容性復(fù)合體Ⅱ類抗原)免疫標(biāo)記以及Arc/Arg3.1熒光原位雜交發(fā)現(xiàn)激活的小膠質(zhì)細(xì)胞以及Arc/Arg3.1的表達(dá)上升。行為誘導(dǎo)性Arc/Arg3.1表達(dá)的改變只發(fā)生在有小膠質(zhì)細(xì)胞激活的區(qū)域(OX-6免疫激活),表明在學(xué)習(xí)和突觸可塑性方面,神經(jīng)炎癥可能會影響神經(jīng)活動與大分子物質(zhì)合成的耦合。由神經(jīng)炎癥引發(fā)的Arc/Arg3.1表達(dá)的活動依賴性改變,可能與AD患者認(rèn)知功能缺陷有關(guān)。
AD是慢性進(jìn)行性中樞神經(jīng)系統(tǒng)變性病導(dǎo)致的癡呆,是癡呆最常見的病因和最常見的老年期癡呆。AD以漸進(jìn)性記憶障礙、認(rèn)知功能障礙、人格改變以及語言障礙等神經(jīng)精神癥狀為特征,嚴(yán)重影響了患者和家人的生活及工作。Arc/Arg3.1作為一個即刻早期基因,在突觸重塑中作用顯著,而突觸可塑性與LTP有關(guān),LTP是學(xué)習(xí)與記憶的分子基礎(chǔ),因此,Arc/Arg3.1與學(xué)習(xí)記憶等認(rèn)知功能關(guān)系密切。生理情況下,Arc/Arg3.1介導(dǎo)正常學(xué)習(xí)記憶功能的建立,而在病理情況下,如AD患者中Arc/Arg3.1的表達(dá)如何以及其變化如何影響學(xué)習(xí)記憶過程,有待進(jìn)一步探討。
[1] DOROSTKAR M M,HERMS J.Arc illuminates Alzheimer's pathophysiology[J].Nature Neurosci,2012,15(10):1 323-1 325.
[2] KRAFT A W,BAUER A Q,CULVER J P,et al.Sensory deprivation after focal ischemia in mice accelerates brain remapping and improves functional recovery through Arc-dependent synaptic plasticity[J].Sci Transl Med,2018,10(426).(pii):10/426/eaag1328.
[3] SHANKAR G M,LI S,MEHTA T H,et al.Amyloid-beta protein dimers isolated directly from Alzheimer's brains impair synaptic plasticity and memory[J].Nat Med,2008,14(8):837-842.
[4] LAMBERT M P,BARLOW A K,CHROMY B A,et al.Diffusible,nonfibrillar ligands derived from Abet al-42 are potent central nervous system neurotoxins[J].Proc Natl Acad Sci U S A,1998,95(11):6 448-6 453.
[5] BALDUCCI C,BEEG M,STRAVALACI M,et al.Synthetic amyloid-beta oligomers impair long-term memory independently of cellular prion protein[J].Proc Natl Acad Sci U S A,2010,107(5):2 295-2 300.
[6] GASPAROVA Z,STARA V,STOLC S.Effect of antioxidants on functional recovery after in vitro-induced ischemia and long-term potentiation recorded in the pyramidal layer of the CA1 area of rat hippocampus[J].Gen Physiol Biophys,2013,361(6 407):31-39.
[7] NIKOLAIENKO O,PATIL S,ERIKSEN M S,et al.Arc protein:a flexible hub for synaptic plasticity and cognition[J].Semin Cell Dev,Biol,2017,7(17):30 343-30 349.
[8] MABB A M,EHLERS M D.Arc ubiquitination in synaptic plasticity[J].Semin Cell Dev Biol,2017.pii:S1084-9521(16)30502-X.
[9] JANKOWSKY J L,SLUNT H H,RATOVITSKI T,et al.Co-expression of multiple transgenes in mouse CNS:a comparison of strategies[J].Biomol Eng,2001,17(6):157-165.
[10] LYFORD G L,YAMAGATA K,KAUFMANN W E,et al.Arc,a growth factor andactivity-regulated gene,encodes a novel cytoskeleton-associated protein that is enriched in neuronal dendrites[J].Neuron,1995,14(2):433-445.
[11] MATTALIANO M D,MONTANA E S,PARISKY K M,et al.The Drosophila ARC homolog regulates behavioral responses to starvation[J].Mol Cell Neurosci,2007,36(2):211-221.
[12] MIYASHITA T,KUBIK S,LEWANDOWSKI G,et al.Networks of neurons,networks of genes:an integrated view of memory consolidation[J].Neurobiol Learn Mem,2008,89(3):269-284.
[13] LINK W,KONIETZKO U,KAUSELMANN G,et al.Somatodendritic expression of an immediate early gene is regulated by synaptic activity[J].Proc Natl Acad Sci U S A,1995,92(12):5 734-5 738.
[14] RAMIREZ-AMAYA V,VAZDARJANOVA A,MIKHAEL D,et al.Spatial exploration-induced Arc mRNA and protein expression:evidence for selective,network-specific reactivation[J].J Neurosci,2005,25(7):1 761-1 768.
[15] PINTCHOVSKI S A,PEEBLES C L,KIM H J,et al.The serum response factor and a putative novel transcription factor regulate expression of the immediate-early gene Arc/Arg3.1 in neurons[J].J Neurosci,2009,29(5):1 525-1 537.
[16] YILMAZ-RASTODER E,MIYAMAE T,BRAUN A E,et al.LTP-and LTD-inducing stimulations cause opposite changes in arc/arg3.1 mRNA level in hippocampal area CA1 in vivo[J].Hippocampus,2011,21(12):1 290-1 301.
[17] PARK S,PARK J M,KIM S,et al.Elongation factor 2 and fragile X mental retardation protein control the dynamic translation of Arc/Arg3.1 essential for mGluR-LTD[J].Neuron,2008,59(1):70-83.
[18] PASTUZYN E D,SHEPHERD J D.Activity-Depen-dent Arc Expression and Homeostatic Synaptic Plasticity Are Altered in Neurons from a Mouse Model of Angelman Syndrome[J].Front Mol Neurosci,2017,10:234.
[19] SAHA R N,WISSINK E M,BAILEY E R,et al.Rapid activity-induced transcription of Arc and other IEGs relies on poised RNA polymerase II[J].Nat Neurosci,2011,14(7):848-856.
[20] RAO V R,PINTCHOVSKI S A,CHIN J,et al.AMPA receptors regulate transcriptionof the plasticity-related immediate-early gene Arc[J].Nat Neurosci,2006,9(7):887-895.
[21] WAUNG M W,PFEIFFER B E,NOSYREVA E D,et al.Rapid translation of Arc/Arg3.1 selectively mediates mGluR-dependent LTD through persistent increases in AMPAR endocytosis rate[J].Neuron,2008,59(1):84-97.
[22] TEBER I,KOHLING R,SPECKMANN E J,et al.Muscarinic acetylcholine receptor stimulation induces expression of the activity-regulated cytoskeleton-associated gene (ARC)[J].Brain Res Mol Brain Res,2004,121(1/2):131-136.
[23] STEWARD O,WORLEY P F.Selective targeting of newly synthesized Arc mRNA to active synapses requires NMDA receptor activation[J].Neuron,2001,30(1):227-240.
[24] POSERN G,TREISMAN R.Actin' together:serum response factor,its cofactors and the link to signal transduction[J].Trends Cell Biol,2006,16(11):588-596.
[25] BLOOMER W A,VANDONGEN H M,VANDONGEN A M.Arc/Arg3.1 translation is controlled by conver-gent N-methyl-D-aspartate and Gs-coupled receptor signaling pathways[J].J Biol Chem,2008,283(1):582-592.
[26] PANJA D,DAGYTE G,BIDINOSTI M,et al.Novel translational control in Arc-dependent long term potentiation consolidation in vivo[J].J Biol Chem,2009,284(46):31 498-31 511.
[27] GUZOWSKI J F,LYFORD G L,STEVENSON G D,et al.Inhibition of activity-dependent arc protein expression in the rat hippocampus impairs the main-tenance of long-term potentiation and the consolidation of long-term memory[J].J Neurosci,2000,20(11):3 993-4 001.
[28] MESSAOUDI E,KANHEMA T,SOULE J,et al.Sustained Arc/Arg3.1 synthesis controls long-term potentiation consolidation through regulation of local actin polymerization in the dentate gyrus in vivo[J].J Neurosci,2007,27(39):10 445-10 455.
[29] SHEPHERD J D,BEAR M F.New views of Arc,a master regulator of synaptic plasticity[J].Nat Neurosci,2011,14(3):279-284.
[30] CHOWDHURY S,SHEPHERD J D,OKUNO H,et al.Arc/Arg3.1 interacts with the endocytic machinery to regulate AMPA receptor trafficking[J].Neuron,2006,52(3):445-459.
[31] ALBERI L,LIU S,WANG Y,et al.Activity-induced Notch signaling in neurons requires Arc/Arg3.1 and is essential for synaptic plasticity in hippocampal networks[J].Neuron,2011,69(3):437-444.
[32] DABERKOW D P,RIEDY M D,KESNER R P,et al.Arc mRNA induction in striatal efferent neurons associated with response learning[J].Eur J Neurosci,2007,26(1):228-241.
[33] GUZOWSKI J F,SETLOW B,WAGNER E K,et al.Experience-dependent gene expression in the rat hippocampus after spatial learning:a comparison of the immediate-early genes Arc,c-fos,and zif268[J].J Neurosci,2001,21(14):5 089-5 098.
[34] KELLY M P,DEADWYLER S A.Experience-depen-dent regulation of the immediate-early gene arc differs across brain regions[J].J Neurosci,2003,23(16):6 443-6 451.
[35] KELLY M P,DEADWYLER S A.Acquisition of a novel behavior induces higher levels of Arc mRNA than does overtrained performance[J].Neuroscience,2002,110(4):617-626.
[36] Kerrigan T L,Randall A D.A new player in the "synaptopathy" of Alzheimer's disease-arc/arg 3.1[J].Front Neurol,2013,4:9.
[37] LANDGREN S,VON OTTER M,PALMER M S,et al.A novel ARC gene polymorphism is associated with reduced risk of Alzheimer's disease[J].J Neural Transm,2012,119(7):833-842.
[38] GINSBERG S D,HEMBY S E,LEE V M,et al.Expression profile of transcripts in Alzheimer's disease tangle-bearing CA1 neurons[J].Ann Neurol,2000,48(1):77-87.
[39] WU J,PETRALIA R S,KURUSHIMA H,et al.Arc/Arg3.1 regulates an endosomal pathway essential for activity-dependent beta-amyloid generation[J].Cell,2011,147(3):615-628.
[40] ECHEVERRIA V,BERMAN D E,ARANCIO O.Oligomers of beta-amyloid peptide inhibit BDNF-induced arc expression in cultured cortical Neurons[J].Curr Alzheimer Res,2007,4(5):518-521.
[41] WANG K H,MAJEWSKA A,SCHUMMERS J,et al.In vivo two-photon imaging reveals a role of arc in enhancing orientation specificity in visual cortex[J].Cell,2006,126(2):389-402.
[42] CHEN T J,WANG D C,CHEN S S.Amyloid-beta interrupts the PI3K-Akt-mTOR signalingpathway that could be involved in brain-derived neurotrophic factor-induced Arc expression in rat cortical neurons[J].J Neurosci Res,2009,87(10):2 297-2 307.
[43] LACOR P N,BUNIEL M C,CHANG L,et al.Synaptic targeting by Alzheimer's-related amyloid beta oligomers[J].J Neurosci,2004,24(45):10 191-10 200.
[44] WEGENAST-BRAUN B M,F(xiàn)ULGENCIO M A,EICKE D,et al.Independent effects of intra-and extracellular Abeta on learning-related gene expression[J].Am J Pathol,2009,175(1):271-282.
[45] DICKEY C A,GORDON M N,MASON J E,et al.Amyloid suppresses induction of genes critical for memory consolidation in APP+PS1 transgenic mice[J].J Neurochem,2004,88(2):434-442.
[46] DICKEY C A,LORING J F,MONTGOMERY J,et al.Selectively reduced expression of synaptic plasticity-related genes in amyloid precursor protein + presenilin-1 transgenic mice[J].J Neurosci,2003,23(12):5 219-5 226.
[47] PALOP J J,CHIN J,BIEN-LY N,et al.Vulnerability of dentate granule cells to disruption of arc expression in human amyloid precursor protein transgenic mice[J].J Neurosci,2005,25(42):9 686-9 693.
[48] RUDINSKIY N,HAWKES J M,BETENSKY R A,et al.Orchestrated experience-driven Arc responses are disrupted in a mouse model of Alzheimer's disease[J].Nat Neurosci,2012,15(10):1 422-1 429.
[49] ROSI S,RAMIREZ-AMAYA V,VAZDARJANOVA A,et al.Neuroinflammation alters the hippocampal pattern of behaviorally induced Arc expression[J].J Neurosci,2005,25(3):723-731.