b>0),P(x0,y0)為橢圓上的任意一點(diǎn),且PA⊥PB,A,B兩點(diǎn)均在橢圓上,則直線AB恒過(guò)定點(diǎn)c2x0a2+b2,-c2y0a2+b2.2.已知P(x0,y0)為雙曲線x2a2-y2b2=1(a>0,b>0)上的任意一點(diǎn)"/>
馬文政
第一類(lèi)問(wèn)題 與垂直有關(guān)的過(guò)定點(diǎn)問(wèn)題(斜率之積)
1.橢圓的方程為x2a2+y2b2=1(a>b>0),P(x0,y0)為橢圓上的任意一點(diǎn),且PA⊥PB,A,B兩點(diǎn)均在橢圓上,則直線AB恒過(guò)定點(diǎn)c2x0a2+b2,-c2y0a2+b2.
2.已知P(x0,y0)為雙曲線x2a2-y2b2=1(a>0,b>0)上的任意一點(diǎn),且PA⊥PB,A,B兩點(diǎn)均在雙曲線上.
(1)當(dāng)a≠b時(shí),則直線AB恒過(guò)定點(diǎn)c2x0a2-b2,-c2y0a2-b2.
(2)當(dāng)a=b時(shí),kAB=-y0x0.
3.y2=2px(p>0)上的任意不同三點(diǎn)A,B,M(x0,y0),若MA⊥MB,則AB直線恒過(guò)定點(diǎn)(2p+x0,-y0).
推廣到一般情況:
橢圓x2a2+y2b2=1(a>b>0)上的任意三點(diǎn)A,B,M(x0,y0),若kMA·kMB=1t.
(1)當(dāng)a2-b2t≠0時(shí),則AB直線恒過(guò)定點(diǎn)a2+b2ta2-b2tx0,-a2+b2ta2-b2ty0.
(2)當(dāng)a2-b2t=0時(shí),kAB=-y0x0.
(3)當(dāng)t=-1時(shí),AB恒過(guò)定點(diǎn)c2x0a2+b2,-c2y0a2+b2.
雙曲線x2a2-y2b2=1(a>0,b>0)上的任意三點(diǎn)A,B,M(x0,y0),若kMA·kMB=1t.
(1)當(dāng)a2+b2t≠0時(shí),則AB直線恒過(guò)定點(diǎn)a2-b2ta2+b2tx0,-a2-b2ta2+b2ty0.
(2)當(dāng)a2+b2t≠0時(shí),kAB=-y0x0(這里x0,y0討論省去了).
其中t=-1時(shí),當(dāng)a≠b時(shí),則直線AB恒過(guò)定點(diǎn)c2x0a2-b2,-c2y0a2-b2.
當(dāng)a=b時(shí),kAB=-y0x0.
拋物線y2=2px(p>0)上的任意三點(diǎn)A,B,M(x0,y0),若kMA·kMB=1t,則AB直線恒過(guò)定點(diǎn)(-2pt+x0,-y0).
當(dāng)t=-1時(shí),則AB直線恒過(guò)定點(diǎn)(2p+x0,-y0).
第二類(lèi)問(wèn)題 斜率之和
橢圓x2a2+y2b2=1(a>b>0),M(x0,y0)在橢圓上且
(1)kMB+kMA=1t,t≠0,則直線AB恒過(guò)定點(diǎn)-2ty0+x0,-2tb2a2x0-y0.
(2)當(dāng)kMB+kMA=0時(shí),kOM·kAB=b2a2.
練習(xí):x22+y2=1上有一點(diǎn)M(0,1)若kMB+kMA=4則AB恒過(guò)-12,-1.
雙曲線:x2a2-y2b2=1(a>0,b>0),M(x0,y0)在雙曲線上且
(1)kMB+kMA=1t,t≠0,則直線AB恒過(guò)定點(diǎn)-2ty0+x0,2tb2a2x0-y0.
(2)當(dāng)kMB+kMA=0時(shí),kOM·kAB=-b2a2.
拋物線:y2=2px,P>0,
(1)kMB+kMA=0,則kAB=-Py0.
(2)當(dāng)kMB+kMA=1t(t≠0)時(shí),AB恒過(guò)定點(diǎn)(x0-2y0t,-y0+2Pt).endprint