趙 磊 林 江
上海中醫(yī)藥大學1(201203) 上海中醫(yī)藥大學附屬龍華醫(yī)院消化科2
腸易激綜合征(irritable bowel syndrome, IBS)是常見的功能性胃腸病,以腹痛或腹部不適為主要特征,可伴排便習慣改變。根據(jù)羅馬Ⅳ診斷標準[1],IBS可分為腹瀉型、便秘型、混合型和不確定型4種臨床類型。目前認為IBS發(fā)病是多因素綜合作用的結(jié)果,主要與遺傳、環(huán)境、精神心理障礙、胃腸運動紊亂、腦-腸軸功能異常、內(nèi)臟高敏感、腸道菌群改變、炎癥、免疫因素等有關,但其確切病因和發(fā)病機制尚未完全闡明。近年腸黏膜屏障(intestinal mucosal barrier)在IBS發(fā)病中的作用備受關注。腸黏膜屏障是由機械屏障(腸上皮分泌的黏液、腸上皮細胞及其連接)、生物屏障(腸道共生菌)和免疫屏障(消化道相關淋巴組織和免疫細胞)等組成的復雜屏障系統(tǒng),發(fā)揮消化、吸收、內(nèi)分泌、防御等功能。腸黏膜內(nèi)表面致密的腸上皮細胞是腸黏膜屏障的重要組成結(jié)構,可維持腸上皮與腸道微環(huán)境之間的物質(zhì)轉(zhuǎn)運和信息傳遞,并能發(fā)揮保護作用,防御致病菌入侵。腸上皮細胞的生物學功能與其細胞間緊密連接(tight junction, TJ)密切相關[2]。IBS患者常存在腸黏膜TJ結(jié)構異常和通透性改變[3-4],可能與IBS發(fā)病相關。本文就腸上皮細胞TJ在IBS發(fā)病中的作用作一綜述。
腸上皮細胞呈單層柱狀緊密排列,細胞間存在多種細胞連接,包括TJ、縫隙連接、橋粒等,其中以TJ最為重要,在維持腸黏膜屏障功能及其通透性中發(fā)揮關鍵作用[5-6]。TJ主要由TJ蛋白組成,包括閉合蛋白(claudin)、咬合蛋白(occludin)和帶狀閉合蛋白(zonula occluden, ZO)等。
Claudin是具有四個跨膜結(jié)構域的細胞膜表面蛋白[7],包含至少24個家族成員,其中claudin-1、claudin-5、claudin-8、claudin-11、claudin-14等可通過降低細胞膜的陽離子通透性,增高宿主細胞的跨膜電阻;claudin-2、claudin-10、claudin-15等可參與細胞膜的陽離子通道形成,降低細胞跨膜電阻。Claudin在不同組織、器官中的分布和差異性表達使其在TJ中表現(xiàn)出不同的作用。Occludin亦含有四個跨膜結(jié)構域,但與claudin具有不同的胞外環(huán),可參與TJ結(jié)構形成,并維持其穩(wěn)定性。Claudin和occludin共同組成TJ主體,并通過ZO蛋白PDZ結(jié)構域與細胞內(nèi)骨架蛋白連接。在相鄰腸上皮細胞頂側(cè)膜腸腔側(cè),TJ形成連續(xù)的環(huán)形帶狀門控結(jié)構,使相鄰細胞膜的接觸和信息傳遞集中,細胞間隙消失,并通過細胞旁間隙控制細胞膜對離子和小分子物質(zhì)的通透性;在胞質(zhì)側(cè),TJ形成肌動蛋白結(jié)合位點,通過其跨膜結(jié)構域與細胞內(nèi)肌動蛋白細胞骨架相連,調(diào)控細胞膜對細胞旁間隙中可溶性物質(zhì)的通透性[8]。綜上所述,TJ在維護黏膜通透性方面起有重要作用。
多種致病因素可導致IBS患者TJ結(jié)構和功能改變,并引起相鄰腸上皮細胞間隙的通透性增加以及黏膜屏障功能異常。
1. 基因和蛋白表達異常:部分IBS患者的腸黏膜TJ出現(xiàn)基因和蛋白表達異常。Bertiaux-Vanda?le等[9]發(fā)現(xiàn)與正常人相比,IBS患者腸黏膜claudin-1、occludin和ZO-1表達減少,且以腹瀉型IBS患者的claudin-1和occludin水平降低最為明顯。Martínez等[10]發(fā)現(xiàn)IBS患者腸黏膜ZO-1 mRNA和蛋白水平均顯著低于正常人,而腹瀉型IBS患者腸黏膜claudin-2表達明顯增加。Cheng等[11]發(fā)現(xiàn),claudin-1表達在腹瀉型IBS患者中明顯減少,而在便秘型IBS患者中卻有增高趨勢。TJ作為調(diào)控黏膜通透性的主要部位,TJ蛋白是其結(jié)構和功能的基礎,TJ蛋白表達異??梢餞J組裝不完整甚至畸形組裝,進而影響其離子通道功能,最終引起跨膜電阻(上皮屏障功能評判指標)改變。在腹瀉型IBS患者中多表現(xiàn)為陽離子通道作用強化或通道破壞引起的TJ封閉作用喪失,增加腸道電解質(zhì)流失;在便秘型IBS患者中則表現(xiàn)為陽離子通道作用減弱。TJ的這些結(jié)構異??捎绊懩c黏膜功能,引起持久的黏膜通透性改變以及水、電解質(zhì)代謝失衡。
2. 蛋白結(jié)構和分布異常:IBS患者腸黏膜的TJ空間結(jié)構出現(xiàn)移位或解離,可伴或不伴TJ蛋白表達異常。Martínez等[10]發(fā)現(xiàn)腹瀉型IBS患者腸黏膜ZO-1表達減少,并從TJ解離至細胞質(zhì)內(nèi),從而導致TJ功能失調(diào)。Lauffer等[12]發(fā)現(xiàn)在亞急性或慢性應激條件下,大鼠TJ蛋白表達未見明顯異常,但其黏膜的跨膜電阻發(fā)生改變。Vanhaecke等[13]證實應激模型大鼠腸黏膜occludin、claudin等蛋白表達未出現(xiàn)異常,而ZO-1分布發(fā)生改變;益生菌制劑可恢復和維持黏膜通透性,且在應激前給藥可發(fā)揮預防黏膜屏障功能破壞的作用。Keszthelyi等[14]發(fā)現(xiàn)部分IBS患者腸黏膜屏障功能減弱,occludin脫離TJ結(jié)構,并在細胞質(zhì)內(nèi)異常分布;通過服用5-羥色胺酸(5-HTP)可促進這種分布異常,并增加黏膜通透性。Annaházi等[15]發(fā)現(xiàn)半胱氨酸蛋白酶(cysteine protease, CP)可通過降解occludin,引起TJ結(jié)構改變,是便秘型IBS發(fā)病的重要機制;CP抑制劑可改善TJ結(jié)構異常,明顯緩解便秘型IBS患者的腹痛、便秘癥狀。該研究提示CP在維持TJ結(jié)構穩(wěn)定中可能具有重要調(diào)節(jié)作用,其具體機制有待進一步研究加以證實。綜上所述,claudin和occludin與ZO蛋白結(jié)合形成TJ,并與細胞內(nèi)的骨架蛋白連接,該結(jié)構在組裝過程中出現(xiàn)異常或TJ蛋白解離引起的結(jié)構破壞均會影響TJ的正常功能,導致黏膜通透性改變。
3. TJ調(diào)控功能異常:研究[16-17]證實,肌球蛋白輕鏈激酶(MLCK)和Rho相關激酶(ROCK)誘導的肌球蛋白輕鏈(MLC)磷酸化可觸發(fā)肌動蛋白收縮,引起細胞旁間隙擴大,黏膜通透性增加。Samak等[18]的研究發(fā)現(xiàn),MLCK激活引起的人結(jié)腸腺癌細胞株Caco-2細胞拉伸可直接導致TJ結(jié)構改變。Gong等[19]以結(jié)腸球囊刺激誘導慢性內(nèi)臟高敏感的IBS大鼠模型,發(fā)現(xiàn)其腸黏膜MLCK表達較正常大鼠明顯增加,而小檗堿治療可緩解這種異常高表達。Huang等[20]發(fā)現(xiàn)脂多糖可通過增加MLCK活性,促進MLC磷酸化,增加內(nèi)皮細胞通透性,而黃芩素治療可明顯抑制這種效應。Wu等[21]發(fā)現(xiàn)MLCK激活可引起黏膜刷狀緣呈扇形開放,促使腸道內(nèi)非侵襲性共生菌向腸黏膜滲透并黏附,進而誘導慢性炎癥的發(fā)生。
TJ蛋白結(jié)構、組成及其功能異常均可引發(fā)黏膜通透性改變,進而誘導或加重IBS癥狀。這些異常表現(xiàn)可單獨或同時出現(xiàn),可能與IBS致病因素不同有關,且可能是IBS患者臨床表現(xiàn)差異的原因之一。
針對IBS中TJ改變的研究較多,但因IBS發(fā)病原因復雜以及早期診斷方法缺乏,TJ改變是IBS的首發(fā)因素還是繼發(fā)癥狀仍有爭議。IBS患者多存在精神心理應激,部分存在消化道感染史,其黏膜可發(fā)生不同程度的炎癥反應。因此在制備IBS動物模型時,多采用外界刺激、菌群移植、慢性化學性炎癥誘導等方法。
1. 應激:應激在IBS發(fā)病中起有重要作用。IBS患者腦-腸互動異常,進而引發(fā)腸道運動、黏膜通透性和敏感性改變,其機制與中樞神經(jīng)和腸神經(jīng)系統(tǒng)功能紊亂有關。應激條件下,大腦可通過腦-腸軸傳遞神經(jīng)、內(nèi)分泌等信號到腸道,其中下丘腦-垂體-腎上腺軸可激活自主神經(jīng)系統(tǒng),引起皮質(zhì)醇、炎癥因子和促腎上腺皮質(zhì)激素釋放因子(CRF)釋放,CRF受體過度激活導致腸黏膜claudin-2表達增加,而CRF受體抑制劑可降低claudin-2水平,部分恢復跨膜電阻和黏膜通透性[22]。應激亦可引起血清肥大細胞活化以及5-羥色胺(5-HT)釋放。健康人血清5-HT可引起腸黏膜ZO-1表達增加,而不影響TJ結(jié)構和黏膜功能;IBS患者血清5-HT水平異常升高,進而抑制occludin表達,增加黏膜通透性[14]。
2. 腸道菌群:部分急性腸道感染患者臨床治愈后可發(fā)生感染后IBS(PI-IBS),并可伴腸道菌群紊亂。腸道益生菌治療可明顯改善其癥狀,表明腸道菌群與IBS發(fā)生密切相關[23]。Zihni[24]等發(fā)現(xiàn),梭狀芽孢桿菌、志賀桿菌、沙門菌等致病菌可通過促進TJ蛋白內(nèi)化、降解以及破壞細胞骨架,直接或間接引起TJ結(jié)構改變;此外,這些致病菌通常可引起嚴重腹瀉,誘導炎癥因子釋放,引發(fā)急、慢性炎癥,這可能是PI-IBS發(fā)生的原因之一。Wang等[25]利用雙歧桿菌、乳酸菌、鏈球菌等益生菌對PI-IBS患者進行治療,發(fā)現(xiàn)益生菌可明顯抑制炎癥因子白細胞介素(IL)-6、IL-17表達,促進claudin-1、occludin蛋白表達,且三者合用的療效優(yōu)于單獨用藥。Abbas等[26]證實布拉酵母菌治療可明顯改善IBS患者黏膜炎癥和臨床癥狀。不同腸道細菌對TJ蛋白的作用不同,腸道菌群異常與IBS發(fā)病密切相關。隨著對IBS患者腸道菌群與TJ關系研究的深入,有望為其治療提供新方向。
3. 炎癥反應:腸道感染早期,致病菌可直接破壞TJ結(jié)構,引起黏膜通透性改變。經(jīng)抗菌治療后,腸黏膜仍可存在持續(xù)性低水平炎癥反應,主要表現(xiàn)為黏膜免疫細胞活化、浸潤以及炎癥細胞因子釋放,進而導致PI-IBS發(fā)生[27]。功能性消化不良患者十二指腸黏膜存在持續(xù)性低水平炎癥[28],表現(xiàn)為肥大細胞和嗜酸性粒細胞數(shù)量增加,通過誘導ZO-1、occludin等TJ蛋白的異常磷酸化,引起黏膜通透性改變。腸道感染后期或應激條件下,血清細胞因子[如腫瘤壞死因子(TNF)-α等]明顯升高,從而促進活性氧生成,下調(diào)TJ蛋白表達,引起黏膜通透性改變。Abbas等[26]認為,益生菌對IBS的療效是通過降低炎癥因子IL-8、TNF-α水平以及升高IL-10水平來實現(xiàn)的,可減少炎癥引起的TJ結(jié)構破壞。腸黏膜炎癥反應及其誘導的通透性改變可能是IBS尤其是便秘型IBS患者癥狀反復發(fā)作的重要原因。
4. 其他可能的機制:IBS和炎癥性腸病(IBD)患者均存在TJ結(jié)構改變,用于治療IBD的藥物(如益生菌、抗菌藥物等)[29]對PI-IBS亦有一定療效,推測IBS可能與IBD存在相似的黏膜屏障損傷機制(如腸道菌群失調(diào)、炎癥反應紊亂等)[30-31]。然而,研究[32]發(fā)現(xiàn)IBD的治療藥物美沙拉嗪對IBS療效不佳,而泮托拉唑可部分緩解IBS患者癥狀[33],因此由TJ異常導致IBS發(fā)病的具體機制仍需進一步研究加以證實。
綜上所述,引起IBS發(fā)病的因素復雜多樣,IBS患者各項炎癥指標異常的機制仍有待進一步研究加以闡明。TJ結(jié)構異常和黏膜通透性改變是IBS患者的共有特征。隨著對TJ在IBS發(fā)病中作用的進一步明確,有望為IBS發(fā)病機制研究和治療藥物研發(fā)提供新思路。
1 Drossman DA. Functional Gastrointestinal Disorders: History, Pathophysiology, Clinical Features and Rome Ⅳ[J]. Gastroenterology, 2016, 150 (6): 1262-1279. e2.
2 Suzuki T. Regulation of intestinal epithelial permeability by tight junctions[J]. Cell Mol Life Sci, 2013, 70 (4): 631-659.
3 Piche T. Tight junctions and IBS -- the link between epithelial permeability, low-grade inflammation, and symptom generation? [J]. Neurogastroenterol Motil, 2014, 26 (3): 296-302.
4 Xu XJ, Zhang YL, Liu L, et al. Increased expression of nerve growth factor correlates with visceral hypersensitivity and impaired gut barrier function in diarrhoea-predominant irritable bowel syndrome: a preliminary explorative study[J]. Aliment Pharmacol Ther, 2017, 45 (1): 100-114.
5 Schneeberger EE, Lynch RD. The tight junction: a multifunctional complex[J]. Am J Physiol Cell Physiol, 2004, 286 (6): C1213-C1228.
6 Tornavaca O, Chia M, Dufton N, et al. ZO-1 controls endothelial adherens junctions, cell-cell tension, angiogenesis, and barrier formation[J]. J Cell Biol, 2015, 208 (6): 821-838.
7 Van Itallie CM, Anderson JM. Architecture of tight junctions and principles of molecular composition[J]. Semin Cell Dev Biol, 2014, 36: 157-165.
8 Krug SM, Schulzke JD, Fromm M. Tight junction, selective permeability, and related diseases[J]. Semin Cell Dev Biol, 2014, 36: 166-176.
9 Bertiaux-Vanda?le N, Youmba SB, Belmonte L, et al. The expression and the cellular distribution of the tight junction proteins are altered in irritable bowel syndrome patients with differences according to the disease subtype[J]. Am J Gastroenterol, 2011, 106 (12): 2165-2173.
10Martínez C, Vicario M, Ramos L, et al. The jejunum of diarrhea-predominant irritable bowel syndrome shows molecular alterations in the tight junction signaling pathway that are associated with mucosal pathobiology and clinical manifestations[J]. Am J Gastroenterol, 2012, 107 (5): 736-746.
11Cheng P, Yao J, Wang C, et al. Molecular and cellular mechanisms of tight junction dysfunction in the irritable bowel syndrome[J]. Mol Med Rep, 2015, 12 (3): 3257-3264.
12Lauffer A, Vanuytsel T, Vanormelingen C, et al. Subacute stress and chronic stress interact to decrease intestinal barrier function in rats[J]. Stress, 2016, 19 (2): 225-234.
13Vanhaecke T, Aubert P, Grohard PA, et al.L.fermentumCECT 5716 prevents stress-induced intestinal barrier dysfunction in newborn rats[J]. Neurogastroenterol Motil, 2017, 29 (8): e13069.
14Keszthelyi D, Troost FJ, Jonkers DM, et al. Serotonergic reinforcement of intestinal barrier function is impaired in irritable bowel syndrome[J]. Aliment Pharmacol Ther, 2014, 40 (4): 392-402.
15Annaházi A, Ferrier L, Bézirard V, et al. Luminal cysteine-proteases degrade colonic tight junction structure and are responsible for abdominal pain in constipation-predominant IBS[J]. Am J Gastroenterol, 2013, 108 (8): 1322-1331.
16Marchiando AM, Shen L, Graham WV, et al. The epithelial barrier is maintained byinvivotight junction expansion during pathologic intestinal epithelial shedding[J]. Gastroenterology, 2011, 140 (4): 1208-1218. e1-e2.
17Xu C, Wu X, Hack BK, et al. TNF causes changes in glomerular endothelial permeability and morphology through a Rho and myosin light chain kinase-dependent mechanism[J]. Physiol Rep, 2015, 3 (12): pii: e12636.
18Samak G, Gangwar R, Crosby LM, et al. Cyclic stretch disrupts apical junctional complexes in Caco-2 cell monolayers by a JNK-2-, c-Src-, and MLCK-dependent mechanism[J]. Am J Physiol Gastrointest Liver Physiol, 2014, 306 (11): G947-G958.
19Gong Z, Chen Y, Zhang R, et al. Pharmacokinetic difference of berberine between normal and chronic visceral hypersensitivity irritable bowel syndrome rats and its mechanism[J]. Arch Pharm Res, 2015, 38 (10): 1888-1896.
20Huang Y, Luo X, Li X, et al. Wogonin inhibits LPS-induced vascular permeability via suppressing MLCK/MLC pathway[J]. Vascul Pharmacol, 2015, 72: 43-52.
21Wu LL, Peng WH, Kuo WT, et al. Commensal bacterial endocytosis in epithelial cells is dependent on myosin light chain kinase-activated brush border fanning by interferon-γ[J]. Am J Pathol, 2014, 184 (8): 2260-2274.
22Buckley MM, O’Halloran KD, Rae MG, et al. Modulation of enteric neurons by interleukin-6 and corticotropin-releasing factor contributes to visceral hypersensitivity and altered colonic motility in a rat model of irritable bowel syndrome[J]. J Physiol, 2014, 592 (23): 5235-5250.
23Jalanka J, Salonen A, Fuentes S, et al. Microbial signatures in post-infectious irritable bowel syndrome -- toward patient stratification for improved diagnostics and treatment[J]. Gut Microbes, 2015, 6 (6): 364-369.
24Zihni C, Balda MS, Matter K. Signalling at tight junctions during epithelial differentiation and microbial pathogenesis[J]. J Cell Sci, 2014, 127 (Pt 16): 3401-3413.
25Wang H, Gong J, Wang W, et al. Are there any different effects ofBifidobacterium,LactobacillusandStreptococcuson intestinal sensation, barrier function and intestinal immunity in PI-IBS mouse model? [J]. PLoS One, 2014, 9 (3): e90153.
26Abbas Z, Yakoob J, Jafri W, et al. Cytokine and clinical response toSaccharomycesboulardiitherapy in diarrhea-dominant irritable bowel syndrome: a randomized trial[J]. Eur J Gastroenterol Hepatol, 2014, 26 (6): 630-639.
27Ishihara S, Tada Y, Fukuba N, et al. Pathogenesis of irritable bowel syndrome -- review regarding associated infection and immune activation[J]. Digestion, 2013, 87 (3): 204-211.
28Vanheel H, Vicario M, Vanuytsel T, et al. Impaired duodenal mucosal integrity and low-grade inflammation in functional dyspepsia[J]. Gut, 2014, 63 (2): 262-271.
29Pimentel M. Review article: potential mechanisms of action of rifaximin in the management of irritable bowel syndrome with diarrhoea[J]. Aliment Pharmacol Ther, 2016, 43 Suppl 1: 37-49.
30Seyedmirzaee S, Hayatbakhsh MM, Ahmadi B, et al. Serum immune biomarkers in irritable bowel syndrome[J]. Clin Res Hepatol Gastroenterol, 2016, 40 (5): 631-637.
31Chen J, Zhang Y, Deng Z. Imbalanced shift of cytokine expression between T helper 1 and T helper 2 (Th1/Th2) in intestinal mucosa of patients with post-infectious irritable bowel syndrome[J]. BMC Gastroenterol, 2012, 12: 91.
32Barbara G, Cremon C, Annese V, et al. Randomised controlled trial of mesalazine in IBS[J]. Gut, 2016, 65 (1): 82-90.
33M?nnikes H, Schwan T, van Rensburg C, et al. Randomised clinical trial: sustained response to PPI treatment of symptoms resembling functional dyspepsia and irritable bowel syndrome in patients suffering from an overlap with erosive gastro-oesophageal reflux disease[J]. Aliment Pharmacol Ther, 2012, 35 (11): 1279-1289.