• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看

      ?

      有氧運(yùn)動(dòng)訓(xùn)練中補(bǔ)充Apelin對(duì)骨骼肌AMPK活化及線粒體能量代謝的影響

      2019-01-30 00:28:56李鐵瑛張纓
      體育科學(xué) 2019年1期
      關(guān)鍵詞:骨骼肌有氧線粒體

      李鐵瑛,張纓

      ?

      有氧運(yùn)動(dòng)訓(xùn)練中補(bǔ)充Apelin對(duì)骨骼肌AMPK活化及線粒體能量代謝的影響

      李鐵瑛,張纓

      (北京體育大學(xué) 運(yùn)動(dòng)生物化學(xué)教研室,北京 100084)

      目的:探討有氧運(yùn)動(dòng)訓(xùn)練補(bǔ)充apelin對(duì)骨骼肌AMPK活化及線粒體能量代謝的影響。方法:1)細(xì)胞實(shí)驗(yàn)部分采用小鼠骨骼肌C2C12細(xì)胞系作為研究對(duì)象,將靶向AMPKα基因的小干擾RNA(AMPKα siRNA)或陰性對(duì)照小干擾RNA(Control siRNA)通過脂質(zhì)體介導(dǎo)轉(zhuǎn)染細(xì)胞。轉(zhuǎn)染48 h后,進(jìn)行6 h的饑餓處理,而后在完全培養(yǎng)基中加入apelin-13(100 nmol/L)或者同體積的PBS與細(xì)胞孵育6 h。按轉(zhuǎn)染siRNA和加apelin-13情況,實(shí)驗(yàn)分為Control siRNA+PBS組、Control siRNA+apelin組、AMPK siRNA+PBS組與AMPK siRNA+apelin組。完成干預(yù)后,采用Seahorse細(xì)胞能量代謝分析系統(tǒng),測(cè)定細(xì)胞線粒體基礎(chǔ)呼吸、ATP生成和呼吸功能變化。2)動(dòng)物實(shí)驗(yàn)部分采用C57BL/6J小鼠做為研究對(duì)象,將40只小鼠隨機(jī)分為安靜未注射組、安靜注射apelin組、運(yùn)動(dòng)未注射組和運(yùn)動(dòng)注射apelin組,每組10只。注射apelin組小鼠連續(xù)4周腹腔注射apelin-13(0.1 μmol /kg體重/天)。運(yùn)動(dòng)組采用75%左右最大攝氧量強(qiáng)度(1~2周坡度5o,速度15 m/min;3~4周坡度5o,速度20 m/min)、1 h/天、6天/周、持續(xù)4周的跑臺(tái)運(yùn)動(dòng)。最后一次運(yùn)動(dòng)后休息48 h,脫頸處死,取兩側(cè)股四頭肌。Western Blotting測(cè)定骨骼肌apelin、APJ、AMPKα、p-AMPKα(Thr172)和COX Ⅳ蛋白表達(dá)。結(jié)果:1)細(xì)胞實(shí)驗(yàn),Control siRNA+apelin組與Control siRNA+PBS組相比,細(xì)胞基礎(chǔ)呼吸率、線粒體ATP生成和最大呼吸率均顯著增加;而AMPK siRNA+apelin組與Control siRNA+apelin組相比,線粒體ATP生成和最大呼吸率顯著降低。2)動(dòng)物實(shí)驗(yàn),安靜注射apelin組與安靜未注射組相比、運(yùn)動(dòng)注射apelin組與運(yùn)動(dòng)未注射組相比,小鼠骨骼肌apelin、APJ、COX Ⅳ蛋白表達(dá)和p-AMPKα/AMPKα比值均顯著增加。結(jié)論:外源性補(bǔ)充apelin可顯著增加C2C12細(xì)胞AMPK介導(dǎo)的線粒體呼吸功能,并提高有氧運(yùn)動(dòng)訓(xùn)練小鼠骨骼肌apelin/APJ、AMPKα磷酸化和COX IV蛋白表達(dá),提示,有氧運(yùn)動(dòng)訓(xùn)練補(bǔ)充apelin可能對(duì)骨骼肌的apelin-AMPK通路及其介導(dǎo)的線粒體能量代謝有一定的積極促進(jìn)作用。

      apelin;AMPK;有氧運(yùn)動(dòng);線粒體;骨骼肌

      骨骼肌作為機(jī)體最大的能量消耗器官,在運(yùn)動(dòng)中發(fā)揮重要的能量代謝調(diào)節(jié)作用。Apelin是G蛋白偶聯(lián)受體APJ的內(nèi)源性配體(O'Dowd et al.,1993;Katugampola et al.,2001),廣泛表達(dá)于人和鼠的脂肪、心臟和骨骼肌等組織器官中(Masri et al.,2005;De Falco et al.,2002),在調(diào)節(jié)心血管功能、胰島素分泌、食物和水?dāng)z取等方面具有多種生物學(xué)效應(yīng)(Gilbert,2017;Taheri,2002)。近年來apelin/APJ在機(jī)體(特別是骨骼肌)能量代謝調(diào)節(jié)中的作用引起了人們的關(guān)注(Indrakusuma et al.,2015;Bajer et al.,2015)。已有研究報(bào)道,急性或者慢性補(bǔ)充apelin可以促進(jìn)骨骼肌葡萄糖利用、脂肪酸氧化和線粒體生物合成(Isabelle et al.,2011)。并且一些學(xué)者認(rèn)為,apelin是細(xì)胞能量感受器——腺苷酸活化蛋白激酶(AMPK)的上游調(diào)節(jié)者。通常磷酸化AMPKα(p-AMPKα(Thr172))蛋白表達(dá)量表示AMPK激活程度或活性(Li et al.,2017)。Apelin可通過激活A(yù)MPK,增加p-AMPKα(Thr172)蛋白表達(dá),提高骨骼肌的線粒體生物合成、糖吸收和脂肪酸氧化(Dray et al.,2008)。但也有報(bào)道認(rèn)為,外源性補(bǔ)充apelin促進(jìn)骨骼肌線粒體能量代謝物調(diào)節(jié)并非依賴于AMPK(Frier et al.,2009)R1765。

      運(yùn)動(dòng)缺乏是導(dǎo)致肥胖、2型糖尿病和心血管疾病等的重要風(fēng)險(xiǎn)因素(Booth et al.,2012)。長(zhǎng)期有氧運(yùn)動(dòng)產(chǎn)生的健康效益至少部分取決于肌肉因子的產(chǎn)生(Son et al.,2018)。新近研究發(fā)現(xiàn),運(yùn)動(dòng)訓(xùn)練可增加人體骨骼肌apelin mRNA的表達(dá),apelin被認(rèn)為是運(yùn)動(dòng)產(chǎn)生的肌肉因子(Besse et al., 2014)709-710。然而,在有氧運(yùn)動(dòng)訓(xùn)練中補(bǔ)充apelin對(duì)骨骼肌apelin/AJP表達(dá)、AMPK活化和線粒體能量代謝的影響,以及AMPK在其中的調(diào)節(jié)作用,目前尚未見相關(guān)報(bào)道。

      因此,本研究試圖首先采用C2C12骨骼肌成肌細(xì)胞系,通過小干擾RNA(small interfering RNA,siRNA)轉(zhuǎn)染沉默細(xì)胞中的AMPKα,觀察給予apelin對(duì)細(xì)胞線粒體呼吸功能的影響;而后通過動(dòng)物實(shí)驗(yàn),給予小鼠4周有氧訓(xùn)練并腹腔注射apelin,觀察骨骼肌中apelin、APJ、p-AMPKα和細(xì)胞色素C氧化酶亞基IV(COX IV)蛋白表達(dá)的變化。本研究將深入探討有氧運(yùn)動(dòng)訓(xùn)練介導(dǎo)apelin調(diào)控骨骼肌能量代謝及與AMPK的關(guān)系,為有氧運(yùn)動(dòng)促進(jìn)健康的效應(yīng)機(jī)制提供進(jìn)一步理論依據(jù)。

      1 材料與方法

      1.1 細(xì)胞實(shí)驗(yàn)

      1.1.1 研究對(duì)象與方法

      C2C12小鼠骨骼肌成肌細(xì)胞系,購自于上海中喬新舟生物科技有限公司。

      1.1.2 采用AMPKα siRNA轉(zhuǎn)染C2C12細(xì)胞

      使用含10% Gibco FBS(Thermo Fisher,USA)的DMEM高糖培養(yǎng)基(HyClone,USA),于5% CO2細(xì)胞培養(yǎng)箱中培養(yǎng)C2C12細(xì)胞。待細(xì)胞生長(zhǎng)至80%融合度,PBS清洗3遍,加入0.25%胰蛋白酶消化液,待細(xì)胞消化完全,加入2mL新的10% FBS完全培養(yǎng)液制成懸濁液,終止消化。將細(xì)胞懸濁液轉(zhuǎn)移至15 mL離心管內(nèi),1 000 rpm轉(zhuǎn)離心3 min。棄去上清,加入2 mL新的10% FBS完全培養(yǎng)液制成懸濁液,計(jì)數(shù),將懸濁液稀釋成20×104個(gè)/mL的密度,按照每孔2.5 mL的量種板至6孔板中。待細(xì)胞生長(zhǎng)至60%~80%匯合時(shí),按照LipofectamineTMRNAiMAX(Thermo Fisher,USA)操作步驟進(jìn)行轉(zhuǎn)染。細(xì)胞被分為Control siRNA和AMPKα siRNA組。6孔板每孔R(shí)NAiMAX轉(zhuǎn)染試劑和Control siRNA(SC-37007, Satan Cruz)或AMPK siRNA(SC-45313,Satan Cruz)試劑用量比例為1:1:1,均為9 μL。

      1.1.3 C2C12細(xì)胞線粒體呼吸功能測(cè)定

      細(xì)胞轉(zhuǎn)染48 h后,按上述步驟消化細(xì)胞,制成細(xì)胞懸液;計(jì)數(shù),用新的完全培養(yǎng)基稀釋成密度為16×104個(gè)/mL(正常種板密度的80%)的細(xì)胞懸濁液。進(jìn)而,細(xì)胞種板到美國Seahorse XFe細(xì)胞能量代謝分析系統(tǒng)(Seahorse Bioscience,USA)配套特制的96孔板中,室溫放置1 h后放回培養(yǎng)箱中繼續(xù)培養(yǎng)。待細(xì)胞生長(zhǎng)至80%左右,將培養(yǎng)板中的完全培養(yǎng)基換成DMEM,進(jìn)行6 h細(xì)胞饑餓處理。之后,將Control siRNA和 AMPK siRNA組細(xì)胞進(jìn)一步分為加入PBS和apelin-13(Sigma,USA)組。PBS和apelin-13組每孔內(nèi)分別加入20 ul PBS和20 ul apelin-13溶液(濃度為100 nmol/L),孵育6 h。6 h后取出96孔板,按照Seahorse說明書步驟操作,測(cè)定C2C12細(xì)胞線粒體呼吸功能。其中采用的藥品濃度分別為:寡霉素(Oligomycin,2μmol/L)、三氟甲氧基苯腙羰基氰化物(FCCP,1μmol/L)、抗霉素(Antimycin,1μmol/L) 和魚藤酮(Rotenone,1μmol/L)。

      1.2 動(dòng)物實(shí)驗(yàn)

      1.2.1 對(duì)象與分組

      健康8周齡的C57BL/6J小鼠40只[購自北京維通利華實(shí)驗(yàn)動(dòng)物技術(shù)有限公司,動(dòng)物許可證:SCXK(京)2015-0001],體重18±2 g。將小鼠隨機(jī)分為安靜組和運(yùn)動(dòng)組,進(jìn)一步再分別分為未注射apelin組(No apelin,N)和apelin-13(Sigma,USA)apelin注射組(Apelin,A),每組10只。

      Apelin注射組采用腹腔注射方式給予apelin,注射劑量為0.1μmol/kg體重/天。注射時(shí)間為每天11:00,持續(xù)28天。運(yùn)動(dòng)組采用75%左右最大攝氧量強(qiáng)度(1~2周坡度5o,速度15 m/min;3~4周坡度5o,速度20 m/min),1 h/天,6天/周,持續(xù)4周的跑臺(tái)運(yùn)動(dòng)。安靜組不施加任何運(yùn)動(dòng)負(fù)荷,正常飼養(yǎng)。

      小鼠分籠飼養(yǎng),每籠3~4只,室內(nèi)溫度20℃~25℃,相對(duì)濕度50%~70%,光照12 h/天(7:00~19:00),采用國家標(biāo)準(zhǔn)嚙齒類動(dòng)物飼料飼養(yǎng),自由進(jìn)食和飲水。最后一次運(yùn)動(dòng)后休息48 h,脫頸處死。取兩側(cè)股四頭肌,迅速稱量,錫紙包裹,標(biāo)記編號(hào),立刻投入液氮。取材完成后,轉(zhuǎn)入-80℃冰箱,保存待用。

      1.2.2 Western blotting測(cè)定蛋白表達(dá)

      取50 mg骨骼肌加入500 μL含有蛋白酶和磷酸酶抑制劑(Thermo Fisher,USA)的RIPA裂解液(碧云天,中國)中。使用勻漿機(jī)充分勻漿,于冰上靜置30 min,其間每隔10 min渦旋振蕩10 s;4℃、12 000 rpm離心30 min;取樣品上清即為總蛋白,于-20℃凍存?zhèn)溆谩?/p>

      采用BCA蛋白濃度試劑盒(Thermo Fisher,USA)測(cè)定骨骼肌的總蛋白濃度。按照每個(gè)樣品上樣蛋白總量20 μg,計(jì)算上樣體積。采用Bolt 4%~12% Bis-Tris Plus凝膠(Life technologies,USA),電泳分離目的蛋白及內(nèi)參。而后,采用轉(zhuǎn)膜膠(iBlot?2 NC Regular Stacks,USA)于iBlot Gel Transfer System(Life technologies,USA)轉(zhuǎn)膜。5%的脫脂牛奶封閉1 h,加一抗于層析柜中孵育過夜。一抗稀釋比例依次為apelin(1:1 000,Satan Cruz,SC-33823),APJ(1:1 000,Satan Cruz,SC-29341),AMPKα(1:500,Satan Cruz,SC-74461),p-AMPKα(Thr172)(1:1 000,Satan Cruz,SC-33524),COX Ⅳ(1:2 000,Abbkine,A01060),內(nèi)參β-actin(1:1 000,Santa Cruz,SC-47778)。次日,1×TBST洗膜3次,每次10 min。之后加1×TBST稀釋的二抗,二抗稀釋比例:羊抗兔(1:40 000,Thermo Fisher,31460)、羊抗小鼠(1:40 000,Thermo Fisher,31430)。室溫?fù)u床搖晃孵育1 h。1×TBST洗膜3次,每次10 min。條帶加ECL western blot substrate(Life technologies,USA)發(fā)光液,放入曝光機(jī)(Bio-Rad ChemiDocTMXRS+,USA)曝光。用儀器自帶分析軟件,讀取條帶相對(duì)灰度值,計(jì)算結(jié)果。其結(jié)果計(jì)算公式如下:

      1.3 統(tǒng)計(jì)方法

      使用 SPSS 17.0 統(tǒng)計(jì)軟件對(duì)實(shí)驗(yàn)數(shù)據(jù)進(jìn)行處理,采用雙因素方差分析數(shù)據(jù),實(shí)驗(yàn)結(jié)果用±表示。<0.05表示統(tǒng)計(jì)學(xué)上有意義,<0.05表示有顯著性;<0.01表示有非常顯著性。

      2 實(shí)驗(yàn)結(jié)果

      2.1 細(xì)胞實(shí)驗(yàn)

      圖1 各組細(xì)胞線粒體呼吸功能

      Figure 1. Mitochondrial Oxygen Consumption Rate

      注:*和**分別表示與相應(yīng)未注射組相比P<0.05和P<0.01;下同。

      Figure 2. Apelin Protein Expression in Skeletal Muscle of Mice

      圖3 各組小鼠骨骼肌APJ蛋白相對(duì)表達(dá)量

      Figure 3. APJ Protein Expression in Skeletal Muscle of Mice

      圖1A是Seahorse測(cè)定線粒體氧化速率過程示意圖。由圖1B可知,Control siRNA+apelin組與Control siRNA+PBS組相比,線粒體基礎(chǔ)呼吸率顯著增加;AMPK siRNA+apelin組與AMPK siRNA+PBS組相比,基礎(chǔ)呼吸率顯著增加。由圖1C、D可知,Control siRNA+apelin組與Control siRNA+PBS組相比,線粒體ATP生成和最大呼吸率均顯著增加;且AMPK siRNA+apelin組與Control siRNA+apelin組相比,線粒體ATP生成和最大呼吸率均顯著降低。

      2.2 動(dòng)物實(shí)驗(yàn)

      2.2.1 骨骼肌apelin蛋白相對(duì)表達(dá)

      由圖2可知,安靜注射apelin組與其未注射組相比,小鼠骨骼肌apelin蛋白表達(dá)顯著增加;運(yùn)動(dòng)注射apelin組與其未注射組相比,小鼠骨骼肌apelin蛋白表達(dá)也顯著增加。

      2.2.2 骨骼肌APJ蛋白相對(duì)表達(dá)

      由圖3可知,安靜注射apelin組與其未注射組相比,小鼠骨骼肌APJ蛋白表達(dá)顯著增加;運(yùn)動(dòng)注射apelin組與其未注射組相比,小鼠骨骼肌APJ蛋白表達(dá)顯著增加。

      2.2.3 骨骼肌AMPKα、p-AMPKα蛋白相對(duì)表達(dá)及其比值

      圖4 各組小鼠骨骼肌AMPKα、p-AMPKα蛋白相對(duì)表達(dá)量及其比值

      Figure 4. AMPKα、p-AMPKα Protein Expression and their Ratio in Skeletal Muscle of Mice

      由圖4C可知,安靜注射apelin組與其未注射組相比,小鼠骨骼肌p-AMPKα/AMPKα比值顯著增加;運(yùn)動(dòng)注射apelin組與其未注射組相比,小鼠骨骼肌p-AMPKα/AMPKα比值顯著增加。

      2.2.4 骨骼肌 COX Ⅳ蛋白相對(duì)表達(dá)

      圖5 各組小鼠骨骼肌COXⅣ蛋白相對(duì)表達(dá)量

      Figure 5. COX Ⅳ Protein Expression in Skeletal Muscle of Mice

      由圖5可知,運(yùn)動(dòng)注射apelin組與其未注射組相比,小鼠骨骼肌COX Ⅳ蛋白表達(dá)顯著增加。

      3 分析討論

      3.1 AMPK在apelin調(diào)節(jié)C2C12細(xì)胞線粒體呼吸功能中的作用

      Apelin能夠調(diào)節(jié)骨骼肌中的線粒體氧化能力及其生物合成。實(shí)驗(yàn)表明,apelin 能夠增強(qiáng)線粒體能量代謝。高脂飲食小鼠連續(xù)腹腔注射apelin-13(0.1 μmol/kg體重/天)28天后,離體測(cè)定小鼠離體的比目魚肌氧耗量。結(jié)果表明,apelin注射組的氧耗量顯著高于PBS組(Attane et al.,2012)。1 μmol/L的apelin孵育24 h后,脂肪細(xì)胞中的PGC-1α、COX I和SDHA等線粒體生物合成相關(guān)蛋白表達(dá)顯著增加(Than et al.,2014)。采用普通大鼠連續(xù)2周腹腔注射apelin-13,其股三頭肌中的檸檬酸合酶、COX IV和β-羥酯酰輔酶A脫氫酶(β-HAD)的活性顯著增加,并且核編碼線粒體蛋白基因和線粒體編碼的COX IV和COX I表達(dá)也顯著增加(Frier et al.,2009)R1764。高脂飼養(yǎng)apelin 轉(zhuǎn)基因(TG)和野生(WT)鼠20周后,TG鼠比WT鼠的骨骼肌線粒體數(shù)量顯著增加,且肌纖維中I型(氧化型)肌纖維比例顯著提高(Yamamoto et al.,2011)860-861。

      AMPK是機(jī)體能量代謝調(diào)節(jié)中心,而線粒體是細(xì)胞的能量工廠。研究表明,AMPK可以通過調(diào)節(jié)線粒體數(shù)量和提高線粒體內(nèi)的酶活性等途徑增強(qiáng)線粒體能量代謝(Abbott et al.,2014; Marcinko et al.,2014; Wu et al.,1999)。關(guān)于apelin調(diào)節(jié)骨骼肌能量代謝是否通過AMPK作用,目前仍有爭(zhēng)議(Frier et al.,2009R1765; Bertrand et al.,2015)。本細(xì)胞實(shí)驗(yàn)結(jié)果顯示,AMPK siRNA+apelin與Control siRNA+apelin組相比,ATP轉(zhuǎn)換率和最大呼吸能均顯著降低。表明AMPK沉默顯著可降低apelin補(bǔ)充介導(dǎo)的C2C12細(xì)胞線粒體呼吸功能,AMPK可直接參與apelin對(duì)C2C12細(xì)胞能量代謝的調(diào)節(jié)。另外,AMPK siRNA+PBS組與Control siRNA+PBS組相比,線粒體呼吸功能無顯著性變化。這一結(jié)果與他人的一些研究相一致(Wang et al.,2014; Fentz et al.,2015)。一篇采用脂肪細(xì)胞的研究,通過AMPKα siRNA敲低脂肪細(xì)胞發(fā)現(xiàn),其線粒體呼吸功能與正常脂肪細(xì)胞無差異(Wang et al.,2014)。另一篇對(duì)AMPK敲除小鼠的動(dòng)物實(shí)驗(yàn)表明,AMPK敲除鼠每日耗氧量和呼吸交換率與野生鼠相比也無顯著性差異(Fentz et al.,2015)。以上結(jié)果均表明,無外源性補(bǔ)充apelin的狀態(tài)下,沉默AMPKα對(duì)線粒體呼吸功能影響不大。

      3.2 有氧運(yùn)動(dòng)訓(xùn)練補(bǔ)充apelin對(duì)骨骼肌apelin、AMPKα磷酸化和COX IV表達(dá)的影響

      3.2.1 有氧運(yùn)動(dòng)訓(xùn)練和apelin補(bǔ)充對(duì)骨骼肌apelin/APJ的影響

      APJ作為apelin的受體,其在組織中的表達(dá)變化與apelin基本一致。文獻(xiàn)已表明,apelin轉(zhuǎn)基因小鼠、補(bǔ)充apelin或敲除apelin基因,其骨骼肌(Yamamoto et al.,2011)859、血管內(nèi)皮(Strohbach et al.,2018)、心肌細(xì)胞(Bi et al.,2018)、黃體細(xì)胞(Ró?ycka et al.,2018)、脂肪細(xì)胞(Than et al.,2014)等組織中,APJ蛋白表達(dá)量隨apelin表達(dá)量增減而變化。盡管新近研究表明,運(yùn)動(dòng)可引起apelin mRNA表達(dá)增加,被認(rèn)為是新發(fā)現(xiàn)的運(yùn)動(dòng)引起的肌肉因子(Besse et al.,2014709-712; Yang et al.,2015),但目前的研究結(jié)果并不完全相同。例如,有研究報(bào)道,Zuker大鼠進(jìn)行6周跑臺(tái)耐力運(yùn)動(dòng)訓(xùn)練后,比目魚肌中的apelin蛋白表達(dá)顯著性降低,而趾長(zhǎng)伸肌中apelin蛋白表達(dá)未發(fā)生變化(Son et al.,2017)。本實(shí)驗(yàn)研究發(fā)現(xiàn),無論注射apelin還是未注射apelin,4周有氧訓(xùn)練小鼠股四頭肌中apelin和APJ的蛋白表達(dá)并未發(fā)生顯著變化。推測(cè)這是否與4周有氧運(yùn)動(dòng)的時(shí)間不足或取材的肌纖維類型不同時(shí)間點(diǎn)有關(guān),但仍有待進(jìn)一步確定。

      進(jìn)而,無論是安靜還是運(yùn)動(dòng)組,補(bǔ)充apelin均可促進(jìn)骨骼肌apelin和APJ的蛋白表達(dá)。說明在本實(shí)驗(yàn)中補(bǔ)充apelin(0.1 μmol/kg體重/天,28天)比運(yùn)動(dòng)訓(xùn)練對(duì)骨骼肌apelin/ AJP蛋白表達(dá)的作用更強(qiáng)。

      3.2.2 有氧運(yùn)動(dòng)訓(xùn)練補(bǔ)充apelin對(duì)骨骼肌AMPKα磷酸化和COX IV表達(dá)的影響

      已有一些文獻(xiàn)報(bào)道,外源性補(bǔ)充apelin可增加骨骼肌AMPKα磷酸化蛋白表達(dá)(Yue et al.,2010; Vinel et al.,2018)。在本實(shí)驗(yàn)中的研究結(jié)果與其一致,并且在運(yùn)動(dòng)訓(xùn)練中補(bǔ)充apelin同樣可促進(jìn)AMPKα活化。COX IV是線粒體中電子傳遞鏈的末端酶,催化電子從細(xì)胞色素C轉(zhuǎn)移到氧,對(duì)線粒體能量代謝至關(guān)重要(Oliva et al.,2015)。AMPK可調(diào)節(jié)COXIV的表達(dá),進(jìn)而增強(qiáng)線粒體的呼吸功能(Ritchie et al.,2014)。本研究中有氧運(yùn)動(dòng)訓(xùn)練補(bǔ)充apelin,可進(jìn)一步增加骨骼肌COX IV蛋白表達(dá),表明有氧運(yùn)動(dòng)訓(xùn)練補(bǔ)充apelin可能通過骨骼肌apelin/APJ-AMPK活化-COX IV蛋白表達(dá)這一信號(hào)通路,對(duì)線粒體進(jìn)行調(diào)節(jié)作用。

      4 結(jié)論

      外源性補(bǔ)充apelin可顯著增加C2C12細(xì)胞AMPK介導(dǎo)的線粒體呼吸功能,并提高有氧運(yùn)動(dòng)訓(xùn)練小鼠骨骼肌apelin/ APJ、AMPKα磷酸化和COX IV蛋白表達(dá)。提示,有氧運(yùn)動(dòng)訓(xùn)練補(bǔ)充apelin可能對(duì)骨骼肌的apelin-AMPK通路及其介導(dǎo)的線粒體能量代謝有一定的積極促進(jìn)作用。

      ABBOTT M J, TURCOTTE L P,2014. AMPK-a2 is involved in exercise training-induced adaptations in insulin-stimulated metabolism in skeletal muscle following high-fat diet[J]. J Appl Physiol,117(8):869-879.

      ATTANE C, FOUSSAL C, LE GONIDEC S, et al., 2012.Apelin treatment increases complete Fatty Acid oxidation, mitochondrial oxidative capacity, and biogenesis in muscle of insulin-resistant mice [J]. Diabetes, 61(2): 310-320.

      BAJER B, VLCEK M, GALUSOVA A, et al., 2015. Exercise associated hormonal signals as powerful determinants of an effective fat mass loss[J]. Endocr Regul, 49(3):151-163.

      BESSE P A, MONTASTIER E, Vinel C, et al., 2014. Effect of endurance training on skeletal muscle myokine expression in obese men: identification of apelin as a novel myokine [J]. Int J Obes, 38(5): 707-713.

      BERTRAND C, VALET P, CASTANLAURELL I, 2015. Apelin and energy metabolism[J]. Front Physiol, 6: 115.

      BI F, XU Y, SUN Q, 2018.Catalpol pretreatment attenuates cardiac dysfunction following myocardial infarction in rats [J]. Anatol J Cardiol, 19(5):296-302.

      BOOTH F W, ROBERTS C K, LAYE M J,2012. Lack of exercise is a major cause of chronic diseases[J]. Compr Physiol, 2(2):1143-1211.

      FALCO M D, LUCA L D, ONORI N, et al., 2002. Apelin expression in normal human tissues [J]. In vivo, 16(5): 333-336.

      DRAY C, KNAUF C, DAVIAUD D, et al., 2008. Apelin stimulates glucose utilization in normal and obese insulin-resistant mice [J]. Cell Metab, 8(5): 437-45.

      FENTZ J, KJφBSTED R, KRISTENSEN C M, et al., 2015.AMPKα is essential for acute exercise-induced gene responses but not for exercise training-induced adaptations in mouse skeletal muscle[J]. Am J Physiol Endocrinol Metab, 309 (11):E900-914.

      FRIER B C, WILLIAMS D B, WRIGHT D C, 2009. The effects of apelin treatment on skeletal muscle mitochondrial content[J]. Am J Physiol Regul Integr Comp Physiol, 171(297):R1761-1768.

      GILBERT J S,2017. From apelin to exercise: emerging therapies for management of hypertension in pregnancy [J]. Hypertens Res, 40(6):519-525.

      INDRAKUSUMA I, SELL H, ECKEL J, 2015. Novel Mediators of Adipose Tissue and Muscle Crosstalk[J]. Curr Obes Rep, 4(4):411-417.

      ISABELLE C L, CAMILLE A, THIBAUT D, et al., 2011. Apelin, diabetes, and obesity[J]. Endocrine, 40(1):1-9.

      KATUGAMPOLA S D, MAGUIRE J J, MATTHEWSON S R, et al., 2001. [(125)I]-(Pyr(1))Apelin-13 is a novel radioligand for localizing the APJ orphan receptor in human and rat tissues with evidence for a vasoconstrictor role in man [J]. British journal of pharmacology, 132(6): 1255-60.

      LI J, LI S, WANG F, et al., 2017. Structural and biochemical insights into the allosteric activation mechanism of AMP-activated protein kinase[J]. Chem Biol Drug Des, 89(5): 663-669.

      MARCINKOarcinko K, STEINBERG G R, 2014. The role of AMPK in controlling metabolism and mitochondrial biogenesis during exercise[J]. Exp Physiol, 99(12):1581-1585.

      MASRI B, KNIBIEHLER B, AUDIGIER Y,2005. Apelin signalling: a promising pathway from cloning to pharmacology [J]. Cellular signalling, 17(4): 415-426.

      O'DOWD B F, HEIBEReiber M, Chan A, et al., 1993. A human gene that shows identity with the gene encoding the angiotensin receptor is located on chromosome 11 [J]. Gene, 136(1-2):355-360.

      OLIVA C R,MARKERT T,GILLESPIE G Y,et al., 2015. Nuclear-encoded cytochrome c oxidase subunit 4 regulates BMI1 expression anddetermines proliferative capacity of high-grade gliomas [J]. Oncotarget, 6(6): 4330- 4344.

      RITCHIE I R, MACDONALDT L, WRIGHT D C, et al., 2014. Adiponectin is sufficient, but not required, for exercise-induced increases in the expression of skeletal muscle mitochondrial enzymes[J]. J Physiol, 592(12): 2653-2665.

      ROZYCKA M, KUROWSKA P, GRZESIAK M, et al., 2018. Apelin and apelin receptor at different stages of corpus luteum development and effect of apelin on progesterone secretion and 3β-hydroxysteroid dehydrogenase (3β-HSD) in pigs [J]. Anim Reprod Sci, 192: 251-260.

      SON J S, KIM H J, SON Y, et al., 2017. Effects of exercise-induced apelin levels on skeletal muscle and their capillarization in type 2 diabetic rats [J]. Muscle Nerve,56(6):1155-1163.

      SON J S, SONG A C, TESTROET E D, et al., 2018. Exercise-induced myokines: a brief review of controversial issues of this decade[J]. Expert Rev Endocrinol Metab, 13(1):51-58.

      STROHBACH A, PENNEWITZ M, GLAUBITZ M, et al., 2018. The apelin receptor influences biomechanical and morphological properties of endothelial cells[J]. J Cell Physiol, 233(8):6250-6261.

      TAHERI S, MURPHY K, COHEN M, et al., 2002.The effects of centrally administered apelin-13 on food intake, water intake and pituitary hormone release in rats [J]. Biochem Biophys Res Commun, 291(5): 1208-1212.

      THAN A, ZHANG X, LEOW M K, et al., 2014.Apelin attenuates oxidative stress in human adipocytes.[J]. J Biol Chem, 289(6): 3763-3774.

      WANG L, DI L, NOGUCHI CT, 2014. AMPK is Involved in Mediation of Erythropoietin Influence on Metabolic Activity and Reactive Oxygen Species Production in White Adipocytes[J]. Int J Biochem Cell Biol, 54(8):1-9.

      WU Z, PUIGSERVER P, ANDERSSON U, et al., 1999. Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1[J]. Cell, 98(1):115-124.

      YAMAMOTO T, HABATA Y, MATSUMOTO Y, et al., 2011. Apelin-transgenic mice exhibit a resistance against diet-induced obesity by increasing vascular mass and mitochondrial biogenesis in skeletal muscle [J]. Biochim Biophys Acta, 1810(9): 853-862.

      YANG H, ZHAO L, ZHANG J, et al.,2015.Effect of Treadmill Running on Apelin and APJ Expression in Adipose Tissue and Skeletal Muscle in Rats Fed a High-fat Diet [J]. Int J Sports Med, 36(7): 535-541.

      YUE P, JIN H, AILLAUD M, et al., 2010.Apelin is necessary for the maintenance of insulin sensitivity [J]. Am J Physiol-Endoc M, 298(1): E59-67.

      VINEL C, LUKJANENKO L, BATUT A, et al., 2018. The exerkine apelin reverses age-associated sarcopenia[J]. Nat Med, 24(9):1360-1371.

      Effects of Apelin Supplement during Aerobic Training on AMPK Activation and Mitochondrial Energy Metabolism in Skeletal Muscle

      LI Tieying, ZHANG Ying

      Objective:To investigate the effects of apelin supplement during aerobic training on AMPK activation and mitochondrial energy metabolism in skeletal muscle. Methods: In the cell experiments, the AMPKα specific small interfering RNA(AMPKα siRNA)or a negative control interfering RNA(Control siRNA) were transfected into mice skeletal muscle C2C12 cells by Lipofectamine. Starvation treatment was performed for 6 hours after 48 hours transfection, and then cells were incubated with apelin-13 or PBS for 6 hours in complete medium to observe the changes in mitochondrial basal respiration, ATP production, and respiratory function. In the animal experiments, forty 8-week-old C57BL/6J mice were randomly divided into four groups (n=10 in each group): sedentary without apelin treatment, sedentary with apelin treatment, exercise training without apelin treatment and exercise training with apelin treatment group. The apelin treatment groups were injected intraperitoneally with apelin-13 at 0.1 μmol/kg/day for 4 weeks. The exercise groups were trained 6 days/week, 1 hour/day for 4 weeks by running on a treadmill at 75% VO2max. 48 hours after the last session of exercise training, the quadriceps were collected. The protein expressions of apelin, APJ, AMPKα, p-AMPKα (Thr172) and COX IV in skeletal muscles was measured by Western Blotting. Results: 1) In the cell experiments, the basal respiration rate, mitochondrial ATP production and maximum respiration rate were significantly increased in the Control siRNA+apelin group compared with the Control siRNA+PBS group, but the mitochondrial ATP production and maximum respiration rate were significantly decreased in the AMPK siRNA+apelin group compared with the Control siRNA+apelin group. 2) In the animal experiments, the protein expression of apelin, APJ, COX IV and the p-AMPKα/AMPKα ratio in skeletal muscles were significantly increased in the apelin treatment groups compared with no apelin treatment groups. Conclusion: The exogenous supplementation of apelin was significantly increased the AMPK-mediated mitochondrial respiratory function in C2C12 cells, and the apelin supplement during aerobic training was also significantly increased the apelin/APJ, COX IV protein expression and the p-AMPKα/AMPK ratio in skeletal muscles. The results suggested that the combination of aerobic exercise training with apelin supplement might activates the apelin-AMPK pathway and improves the mitochondrial energy metabolism in skeletal muscles.

      1000-677X(2019)01-0055-06

      10.16469/j.css.201901008

      2018-11-09;

      2018-12-30

      國家自然科學(xué)基金資助項(xiàng)目(31640044);中央高?;究蒲袠I(yè)務(wù)費(fèi)專項(xiàng)資金資助課題(2018XS001)

      李鐵瑛(1988-),女,在讀博士研究生,主要研究方向?yàn)檫\(yùn)動(dòng)與骨骼肌健康的代謝適應(yīng),E-mail:yingyingziying@ 163.com。

      張纓(1961-),女,教授,博士,博士研究生導(dǎo)師,主要研究方向運(yùn)動(dòng)與骨骼肌健康的代謝適應(yīng),E-mail: zhyi9256 @126.com。

      G804.7

      A

      猜你喜歡
      骨骼肌有氧線粒體
      老人鍛煉,力量、有氧、平衡都需要
      中老年保健(2022年3期)2022-11-21 09:40:36
      有氧運(yùn)動(dòng)與老年認(rèn)知障礙
      中老年保健(2022年2期)2022-08-24 03:21:54
      如何從零基礎(chǔ)開始有氧運(yùn)動(dòng)
      中老年保健(2022年4期)2022-08-22 03:01:18
      棘皮動(dòng)物線粒體基因組研究進(jìn)展
      線粒體自噬與帕金森病的研究進(jìn)展
      8-羥鳥嘌呤可促進(jìn)小鼠骨骼肌成肌細(xì)胞的增殖和分化
      骨骼肌細(xì)胞自噬介導(dǎo)的耐力運(yùn)動(dòng)應(yīng)激與適應(yīng)
      骨骼肌缺血再灌注損傷的機(jī)制及防治進(jìn)展
      糖有氧代謝與運(yùn)動(dòng)訓(xùn)練
      NF-κB介導(dǎo)線粒體依賴的神經(jīng)細(xì)胞凋亡途徑
      万盛区| 张家港市| 永济市| 嘉峪关市| 会昌县| 浮梁县| 滦平县| 泰来县| 大姚县| 邓州市| 双鸭山市| 林甸县| 玛纳斯县| 综艺| 玉山县| 柘城县| 工布江达县| 九龙县| 额济纳旗| 黑河市| 柳州市| 九龙城区| 垫江县| 太和县| 宣化县| 柯坪县| 昂仁县| 保亭| 深泽县| 垣曲县| 黄石市| 平顺县| 墨江| 秦皇岛市| 沅陵县| 巴中市| 诸城市| 盈江县| 奉化市| 竹山县| 宝应县|