柳惠未 葉樺
[摘要] 非酒精性脂肪性肝病(nonalcoholic fatty liver disease,NAFLD)現(xiàn)在被認(rèn)為是全球肝病的主要病因之一,并與代謝綜合征和肥胖有關(guān)。最近的研究表明,腸道菌群(gut microbiota,GM)及其細(xì)菌產(chǎn)物可能通過多種機(jī)制影響NAFLD的發(fā)生發(fā)展,如增加腸道通透性、調(diào)控炎癥等。本文綜述探討了腸道菌群與NAFLD的發(fā)生發(fā)展之間的關(guān)系。
[關(guān)鍵詞] 腸道菌群;非酒精性脂肪性肝病;短鏈脂肪酸;膽汁酸及膽堿代謝;腸道通透性;炎癥反應(yīng)
非酒精性脂肪性肝?。╪onalcoholic fatty liver dis-ease,NAFLD)是指在沒有酒精或藥物等次要原因的情況下,≥5%肝細(xì)胞發(fā)生大泡性脂肪變性。包括從非酒精性脂肪肝(NAFL)到非酒精性脂肪性肝炎(nonalcoholic steatohepatitis,NASH),纖維化和肝硬化的一系列疾病。NAFLD是現(xiàn)在全球慢性肝病的主要病因[1],然而,公眾對(duì)這一疾病的認(rèn)識(shí)仍非常局限[2]。目前認(rèn)為,腸道菌群改變與NAFLD的發(fā)生發(fā)展關(guān)系密切,現(xiàn)對(duì)該領(lǐng)域的研究進(jìn)展作一概述。
1 腸道菌群
人類是由人自身細(xì)胞和微生物細(xì)胞共同組成的超級(jí)生物體。在人類中,微生物密度從腸道近端到遠(yuǎn)端增加,生物量為1.5~2.0 kg,以厭氧細(xì)菌為主[3]。人體腸道內(nèi)有多達(dá)100萬(wàn)億個(gè)細(xì)胞,包括細(xì)菌、真菌、病毒和其他微生物和真核細(xì)胞[3,4]。胃腸道微生態(tài)系統(tǒng)對(duì)人體最重要,也是迄今為止研究最早和最多的人體微生態(tài)系統(tǒng)。腸道是體內(nèi)細(xì)菌定植的主要場(chǎng)所,腸道定植的細(xì)菌具有數(shù)量巨大、多樣化、復(fù)雜性和動(dòng)態(tài)性的特點(diǎn),構(gòu)成了人體的腸道菌群。腸道菌群猶如人體內(nèi)的“原始森林”,參與分解食物、調(diào)節(jié)免疫系統(tǒng)、分泌維生素K等營(yíng)養(yǎng)物質(zhì)、調(diào)節(jié)體脂含量、吞食食物殘?jiān)戎T多新陳代謝過程,若其平衡被打破,則可與疾病形成惡性循環(huán),導(dǎo)致免疫失調(diào)疾病、炎癥性腸病、代謝性疾病、神經(jīng)系統(tǒng)及精神類疾病、傳染性疾病及癌癥等。
事實(shí)上,人體是一個(gè)微生物的共生體,從出生到死亡,人體內(nèi)的微生物群落在不斷變化,受食物、藥物、環(huán)境等多種因素的影響。共生于腸道內(nèi)的微生物既有有益于健康的益生菌,也有很多致病菌,腸道菌群成員相互制衡,這種平衡在腸道和機(jī)體健康中起著重要作用。認(rèn)識(shí)腸道菌群、發(fā)現(xiàn)疾病狀態(tài)下腸道菌群的變化,可使我們對(duì)疾病的認(rèn)識(shí)更加深入,并有可能為疾病治療提供更多的有效手段。
2腸道菌群失調(diào)與肝病
“失調(diào)”指的是正常腸道微生物群的破壞。它可能是由多種環(huán)境、免疫或宿主因素以及膽汁流量、胃pH值變化或腸道運(yùn)動(dòng)障礙引起的。大量證據(jù)表明,失調(diào)與人類肝病的發(fā)病機(jī)制密切相關(guān),主要集中在其在NAFLD及相關(guān)代謝紊亂中的作用。肝臟與胃腸道同為消化系統(tǒng)重要組成部分,不僅是人體重要的合成、解毒器官,也是參與人體免疫反應(yīng)的器官。由于肝臟與腸道特殊的解剖和生理關(guān)系,腸道微生物通過肝——腸循環(huán)和肝——腸軸,在肝臟損傷、慢性纖維化、炎癥及腫瘤發(fā)生發(fā)展中發(fā)揮重要作用。Zhu L等[5]發(fā)現(xiàn)非酒精性脂肪性肝炎患者腸道中產(chǎn)酒精細(xì)菌比例上升,導(dǎo)致血液中的內(nèi)源性乙醇濃度升高,提示產(chǎn)酒精細(xì)菌參與非酒精性脂肪性肝炎發(fā)病,產(chǎn)酒精細(xì)菌可能作為干預(yù)靶點(diǎn)或疾病標(biāo)志物。Boursier J等[6]檢測(cè)了非酒精性脂肪肝疾病患者腸道菌群構(gòu)成情況,利用16S rRNA測(cè)序方法發(fā)現(xiàn)肝纖維化較重的患者腸道擬桿菌及瘤胃球菌的豐度顯著增加,而普氏菌的豐度有所降低,表明非酒精性脂肪性肝病的嚴(yán)重程度與腸道菌群失調(diào)和代謝功能變化有關(guān)。
腸道菌群不僅影響腸道免疫,而且對(duì)肝臟疾病的免疫同樣有影響,但仍有待于進(jìn)一步深入研究并向更多種類肝臟疾病的研究拓展。通過調(diào)控腸道菌群影響肝臟疾病免疫為臨床提供新的診療思路與方向,針對(duì)腸道來源的細(xì)胞免疫治療能否成為新的肝臟疾病的治療方向帶來新的挑戰(zhàn)。
3腸道菌群失調(diào)與非酒精性脂肪性肝病的發(fā)病機(jī)制
腸道和肝臟有著密切的解剖和功能關(guān)系。腸道菌群(gut microbiota,GM)包括多種微生物(主要是細(xì)菌),其有助于消化、合成維生素、提取能量和抵抗定植,還可以通過爭(zhēng)奪營(yíng)養(yǎng)和空間來刺激胃腸道的免疫系統(tǒng),減少病原體[7]。GM和細(xì)菌易位在慢性肝病的發(fā)生發(fā)展中起著重要作用,包括NAFLD,其與GM的質(zhì)量和數(shù)量(過度增長(zhǎng))變化有關(guān)[8]。由于生態(tài)失調(diào)(被定義為保護(hù)性細(xì)菌與有害細(xì)菌的不平衡)、腸道屏障受損、免疫狀態(tài)改變,細(xì)菌代謝產(chǎn)物可以通過門靜脈到達(dá)肝臟,被特定的受體識(shí)別,激活免疫系統(tǒng),并誘導(dǎo)相關(guān)途徑,如應(yīng)激激活蛋白激酶、JNK、p38、IRF-3、NF-κB,導(dǎo)致炎癥反應(yīng)、胰島素抵抗(insulin resistance,IR)、肥胖、肝脂肪變性及纖維變,通過與宿主免疫系統(tǒng)和其他細(xì)胞類型的多重交互作用促進(jìn)NASH的發(fā)生發(fā)展[9]。NAFLD是一種多因素疾病,包括胰島素抵抗、向心性肥胖、環(huán)境或營(yíng)養(yǎng)因素、腸道微生物以及遺傳和表觀遺傳因素等,均與其發(fā)病機(jī)制有關(guān)。
3.1短鏈脂肪酸的作用
腸道菌群通過發(fā)酵抗性淀粉和非淀粉多糖而產(chǎn)生短鏈脂肪酸,主要是乙酸、丙酸和丁酸,通過促進(jìn)其在腸上皮的吸收,從而影響能量的吸收[10]。短鏈脂肪酸(short-chain fatty acids,SCFA)是碳水化合物通過腸道菌群發(fā)酵的主要產(chǎn)物,正常腸道菌群每天可產(chǎn)生50~100 mmol/L[11]。據(jù)估計(jì),其為人類提供每日總耗能的6%~10%[12]。SCFA是腸道菌群產(chǎn)生的重要信號(hào),這些SCFAs對(duì)能量代謝、免疫和脂肪組織擴(kuò)張均有影響[13]。來源于腸道的SCFAs,如乙酸和丙酸,是肝臟的能量來源,它們分別在肝臟的脂肪生成和糖異生中起著重要的作用[14,15]。有一項(xiàng)喂食高脂飲食小鼠(45%棕櫚油脂肪)的研究表明,SCFAs(5%體重飲食中的乙酸、丙酸和丁酸)降低了肝脂肪酸合成酶(fatty acid synthase,F(xiàn)as)活性和肝臟脂質(zhì)合成。喂食SCFA的小鼠肝臟脂質(zhì)氧化也增加了兩倍,使肝臟脂質(zhì)代謝向氧化狀態(tài)轉(zhuǎn)變。這一變化與腺苷單磷酸活化蛋白激酶(Adenosine 5-monophosphate-activated protein kinase,AMPK)及其下游靶點(diǎn)乙酰輔酶A羧化酶(Acetyl-CoA carboxylase,ACC)的磷酸化和激活有關(guān)[16]。因此,有利于產(chǎn)生SCFA的菌群的變化可以增加肝臟的能量傳遞,減少能量在糞便中的損失。如在患有脂肪肝的肥胖小鼠中,豐富的微生物碳水化合物代謝基因可導(dǎo)致盲腸中SCFAs濃度增加,糞便中能量含量減少[17]。對(duì)患NAFLD的成年人進(jìn)行的一項(xiàng)研究顯示,在調(diào)整體重指數(shù)和膳食脂肪攝入量后,脂肪性肝炎的出現(xiàn)與球狀梭菌(門)比例的增加、細(xì)菌百分比的降低之間有顯著的關(guān)系[18]。雖然腸道產(chǎn)生的SCFAs為肝臟提供能量,它們還可能通過增加擬桿菌(普氏菌屬)/厚壁菌門的比例,減少能量的收獲,從而對(duì)脂肪肝產(chǎn)生潛在的有益影響[17]。
SCFAs還可作用于腸內(nèi)分泌L細(xì)胞的G蛋白偶聯(lián)受體(G protein-coupled receptor,GPCRs)GPR41和GPR 43,從而導(dǎo)致NAFLD。這些受體的激活可誘導(dǎo)腸內(nèi)分泌激素肽YY(Peptide YY,PYY)在腸上皮L-細(xì)胞中的表達(dá),減緩胃排空及腸道運(yùn)動(dòng),從而促進(jìn)營(yíng)養(yǎng)吸收[19]。此外,SCFAs還可與GPR41或GPR 43(Recombinant free fatty acid recepetor 2,F(xiàn)FAR 2)的結(jié)合,促進(jìn)小鼠腸道L-細(xì)胞分泌胰高血糖素樣肽-1(Glucagon-likepeptide1,GLP-1)[20],對(duì)胰腺功能和胰島素釋放以及調(diào)節(jié)食欲的中樞效應(yīng)產(chǎn)生影響[21]。另外,GPR 43和GPR41在脂肪細(xì)胞中的激活,可抑制脂肪分解和促進(jìn)脂肪細(xì)胞分化。
3.2 膽汁酸的作用及膽堿代謝
膽汁酸(Bile acids,BA)來源于肝臟中的膽固醇,并被小腸遠(yuǎn)端和結(jié)腸中的腸道菌群進(jìn)一步化學(xué)修飾。初級(jí)膽汁酸、次級(jí)膽汁酸和結(jié)合膽汁酸均與NAFLD發(fā)病有關(guān)。膽汁酸可以激活核受體,如法尼醇受體X(farnesoid X receptor,F(xiàn)XR)和GPCRs,如G蛋白偶聯(lián)膽汁酸受體1(takeda-G-protein-receptor-5,TGR5),菌群可通過膽汁酸代謝改變這兩種受體的信號(hào)傳導(dǎo),分泌到小腸中的初級(jí)膽汁酸可被回腸菌群解離,避免在小腸中再吸收,而被結(jié)腸菌群脫氫、二羥基化及去甲基化[22-24]。
FXR被認(rèn)為是膽汁酸代謝的主要調(diào)節(jié)因子,因?yàn)槠鋮⑴c了生物合成途徑的各個(gè)階段[25]。FXR隨著通過菌群介導(dǎo)的回腸膽汁酸的改變而改變。FXR是一種重要的BA核受體,在肝臟、小腸黏膜和腎臟中均有高表達(dá),對(duì)糖和脂代謝都有影響[26]。已有動(dòng)物研究證實(shí),F(xiàn)XR還可通過磷酸烯醇丙酮酸羧激酶調(diào)節(jié)糖異生,改善脂質(zhì)和糖代謝,從而預(yù)防炎癥[25]。FXR缺失小鼠胰島素敏感性降低[26]。選擇性非甾體FXR激動(dòng)劑GW 4064可能通過成纖維細(xì)胞生長(zhǎng)因子15/19(fibroblast growth factor 15/19,F(xiàn)GF-15/19)介導(dǎo)[27],改善肥胖和糖尿病小鼠的IR和血糖穩(wěn)態(tài)[28],使肝糖原合成增加。FXR對(duì)脂質(zhì)代謝的影響也越來越受到重視。缺乏FXR的小鼠血清及肝膽固醇和甘油三酯(triglyceride,TG)含量顯著升高。有初步研究表明,F(xiàn)XR缺陷小鼠進(jìn)食1%膽固醇飲食,導(dǎo)致肝臟膽固醇和甘油三酯含量增加[29]。此外,服用FXR激動(dòng)劑后,可降低糖尿病和野生型小鼠的血漿膽固醇、甘油三酯和游離脂肪酸(free fatty acids,F(xiàn)FA)水平,但對(duì)FXR基因敲除的小鼠無明顯影響[28]。在另一項(xiàng)研究中,通過操縱腸道微生物群改變腸道膽汁酸的組成,從而導(dǎo)致腸道FXR拮抗作用。這種FXR拮抗作用降低了神經(jīng)酰胺的合成和肝臟的新生脂肪生成[26]。此外,菌群失調(diào)還可以通過降低膽堿水平或增加甲胺水平來增加脂蛋白脂酶活性,增加甘油三酯(triglyceride,TG)的積累,并促進(jìn)NASH的形成。
腸內(nèi)FXR激活還可誘導(dǎo)FGF15表達(dá),抑制膽汁酸合成的限速步驟——肝臟中膽固醇7α-羥化酶(Cholesterol 7α-hydroxylase,CYP7A1)的表達(dá),從而通過腸道——菌群——肝臟反饋回路導(dǎo)致BA水平降低[30]。腸道菌群失調(diào)改變了初級(jí)和次級(jí)膽汁酸之間的平衡及其隨后的腸-肝循環(huán),其代謝效應(yīng)還沒有得到全面的了解。
3.3腸道通透性增加
腸道通透性增加可能是另一個(gè)導(dǎo)致NAFLD發(fā)病的機(jī)制。腸道通透性受腸道菌群和細(xì)菌產(chǎn)物及其代謝物的影響。Miele L等[31]是最早證明,NAFLD與上皮緊密連接失調(diào)有關(guān),從而導(dǎo)致腸屏障每介度增加。腸道菌群可通過促進(jìn)黏液層的降解或抑制黏液產(chǎn)生,從而破壞上皮緊密連接以改變腸道屏障[32]。菌群失調(diào)會(huì)破壞這些緊密連接,增加黏膜通透性,并使腸道黏膜細(xì)胞和肝臟暴露于潛在的促炎細(xì)菌產(chǎn)物中。革蘭氏陰性菌外膜中發(fā)現(xiàn)的內(nèi)毒素(亦稱脂多糖)可通過增加腸緊密連接通透性而發(fā)揮作用[33]。有動(dòng)物研究表明由高脂飲食引起的肝脂肪變性與菌群失調(diào)、腸道通透性增加以及革蘭氏陰性菌易位及其內(nèi)毒素脂多糖(Lipopolysaccharides,LPS)有關(guān)[34]。慢性低劑量LPS皮下注射可降低空腹血糖和胰島素,改變肝臟胰島素敏感性,增加內(nèi)臟和皮下脂肪,增加脂肪組織巨噬細(xì)胞數(shù)量,提高肝臟甘油三酯含量[34]。此外,丁酸鹽也可通過調(diào)節(jié)和誘導(dǎo)粘蛋白和緊密連接蛋白來改善腸道屏障[35]。
由于緊密連接的擴(kuò)大,腸道通透性增加,可導(dǎo)致細(xì)菌碎片移位和內(nèi)毒素血癥。動(dòng)物研究[36]及人類的研究[37]均表明,NAFLD患者除腸通透性增高外,還存在內(nèi)毒素血癥[37]。此外,血漿纖溶酶原激活物抑制物1和肝臟Toll樣受體-4(Toll like receptor4,TLR-4)的表達(dá)可被內(nèi)源性毒血癥所誘導(dǎo),導(dǎo)致IR和炎癥[38]。內(nèi)毒素血癥還可以通過其他機(jī)制促進(jìn)NAFLD的發(fā)展。最近的兩項(xiàng)研究探討了脂多糖與甾醇調(diào)節(jié)元件結(jié)合蛋白-1c(Sterol regulatory element-binding protein-1c,SREBP-1c)的關(guān)系。第一項(xiàng)研究發(fā)現(xiàn),LPS處理后的小鼠肝臟SREBP-1c激活和SREBP-1c基因表達(dá),導(dǎo)致肝臟脂質(zhì)積聚[39]。另一項(xiàng)研究發(fā)現(xiàn),與對(duì)照組相比,LPS處理的小鼠血漿脂聯(lián)素水平降低,血漿瘦素水平升高,肝臟SREBP-1c表達(dá)增強(qiáng),這與NAFLD的發(fā)展有關(guān)[40]。
總之,腸道菌群可以降低緊密連接蛋白的表達(dá),從而增加腸道通透性、細(xì)菌易位和血清內(nèi)毒素水平。這些內(nèi)毒素又可通過增加促炎細(xì)胞因子、胰島素抵抗和增加肝臟脂質(zhì)積聚來促進(jìn)炎癥反應(yīng)。也說明腸道菌群對(duì)NAFLD的發(fā)生發(fā)展密切相關(guān)。
3.4 腸道菌群調(diào)控炎癥反應(yīng)
腸道菌群可能通過多種機(jī)制導(dǎo)致慢性全身炎癥,進(jìn)而導(dǎo)致肥胖、IR和NAFLD。細(xì)菌成分進(jìn)入循環(huán)系統(tǒng)易位可通過激活TLR-4來觸發(fā)炎癥反應(yīng)[41]。TLR-4激活促炎細(xì)胞因子,如腫瘤壞死因子α(tumor necrosis factor-α,TNF-α)和白細(xì)胞介素-6(interleukin-6,IL-6)。研究發(fā)現(xiàn),TLR-4的激活觸發(fā)了包括NF-κB通路[42]在內(nèi)的炎癥級(jí)聯(lián)反應(yīng),從而誘導(dǎo)TNF-α。腫瘤壞死因子-α(TNF-α)水平的升高與IR和NASH有關(guān),對(duì)肝臟脂肪沉積和NASH的發(fā)展至關(guān)重要[43-45]。此外,TLR-4還能增強(qiáng)轉(zhuǎn)化生長(zhǎng)因子-B信號(hào),導(dǎo)致纖維生成[46,47]。
另一個(gè)腸道菌群調(diào)控炎癥的機(jī)制涉及炎癥小體。炎癥小體由富含亮氨酸重復(fù)序列的蛋白質(zhì)的復(fù)合體。炎癥小體能識(shí)別病原體相關(guān)分子模式(pathogen-associated molecular pattern,PAMP)和宿主來源的危險(xiǎn)信號(hào)分子(damage associated molecular pattern,DAMP),其中DAMP可誘導(dǎo)活性氧(reacive oxygen species,ROS)的產(chǎn)生,從而激活NLRP 3炎癥小體[48,49]。Henao-Majia J等[50]證明腸道菌群的改變與NLRP 3、6炎癥小體物質(zhì)缺乏、NASH惡化和TLR 4和TLR 9激動(dòng)劑內(nèi)流增加TNF-α表達(dá)有關(guān)。在另一項(xiàng)小鼠研究中[51]也證明了這一點(diǎn):與野生型小鼠相比,蛋氨酸-膽堿缺乏和NLPR 3缺乏的小鼠有增加NAFLD和肝損傷的趨勢(shì)。
食物的攝入與腸道菌群的相互作用也會(huì)導(dǎo)致炎癥的發(fā)生。果糖尤其可引起炎癥,并與NAFLD的發(fā)病機(jī)制密切相關(guān)。過量食用果糖可增加脂肪生成,抑制脂肪酸β-氧化[52,53]。最近,一項(xiàng)利用果糖誘導(dǎo)的NAFLD小鼠的研究發(fā)現(xiàn),果糖顯著降低了雙歧桿菌和乳酸菌,并且有增加LPS的趨勢(shì)[54,55]。另一項(xiàng)研究還發(fā)現(xiàn)果糖誘導(dǎo)的NAFLD的發(fā)生與TLR表達(dá)增加有關(guān)[56]。顯然,果糖的攝入不僅可以改變腸道菌群,還可以引起全身炎癥,從而參與NAFLD的發(fā)病機(jī)制。
總之,腸道菌群可能通過產(chǎn)生內(nèi)毒素、炎癥小體功能障礙以及與果糖等飲食成分的相互作用而導(dǎo)致炎癥。
4小結(jié)和展望
肥胖和NAFLD是全球主要的公共衛(wèi)生問題?;趧?dòng)物和人類的研究表明腸道菌群在肥胖、代謝綜合征和NAFLD中起著重要作用?,F(xiàn)階段通過飲食、益生菌或糞菌移植(fecal bacteria transplantation,F(xiàn)MT)改善腸道菌群從而改善疾病的動(dòng)物和臨床研究均顯示出令人欣喜的進(jìn)展,有望成為新的革命性治療非酒精性脂肪性肝病的手段,為非酒精性脂肪性肝病的治療開辟新的途徑。然而,仍需要進(jìn)行大規(guī)模的隨機(jī)對(duì)照試驗(yàn),以調(diào)查這些干預(yù)措施的有效性和長(zhǎng)期效果。
[參考文獻(xiàn)]
[1] Younossi ZM,Koenig AB,Abdelatif D,et al. Global epidemiology of nonalcoholic fatty liver disease-Meta-analytic assessment of prevalence,incidence,and outcomes[J].Hepatology,2016, 64(1):73-84.
[2] Ghevariya V,Nan S,Patel K,et al. Knowing whats out there: Awareness of non-alcoholic fatty liver disease[J]. Frontiers in Medicine,2014,1:4.
[3] Qin J,Li R,Raes J,et al. A human gut microbial gene catalogue established by metagenomic sequencing[J]. Nature,2010,464(7285):59-65.
[4] Consortium THMP. Structure,function and diversity of the healthy human microbiome[J]. Nature,2012,486(7402):207-214.
[5] Zhu L,Baker SS,Gill C,et al. Characterization of gut microbiomes in nonalcoholic steatohepatitis(NASH) patients:A connection between endogenous alcohol and NASH[J]. Hepatology,2013,57(2):601-609.
[6] Boursier J,Mueller O,Barret M,et al. The severity of nonalcoholic fatty liver disease is associated with gut dysbiosis and shift in the metabolic function of the gut microbiota[J]. Hepatology,2015,63(3):764.
[7] Biedermann L,Rogler G. The intestinal microbiota:Its role in health and disease[J]. European Journal of Pediatrics,2015,174(2):151-167.
[8] Bluemel S,Williams B,Knight R,et al. Precision medicine in alcoholic and non-alcoholic fatty liver disease via modulating the gut microbiota[J]. Am J Physiol Gastrointest Liver Physiol, 2016,311(6):G1018.
[9] Henaomejia J,Elinav E,Jin C,et al. Inflammasome-mediated dysbiosis regulates progression of NAFLD and obesity[J]. Nature,2012,482(7384):179-185.
[10] Topping DL,Clifton PM. Short-chain fatty acids and human colonic function:Roles of resistant starch and nonstarch polysaccharides[J]. Physiological Reviews,2001, 81(3):1031-1064.
[11] Duncan S H,Louis P,Thomson JM,et al. The role of pH in determining the species composition of the human colonic microbiota[J]. Environmental Microbiology,2010, 11(8):2112-2122.
[12] Bergman EN. Energy contributions of volatile fatty acids from the gastrointestinal tract in various species[J]. Physiological Reviews,1990,70(2):567-590.
[13] Arslan N. Obesity,fatty liver disease and intestinal microbiota[J]. World Journal of Gastroenterology,2014,20(44):16452.
[14] 談力欣,王軍芬.非酒精性脂肪肝病發(fā)病危險(xiǎn)因素分析及研究進(jìn)展[J].醫(yī)學(xué)綜述,2017,23(7):1359-1363.
[15] Subramanian S,Goodspeed L,Wang SA,et al. Dietary cholesterol exacerbates hepatic steatosis and inflammation in obese LDL receptor-deficient mice[J]. Journal of Lipid Research,2011,52(9):1626-1635.
[16] Den BG,Bleeker A,Gerding A,et al. Short-chain fatty acids protect against high-fat diet-induced obesity via a PPARγ-dependent switch from lipogenesis to fat oxidation[J]. Diabetes,2015, 64(7):2398-2408.
[17] Turnbaugh PJ,Magrini V,Gordon JI,et al. An obesity-associated gut microbiome with increased capacity for energy harvest[J]. Nature,2006,444(7122):1027-1031.
[18] Mouzaki M,Comelli EM,Arendt BM,et al. Intestinal microbiota in patients with nonalcoholic fatty liver disease[J].Hepatology,2013,58(1):120-127.
[19] Samuel BS,Shaito A,Motoike T,et al. Effects of the gut microbiota on host adiposity are modulated by the short-chain fatty-acid binding G protein-coupled receptor,Gpr41[J]. Proc Natl Acad Sci USA,2008,105(43):16767-16772.
[20] Tolhurst G,Heffron H,Yu SL,et al. Short-chain fatty acids stimulate glucagon-like peptide-1 secretion via the G-protein-coupled receptor FFAR2[J]. Diabetes,2012, 61(2):364-371.
[21] Fava S. Glucagon-like Peptide 1 and the cardiovascular system[J]. Current Diabetes Reviews,2014,10(5):302-310.
[22] Midtvedt T. Microbial bile acid transformation[J]. American Journal of Clinical Nutrition,1974,27(11):1341.
[23] Swann JR,Want EJ,Geier FM,et al. Systemic gut microbial modulation of bile acid metabolism in host tissue compartments[J]. Proc Natl Acad Sci USA,2011,108(Suppl 1):4523-4530.
[24] Sayin S,Wahlstr?觟m A,F(xiàn)elin J,et al. Gut Microbiota Regulates Bile Acid Metabolism by Reducing the Levels of Tauro-beta-muricholic Acid,a Naturally Occurring FXR Antagonist[J]. Cell Metabolism,2013,17(2):225-235.
[25] Khalid Q,Bailey I,Patel V. Nonalcoholic fatty liver disease:The effect of bile acids and farnesoid X receptor agonists on pathophysiology and treatment. Liver Res[J]. Open J,2015(1):32-40.
[26] Jiang C,Xie C,Li F,et al. Intestinal farnesoid X receptor signaling promotes nonalcoholic fatty liver disease[J]. Journal of Clinical Investigation,2015,125(1):386.
[27] Jahn D,Rau M,Hermanns HM,et al. Mechanisms of enterohepatic fibroblast growth factor 15/19 signaling in health and disease[J]. Cytokine & Growth Factor Reviews,2015,26(6):625-635.
[28] Zhang Y,Lee FY,Barrera G,et al. Activation of the nuclear receptor FXR improves hyperglycemia and hyperlipidemia in diabetic mice[J]. Proceedings of the National Academy of Sciences of the United States of America,2006,103(4):1006-1011.
[29] Sinal CJ,Tohkin M,Miyata M,et al. Targeted disruption of the nuclear receptor FXR/BAR impairs bile acid and lipid homeostasis[J]. Cell,2000,102(6):731-744.
[30] Schroeder BO,B?覿ckhed F. Signals from the gut microbiota to distant organs in physiology and disease[J]. Nature Medicine,2016,22(10):1079.
[31] Miele L,Valenza V,La Torre G,et al. Increased intestinal permeability and tight junction alterations in nonalcoholic fatty liver disease[J]. Hepatology,2009,49(6):1877.
[32] Ng KM,F(xiàn)erreyra JA,Higginbottom SK,et al. Microbiota-liberated host sugars facilitate post-antibiotic expansion of enteric pathogens[J]. Nature,2013,502(7469):96.
[33] Guo S,Al-Sadi R,Said HM,et al. Lipopolysaccharide causes an increase in intestinal tight junction permeability invitro,and invivo,by inducing enterocyte membrane expression and localization of TLR-4 and CD14[J]. American Journal of Pathology,2013,182(2):375-387.
[34] Patrice D,Cani Jacques Amar,Miguel Angel Iglesias,et al. Metabolic Endotoxemia Initiates Obesity and Insulin Resistance[J]. Diabetes,2007,56(7):1761.
[35] Hatayama H,Iwashita J,Kuwajima A,et al. The short chain fatty acid,butyrate,stimulates MUC2 mucin production in the human colon cancer cell line,LS174T[J]. Biochemical and Biophysical Research Communications,2007,356(3):599-603.
[36] Brun P,Castagliuolo I,Di Leo V,et al. Increased intestinal permeability in obese mice:New evidence in the pathogenesis of nonalcoholic steatohepatitis[J]. Am J Physiol Gastrointest Liver Physiol,2007,292(2):G518.
[37] Volynets V,Küper MA,Strahl S,et al. Nutrition,intestinal permeability,and blood ethanol levels are altered in patients with nonalcoholic fatty liver disease(NAFLD)[J]. Dig Dis Sci,2012,57(7):1932-1941.
[38] Thuy S,Ladurner R,Volynets V,et al. Nonalcoholic fatty liver disease in humans is associated with increased plasma endotoxin and plasminogen activator inhibitor 1 concentrations and with fructose intake[J]. Journal of Nutrition,2008,138(8):1452-1455.
[39] Chen X,Zhang C,Zhao M,et al. Melatonin alleviates lipopolysaccharide-induced hepatic SREBP-1c activation and lipid accumulation in mice[J]. Journal of Pineal Research,2011,51(4):416-425.
[40] Fukunishi S,Sujishi T,Takeshita A,et al. Lipopolysaccharides accelerate hepatic steatosis in the development of nonalcoholic fatty liver disease in Zucker rats[J]. Journal of Clinical Biochemistry & Nutrition,2014,54(1):39-44.
[41] Ganz M,Szabo G. Immune and inflammatory pathways in NASH[J]. Hepatology International,2013,7(Suppl 2):771-781.
[42] Zhang G,Ghosh S. Molecular mechanisms of NF-kappaB activation induced by bacterial lipopolysaccharide through Toll-like receptors[J]. Journal of Endotoxin Research,2000,6(6):453-457.
[43] Ye D,Li FYL,Lam KSL,et al. Toll-like receptor-4 mediates obesity-induced non-alcoholic steatohepatitis thr-ough activation of X-box binding protein-1 in mice[J].Gut,2012,61(7):1058.
[44] Poggi M,Bastelica D,Gual P,et al. C3H/HeJ mice carrying a toll-like receptor 4 mutation are protected against the development of insulin resistance in white adipose tissue in response to a high-fat diet[J]. Diabetologia,2007,50(6):1267-1276.
[45] Saberi M,Woods NB,Luca CD,et al. Hematopoietic cell-specific deletion of Toll-like receptor 4 Ameliorates hepatic and adipose tissue insulin resistance in high-fat-fed mice[J]. Cell Metabolism,2009,10(5):419-429.
[46] Aoyama T,Paik YH,Seki E. Toll-like receptor signaling and liver fibrosis[J]. Gastroenterology Research and Practice,2010,2010(9):E1.
[47] Paik YH,Schwabe RF,Bataller R,et al. Toll-like receptor 4 mediates inflammatory signaling by bacterial lipopolysaccharide in human hepatic stellate cells[J]. Hepatology,2003,37(5):1043-1055.
[48] Sutterwala FS,Ogura Y,F(xiàn)lavell RA. The inflammasome in pathogen recognition and inflammation[J]. Journal of Leukocyte Biology,2007,82(2):259-264.
[49] Martinon F,Burns K,Tschopp J. The inflammasome:A molecular platform triggering activation of inflammatory caspases and processing of proIL-beta[J]. Molecular Cell,2002,10(2):417-426.
[50] Henaomejia J,Elinav E,Jin C,et al. Inflammasome-mediated dysbiosis regulates progression of NAFLD and obesity[J]. Nature,2012,482(7384):179-185.
[51] Laura D,Michael B,Samjhana T,et al. Caspase 1-mediated regulation of fibrogenesis in diet-induced steatohepatitis[J]. Laboratory Investigation; A Journal of Technical Methods and Pathology,2012,92(5):713.
[52] O?Sullivan TA,Oddy WH,Bremner AP,et al. Lower fructose intake may help protect against development of nonalcoholic fatty liver in adolescents with obesity[J]. Journal of Pediatric Gastroenterology & Nutrition,2014, 58(5):624.
[53] Moore JB,Gunn PJ,F(xiàn)ielding BA. The role of dietary sugars and de novo lipogenesis in non-alcoholic fatty liver disease[J]. Nutrients,2014,6(12):5679-5703.
[54] Jin R,Willment A,Patel SS,et al. Fructose induced endotoxemia in pediatric nonalcoholic Fatty liver disease[J].International Journal of Hepatology,2014,2014(8):560620.
[55] Jegatheesan P,Beutheu S,Ventura G,et al. Effect of specific amino acids on hepatic lipid metabolism in fructose-induced non-alcoholic fatty liver disease[J]. Clinical Nutrition,2016,35(1):175-182.
[56] Wagnerberger S,Spruss A,Kanuri G, et al. Toll-like receptors 1-9 are elevated in livers with fructose-induced hepatic steatosis[J]. British Journal of Nutrition,2012, 107(12):1727-1738.