張偉超 來(lái)永寶 趙洪 張立永 施云波
關(guān)鍵詞:光纖傳感;電流傳感器;溫度特性;校正函數(shù);靈敏度分析
DOI:10.15938/j.emc.2019.06.000
中圖分類號(hào)文獻(xiàn)標(biāo)志碼:A 文章編號(hào):1007 -449X(2019)06 -0000 -00
Abstract:To solve the problem that the sensitivity and accuracy of GMMFBG current sensor are affected by temperature influencing center wavelength of FBG and magnetostriction coefficient of GMM, the GMMFBG sensing model with temperature parameter is presented to calibrate current values. According to Faraday electromagnetic theory, the magnetic structure is designed to increase the magnetic coupling efficiency and homogenize magnetic distribution using finite element method (FEM). Then, the experimental platform is constructed by using the wavelength demodulation system. At the temperature of 20 to 70 degrees Celsius, wavelength response amplitudes of the sensor are tested under different current value. The experimental results show that the sensitivity of GMMFBG current sensor decreases with the increase of temperature, and it is positive correlation to the target current. Analyzing the law of sensor response versus temperature, a GMMFBG sensing mathematical model with temperature compensation coefficient is established based on mathematical fitting method. Then, according to the modal, the current detecting accuracy is increased by 4.8% during measuring 60A current at the temperature of 40 ℃.
Keywords:optical fiber sensor; fiber current sensor; temperature characteristic; correction function; sensitivity analysing
0 引 言
隨著我國(guó)電力工業(yè)的高速發(fā)展,電流傳感器在電能計(jì)量和監(jiān)測(cè)領(lǐng)域起到了越來(lái)越重要的作用[1-2],然而傳統(tǒng)的電磁式電流傳感器暴露出許多嚴(yán)重的缺點(diǎn),難以滿足當(dāng)代高電壓、大電流和強(qiáng)功率的電力系統(tǒng)需求[3-4]。因此,人們一直在尋找一種新型電流傳感器以滿足當(dāng)前電力系統(tǒng)在線監(jiān)測(cè)、故障高精確度診斷、電力數(shù)字網(wǎng)等發(fā)展的需要。光學(xué)電流傳感器(optical current transducer,OCT)[5-6]因其本征絕緣,抗電磁干擾性能優(yōu)異,更適于電力系統(tǒng)的電流量的計(jì)量和在線監(jiān)測(cè)而受到關(guān)注。
目前文獻(xiàn)報(bào)道的光學(xué)電流傳感器主要有法拉第磁光效應(yīng)方式,羅氏線圈光電混合方式和磁致伸縮效應(yīng)結(jié)合光纖方式。法拉第磁光效應(yīng)電流傳感器光纖中的線性雙折射、溫度引起的精確度問(wèn)題以及傳感頭老化問(wèn)題一直是此類電流傳感器實(shí)用化的最大障礙[7-8];羅氏線圈光電混合式的電流互感器在實(shí)際應(yīng)用中仍受到環(huán)境電磁場(chǎng)、高壓端電路電流供電等因素的影響[9];磁致伸縮式電流傳感器主要采用超磁致伸縮材料(giant magnetostrictive material,GMM)做為磁應(yīng)變敏感單元,通過(guò)在GMM上集成光纖布拉格光柵(fiber Bragg gratings,F(xiàn)BG)將磁場(chǎng)強(qiáng)度加載到調(diào)制光波中[10],該種方式電流響應(yīng)頻帶寬,靈敏度高,且在解調(diào)儀器配合下可以實(shí)現(xiàn)分布式測(cè)量,用于多點(diǎn)電流量同步監(jiān)測(cè)成本相對(duì)較低,具有較好的工業(yè)應(yīng)用前景。國(guó)內(nèi)外對(duì)GMMFBG光纖電流傳感器已經(jīng)做了大量的研究[11-14],包括系統(tǒng)解調(diào)技術(shù),GMMFBG磁路結(jié)構(gòu)設(shè)計(jì),F(xiàn)BG溫度解耦和磁滯非線性校正等研究均有成果報(bào)道[15-16]。研究也發(fā)現(xiàn)GMMFBG光纖電流傳感器受溫度參數(shù)影響傳感器傳遞函數(shù)會(huì)有所變化,研究者將其原因主要?dú)w結(jié)于FBG溫度敏感并提出眾多解耦方法[17-18]。但是超磁致伸縮材料的磁致伸縮系數(shù)也是以溫度為自變量的函數(shù),溫度造成的材料磁致伸縮系數(shù)變化的問(wèn)題尚未被關(guān)注,由此也造成傳感器電流檢測(cè)靈敏度隨溫度而變化。在設(shè)計(jì)高聚磁傳感結(jié)構(gòu)獲得高靈敏度GMMFBG傳感器基礎(chǔ)上,通過(guò)測(cè)試不同溫度下傳感器的響應(yīng)幅值,分析靈敏度受溫度影響特性,獲得溫度靈敏度數(shù)學(xué)關(guān)系模型,以此模型為基礎(chǔ)提出了一種傳感器靈敏度校正方法,同時(shí)實(shí)現(xiàn)了電流和溫度的同時(shí)測(cè)量。
4 結(jié) 論
在GMMFBG光纖電流傳感器磁路優(yōu)化設(shè)計(jì)基礎(chǔ)上,重點(diǎn)分析GMM磁致伸縮系數(shù)隨溫度變化而影響電流檢測(cè)靈敏度和準(zhǔn)確度的問(wèn)題。通過(guò)電磁場(chǎng)有限元分析方法,設(shè)計(jì)獲得了在GMM傳感區(qū)高聚磁且分布均勻的磁耦合結(jié)構(gòu)。GMMFBG傳感器溫度實(shí)驗(yàn)表明,隨溫度升高,傳感器響應(yīng)靈敏度下降;且靈敏度下降大小與被測(cè)電流值大小正相關(guān)。通過(guò)溫度特性實(shí)驗(yàn)數(shù)據(jù)分析,獲得了具有溫度校準(zhǔn)參數(shù)的GMMFBG電流傳感器電流和輸出波長(zhǎng)幅值數(shù)學(xué)關(guān)系模型。40 ℃下的電流測(cè)試結(jié)果表明,利用該模型校準(zhǔn)后的電流測(cè)量值準(zhǔn)確度獲得提升。
參 考 文 獻(xiàn):
[1] 王廷云, 羅承沐, 田玉鑫. 電力系統(tǒng)中光電電流互感器研究[J].電力系統(tǒng)自動(dòng)化,2000(01): 38.
WANG Tingyun, LUO Chenmo, TIAN Yuxin. Study on optical currenttransformer in power system[J]. Automation of Electric Power Systems,2000(01):38.
[2] Fábio Vieira Batista de Nazaré, Marcelo Martins Werneck. Compact optomagnetic bragggratingbased current sensor for transmission lines[J]. IEEE Sensors Journal, 2015,15(1):100.
[3] 李巖松, 劉君, 楊以涵, 等. 自適應(yīng)光學(xué)電流互感器與保護(hù)一體化運(yùn)行研究[J]. 中國(guó)電機(jī)工程學(xué)報(bào),2007(22):57.
LI Yansong, LIU Jun, YANG Yihan, et al. Research on whole operating of adaptive optical current transducer and protection [J]. Proceedings of the CSEE, 2007(22):57.
[4] Yamagata, Toshi. Development of optical current transformers and application to fault location systems for substation [J]. IEEE Trans. On Power Delivery, 1993, 8(l):866.
[5] 劉長(zhǎng)軍,張偉剛,姜萌,等.光纖布拉格光柵自致啁啾效應(yīng)的研究[J].光學(xué)學(xué)報(bào),2008(09):1671.
LIU Changjun, ZHANG Weigang, JIANG Meng, et al. Study on selfinduced chirping for fiber Bragg grating [J].Acta Optica Sinica, 2008(09):1671.
[6] 張開玉,趙洪,張偉超, 等.基于等應(yīng)變梁的光纖光柵靜電電壓傳感器[J].光學(xué)學(xué)報(bào),2015,35(03):0306003.
ZHANG Kaiyu, ZHAO Hong, ZHANG Weichao, et al. Fiber Bragg grating electrostatic voltage sensor based on uniform strain beam[J]. Acta Optica Sinica, 2015,35(03): 0306003.
[7] 王志, 初鳳紅, 吳建平. 全光纖電流傳感器溫度補(bǔ)償研究進(jìn)展[J].激光與光電子學(xué)進(jìn)展,2014, 51(12):120005.
WANG Zhi,CHU Fenghong,WU Jianping.Progress in allfiber current sensor temperature compensation[J].Laser & Optoelectronics Progress,2014,51(12):120005.
[8] 王政平,劉曉瑜.線性雙折射對(duì)不同類型光學(xué)玻璃電流互感器輸出特性的影響[J].中國(guó)電機(jī)工程學(xué)報(bào),2006(14):75.
WANG Zhiping, LIU Xiaoyu. Effects of linear birefringence upon performances of different designs of optical glass current transformers[J]. Proceedings of the CSEE, 2006(14):75.
[9] 楊芾藜,侯興哲,魏東,等.基于羅氏線圈的電子式電流互感器溫度誤差及補(bǔ)償[J].電器與能效管理技術(shù),2014(17):15.
YANG Fuli, HOU Xingzhe, WEI Dong, et al. The temperature error and compensation for electronic current transformer based on Rogowski coil[J]. Electrical Energy Management Technology, 2014(17):15.
[10] 賈丹平,武威.基于超磁致伸縮材料的光纖光柵電流傳感器[J].電子測(cè)量與儀器學(xué)報(bào),2015,29(12):1806.
JIA Danping, WU Wei. Fiber bragg grating current sensor based on giant magnetostrictive material [J]. Journal of Electronic Measurement and Instrumentation, 2015,29(12):1806.
[11] DEBORAH R,ANDREW J W. A fiberbragggratingbased sensor for simultaneous AC current and temperature measurement[J]. IEEE Sensors Journal,2006,6(6):539.
[12] DEBASHIS S,JEFFREY A M, MICHAEL G E.Design of a terfenolD based fiberoptic current transducer[J]. IEEE Sensors Journal,2005,5(5):1057.
[13] 劉杰,趙洪,王鵬, 等.可溫度自動(dòng)跟蹤的高精度光纖光柵電流互感器[J].中國(guó)電機(jī)工程學(xué)報(bào),2012,32(24):141.
LIU Jie, ZHAO Hong, WANG Peng, et al. High accuracy current transformers with an automatic temperature tracking system based on FBG[J]. Proceedings of the CSEE, 2012,32(24):141.
[14] 熊燕玲, 趙洪, 張劍, 等.基于光纖光柵的光學(xué)電流互感器研究[J].光學(xué)學(xué)報(bào),2010,30(04): 949.
XIONG Yanling, ZHAO Hong, ZHANG Jian, et al. Research on optical current transformer based on the fiber Bragg grating[J]. Acta Optica Sinica, 2010,30(04):949.
[15] 倪凱,徐海松,董新永,等.基于光纖布拉格光柵的溫度不敏感的傾斜傳感器[J].光學(xué)學(xué)報(bào),2010,30(07):2104.
NI Kai, XU Haisong, DONG Xinyong,et al. Temperatureindependent fiber Bragg grating tilt sensor [J]. Acta Optica Sinica, 2010, 30(07):2104.
[16] 孫菲菲.GMM光纖電流傳感器的研究[D].哈爾濱:哈爾濱理工大學(xué),2017.
[17] KIN S C,RAMESH K,VIPUL R,et al.Temperaturecompensated fiberBragggrating based magnetostrictive sensor for dc and ac currents[J]. Opt.Eng.2003,42(7):1906.
[18] 周王民,魏志武,李文博,等.溫度不敏感光纖光柵大電流傳感器[J].高電壓技術(shù),2009,35(09): 2133.
ZHOU Wangmin, WEI Zhiwu, LI Wenbo, et al.Novel fiber bragg grating large current sensor insensitive to temperature[J]. High Voltage engineering, 2009,35(09): 2133.
[19] 劉慧芳,王漢玉,王潔,等.精密辭職伸縮致動(dòng)器的動(dòng)態(tài)非線性多場(chǎng)耦合建模[J].光學(xué)精密工程,2016,24(05):1128.
LIU Huifang, WANG Hanyu, WANG Jie,et al. Modeling of dynamic nonlinear multifield coupling for precision magnetostrictive actuator[J]. Optics and Precision Engineering, 2016,24(05):1128.
(編輯:賈志超)