孟德智 王鈺煒 王明軍 秦啟波 俞暉
摘 要: 針對(duì)快速時(shí)變信道,提出了一種基于復(fù)指數(shù)基擴(kuò)展模型(CE-BEM)的線性最小均方誤差(LMMSE)信道估計(jì)方法,對(duì)信道估計(jì)的結(jié)果使用離散長(zhǎng)橢球序列(DPSS)進(jìn)行平滑處理,并相應(yīng)提出了基于迭代的載波間干擾(ICI)消除信道均衡方法.仿真結(jié)果表明:在高多普勒信道場(chǎng)景下,該方法系統(tǒng)誤碼性能較傳統(tǒng)信道估計(jì)方法有一定程度的提升.
關(guān)鍵詞: 信道估計(jì); 基擴(kuò)展模型; 快速時(shí)變信道; 載波間干擾(ICI)消除
中圖分類號(hào): TN 929.5文獻(xiàn)標(biāo)志碼: A文章編號(hào): 1000-5137(2019)01-0064-06
Abstract: In the fast time-varying channel scenario,a linear minimum mean square error (LMMSE) channel estimation method based on complex exponential basis extension model (CE-BEM) was proposed,and the channel estimation results were smoothed by use of discrete prolate spheroidal sequence (DPSS).Meanwhile,a channel equalization method based on iterative inter-carrier interference (ICI) cancellation was proposed.The simulation results showed that the proposed method had a better system error performance than traditional estimation method in the high Doppler channel scenario.
Key words: channel estimation; base extended model; fast time-varying channel; inter-carrier interference (ICI) cancellation
0 引 言
高速移動(dòng)環(huán)境中,無線信道表現(xiàn)出頻率及時(shí)間的選擇性衰落,傳統(tǒng)的信道模型不能很好地對(duì)高速時(shí)變的信道進(jìn)行模擬,由此,基擴(kuò)展模型(BEM)[1-2]得到廣泛的應(yīng)用.
文獻(xiàn)[3-5]中,作者提出了基于導(dǎo)頻的BEM信道估計(jì)方法.MA等[3]時(shí)域中插入導(dǎo)頻,解決符號(hào)間干擾(ISI)的問題.KANNU等[4]在時(shí)域中插入導(dǎo)頻,解決載波間干擾(ICI)的問題.STAMOULIS等[5]作者在文獻(xiàn)[4]的基礎(chǔ)上,研究得出ICI大多發(fā)生在相鄰的子載波,導(dǎo)致信道矩陣可近似地被認(rèn)為是帶狀的,并相應(yīng)地給出了信道均衡的迭代算法,降低了運(yùn)算復(fù)雜度.
本文作者基于復(fù)指數(shù)(CE)[1]函數(shù),提出了一種在頻域中插入導(dǎo)頻簇的信道估計(jì)方法,并采用離散長(zhǎng)橢球序列(DPSS)[6]對(duì)信道估計(jì)出的結(jié)果進(jìn)行平滑處理.仿真結(jié)果表明:在高多普勒的信道場(chǎng)景下,附加DPSS平滑處理的信道估計(jì)方法優(yōu)于復(fù)指數(shù)基擴(kuò)展模型(CE-BEM).
1 系統(tǒng)和信道模型
1.1 OFDM系統(tǒng)模型
4 結(jié) 論
本文作者提出了采用DPSS平滑處理的CE-BEM信道估計(jì)方法,相應(yīng)給出了基于迭代的ICI消除的信道均衡算法,并在高速移動(dòng)信道下進(jìn)行仿真實(shí)驗(yàn).結(jié)果表明:相比傳統(tǒng)LS和MMSE算法,以及CE-BEM方法,帶有PPSS平滑處理的CE-BEM的信道估計(jì)方法具備更為精確的估計(jì)精度.
參考文獻(xiàn):
[1] TANG Z,CANNIZZARO R C,LEUS G,et al.Pilot-assisted time-varying channel estimation for OFDM systems [J].IEEE Transactions on Signal Processing,2007,55(5):2226-2238.
[2] TANG Z,LEUS G,BANELLI P.Pilot-assisted time-varying OFDM channel estimation based on multiple OFDM symbols [C]//Signal Processing Advances in Wireless Communications.Canne:IEEE,2006:1-5.
[3] MA X,GIANNAKIS G B,OHNO S.Optimal training for block transmissions over doubly selective wireless fading channels [J].IEEE Transactions on Signal Processing,2003,51(5):1351-1366.
[4] KANNU A R,SCHNITER P.MSE-optimal training for linear time-varying channels [C]//IEEE International Conference on Acoustics Speech and Signal Processing.Philadelphia:IEEE,2005:789-792.
[5] STAMOULIS A,DIGGAVI S N,AL-DHAHIR N.Intercarrier interference in MIMO OFDM [J].IEEE Transactions on Signal Processing,2002,50(10):2451-2464.
[6] CHENG P,CHEN Z,RUI Y,et al.Channel estimation for OFDM systems over doubly selective channels:a distributed compressive sensing based approach [J].IEEE Transactions on Communications,2013,61(10):4173-4185.
[7] 任大孟.快速時(shí)變信道下無線 OFDM 系統(tǒng)信道估計(jì)技術(shù)的研究 [D].哈爾濱:哈爾濱工程大學(xué),2009.
REN D M.Research on channel estimation techniques of wireless OFDM systems in fast time-varying channel [D].Harbin:Harbin Engineering University,2009.
[8] ZEMEN T,MECKLENBRAUKER C F.Time-variant channel estimation using discrete prolate spheroidal sequences [J].IEEE Transactions on Signal Processing,2005,53(9):3597-3607.
[9] International Telecommunication Union.Guidelines for evaluation of radio transmission technologies for IMT-2000 [R].Geneva:ITU,1997.
(責(zé)任編輯:馮珍珍,包震宇)
上海師范大學(xué)學(xué)報(bào)·自然科學(xué)版2019年1期