□管子策
近年來,隨著我國經(jīng)濟水平的不斷提升,產(chǎn)業(yè)結(jié)構(gòu)逐漸轉(zhuǎn)型升級,服務型企業(yè)占比增大,企業(yè)間的競爭狀況加劇,企業(yè)通過業(yè)務層戰(zhàn)略選擇,來建立和鞏固他們渴望的戰(zhàn)略地位,對抗競爭對手,企業(yè)業(yè)務層戰(zhàn)略主要有:成本領先、差異化、聚焦成本領先、聚焦差異化、整體成本領先/差異化[1]。對于排隊系統(tǒng)的優(yōu)化是控制服務類企業(yè)運營成本的有效途徑之一。排隊系統(tǒng)的優(yōu)化問題通常分為兩類:服務率的提高和服務臺的增加,前者是在現(xiàn)有的人力資源條件下通過提高員工的服務率使系統(tǒng)達到最大效益,如朱翼雋[2]等人的研究;后者是在服務率無法提高的前提下增加人力資源數(shù)量使目標函數(shù)最優(yōu),如張艷菊[3]等人的研究。對于認證類企業(yè)而言,由于自身行業(yè)的特殊性,項目認證過程中涉及的諸多實驗檢測、顧客研發(fā)產(chǎn)品更改、國內(nèi)外審核時區(qū)差異等問題導致企業(yè)很難在短時間內(nèi)對服務率方面做出很好的優(yōu)化,故控制服務臺數(shù)量是認證類企業(yè)的常見選擇。刀榮貴[4]等人優(yōu)化了卷煙生產(chǎn)車間不同生產(chǎn)模式下自動引導小車服務臺數(shù)量,周文惠[5]等人提出了排隊管理中滿意度的概念,但都缺少對排隊系統(tǒng)的運營成本控制,服務臺數(shù)量的增加會相應帶來運營成本的增加。
本文基于排隊系統(tǒng)的M/M/s模型,分析某一認證企業(yè)系統(tǒng)內(nèi)項目的運行指標,該指標遵循系統(tǒng)容量無限、顧客源無限、排隊規(guī)則為先到先服務(FCFS)的排隊模型,結(jié)合經(jīng)濟分析系統(tǒng),計算不同服務臺數(shù)量下的最優(yōu)成本,得到系統(tǒng)優(yōu)化的最佳目標值。該理論方法也為其他類型企業(yè)的排隊系統(tǒng)成本控制提供科學依據(jù)。
在排隊系統(tǒng)中,將負責項目的員工稱為“服務臺”,則排隊系統(tǒng)的工作流程可描述如下:顧客為了獲得產(chǎn)品認證許可將需要認證的產(chǎn)品項目提交給認證企業(yè)的系統(tǒng)中,若不能立即獲得認證服務則加入系統(tǒng)等待隊伍,待有空閑服務臺時按隊列依次獲得服務,服務完成后便離開系統(tǒng),如圖1所示。
圖1 企業(yè)項目的排隊系統(tǒng)流程
將分析此排隊系統(tǒng)的基本運行指標,并給出一套標準的求解公式。這些公式可以幫助企業(yè)管理人員了解顧客對服務的需求,從而規(guī)劃出符合顧客所需條件的服務設施。許多服務型企業(yè)的一個核心問題就是顧客等待時間的管理,作為管理者必須衡量為提供更快捷的服務水平而增加的成本和相應的排隊等待所造成的費用之間的關系。通常,這種對于排隊成本的權(quán)衡決策是十分直截了當?shù)?,如果發(fā)現(xiàn)在系統(tǒng)中的項目排隊等候所浪費的時間能夠用在員工的其他工作活動中,就可以比較這種損失成本與增加一名員工的成本。于是,這種決策就可以轉(zhuǎn)化為成本與收益的比較問題,這樣會使決策變得更加直觀和容易。
先給出 M/M/s 模型下的排隊系統(tǒng)各項指標公式。設排隊系統(tǒng)中顧客的項目源單個到達,且相繼到達的時間間隔服從參數(shù)為λ的負指數(shù)分布,系統(tǒng)中共有s個服務臺,每個服務臺的服務時間是相互獨立的,并且服從參數(shù)為μ的負指數(shù)分布。當項目到達時,若有空閑的服務臺則可以馬上接受服務,否則便排成一個隊列等待直到其接受服務,等待空間無限。
記服務強度ρ=λ/μ,ρs=ρ/s=λ/sμ,其中約束ρs<1,否則系統(tǒng)內(nèi)排隊長度將無限制增大。于是有如下各項指標公式:
系統(tǒng)中無項目的概率
系統(tǒng)中恰好有n個項目的概率
系統(tǒng)中項目必須排隊等待的概率
系統(tǒng)中平均排隊的項目數(shù)
系統(tǒng)中的平均項目數(shù)
Ls=Lq+ρ
項目在排隊上的平均等待時間
項目在系統(tǒng)中的平均逗留時間
結(jié)合上述公式,以某個認證企業(yè)中的現(xiàn)有項目排隊系統(tǒng)的各項參數(shù)為例,經(jīng)過統(tǒng)計結(jié)果得知,項目到達率λ約為 6.1 個/天,員工服務率μ約為 0.28 個/天,現(xiàn)有員工數(shù)量s為23人,于是通過代入公式計算可以得到表 1 的排隊系統(tǒng)運行指標。
表1 某認證企業(yè)的排隊系統(tǒng)運行指標
由表1可知,該企業(yè)的排隊系統(tǒng)在現(xiàn)有服務水平下的運行指標,接下來將結(jié)合經(jīng)濟分析優(yōu)化服務系統(tǒng)的服務臺數(shù)量。
在通常情況下,企業(yè)提高服務水平(數(shù)量、質(zhì)量)可減少顧客的等待費用(損失),但卻常常增加了服務機構(gòu)的成本。因此,優(yōu)化的目標之一就是使兩者的費用之和最小,并確定達到最優(yōu)目標值的服務水平,如圖2所示。
圖2 總費用與服務費用、等待費用的關系
已知在平穩(wěn)狀態(tài)下單位時間內(nèi)總費用(總費用與等待費用)之和的平均值為
z=C'sS+CwLs
其中,S為服務臺數(shù),C's是每個服務臺單位時間內(nèi)的費用,Ls是系統(tǒng)內(nèi)平均隊長。由于C's,Cw是給定的,故唯一可變的是服務臺數(shù)s,所以可將z看成是s的函數(shù),記為z=z(s),并求使z(s)達到最小的s*。
因為s只取整數(shù),z(s)不是連續(xù)函數(shù),故不能用經(jīng)典的微分法,下面采用邊際分析方法。根據(jù)z(s*)應為最小的特點,有
將z=C'sS+CwLs代入上式,可得
化簡后得到
把服務臺成本C's定義為單位時間內(nèi)企業(yè)員工的平均工資水平,設定服務臺成本C's=300元/天,項目在系統(tǒng)里的等待成本Cw= 200 元/天,結(jié)合給出的服務水平運行指標帶入總費用公式中,可得表 2。
表2 最優(yōu)服務臺數(shù)及總費用
表3 原運行指標與優(yōu)化后的運行指標對比
分析表3結(jié)果可知,雖然增加的2個服務臺使得服務臺運營成本增加,但明顯降低了項目在系統(tǒng)內(nèi)的等待時間,減少了顧客的等待損失,且優(yōu)化后的服務水平得到提高,總費用卻顯著降低。
本文詳細闡述了企業(yè)中項目排隊系統(tǒng)的M/M/s模型的建立,通過統(tǒng)計企業(yè)的服務水平得到其排隊系統(tǒng)的運行指標,再引入服務臺運營成本的核算方法,并在此基礎上對該企業(yè)的排隊系統(tǒng)成本進行了詳細的分析,進而建立了完備的優(yōu)化模型,完整地解決了認證類企業(yè)如何在內(nèi)部的服務水平與總費用之間達到最佳平衡狀態(tài)。
除了認證類企業(yè),大多數(shù)服務型企業(yè)都要面臨如何控制服務臺數(shù)與運營成本之間的平衡,類似于銀行、超市、餐廳等企業(yè),本文的研究成果將對這些企業(yè)提供合理的決策工具,使得這些企業(yè)能夠在市場激勵的競爭環(huán)境下完善自身內(nèi)部的服務設施,為其服務系統(tǒng)優(yōu)化提供理論支持。