于金璐 韓明月 陳佳琳 王強
【摘要】 血小板反應蛋白(thrombospondin,TSP)作為一種基質細胞蛋白,分為A和B亞群。它們可與多種配體相互作用,調節(jié)各種生理和病理過程。TSP在眼睛很多部位中表達,可參與免疫調節(jié)、抗血管和淋巴管生成、傷口愈合以及神經元突觸形成等。越來越多的研究證明了TSP各種亞型的缺乏將會導致眼部穩(wěn)態(tài)破壞和眼部疾病發(fā)生。本文主要回顧了TSP各亞型的特性、功能以及其在青光眼、糖尿病視網(wǎng)膜病變、干眼、眼部過敏、角膜移植和感染性角膜炎等疾病中發(fā)揮的作用。
【關鍵詞】 血小板反應蛋白 眼科疾病 生理 病理
Latest Research Progress of Platelet Reactive Protein in Ophthalmological Related Diseases/YU Jinlu, HAN Mingyue, CHEN Jialin, WANG Qiang. //Medical Innovation of China, 2021, 18(28): -183
[Abstract] As a kind of stromal cell protein, the thrombospondin (TSP) can be divided into A and B inferior populations. They can interact with a variety of ligands to regulate a variety of physiological and pathological processes. TSP is expressed in many parts of the eye and is involved in immune regulation, anti-angiogenesis and Anti-lymphangiogenesis, wound healing, and neuronal synapse formation. More and more studies have demonstrated that the lack of various subtypes of TSP will lead to impaired ocular homeostasis and ophthalmological disease. In this article, we review the characteristics and functions of each subtype of TSP and its role in glaucoma, diabetic retinopathy, dry eyes, ocular allergies, corneal transplantation, and infectious keratitis.
[Key words] Thrombospondin Ophthalmological disease Physiology Pathology
First-author’s address: Affiliated Hospital of Binzhou Medical University, Binzhou 256603, China
doi:10.3969/j.issn.1674-4985.2021.28.044
細胞外基質(ECM)是復雜的蛋白質三維網(wǎng)絡,在細胞的信號轉導,分化,增殖,極性,遷移和存活中起著至關重要的作用[1]。血小板反應蛋白是細胞外基質蛋白家族,由五個成員(TSP-1至TSP-5)組成,它們與各種細胞表面受體和蛋白酶相互作用,從而影響傷口愈合和血管生成、突觸生成和炎癥等多種體內現(xiàn)象[2]。本文將闡明TSP對眼睛穩(wěn)態(tài)和疾病作用所取得進展。描述了TSP在眼的表達和功能,并探討了TSP在各種眼科疾病中的作用?,F(xiàn)就TSP與正常及患病眼睛之間聯(lián)系進行綜述。
1 血小板反應蛋白結構及生物學特性
血小板反應蛋白家族分為A亞群和B亞群,A亞群的成員TSP-1和TSP-2是同三聚體分子,具有凝血酶反應蛋白1型重復序列(TSR)。B亞群其成員是同五聚體,包括血小板反應蛋白3-5(TSP3-5),亞基質量均較小。目前對TSP-1研究較多,本文將著重介紹。所有TSP均包括兩個末端的N末端,被結合形成2型(EGF-like)重復序列、3型鈣結合重復序列和球狀C末端結構域,以此來實現(xiàn)細胞附著的功能[3]。如圖1所示:TSP都包括N末端、C末端結構域和重復序列。血小板反應蛋白分為A亞群(三聚體)和B亞群(五聚體)。A亞群存在三個I型重復序列(3TSR),可與受體CD36和潛在TGF-b結合。羧基末端結合CD47受體,而b1整聯(lián)蛋白結合位點通過Ⅰ型和Ⅱ型重復序列和N端結構域分布。TSP-1還可以結合其他細胞外基質配體,如肝素、MMP來發(fā)揮各種功能。
Bein等[4]通過實驗證明了TSP-1和TSP-2能通過TSR與基質金屬蛋白酶2(MMP2)結合,且MMP2的活性可被完整的TSP-1抑制。Rodriguez-Manzaneque等[5]研究發(fā)現(xiàn)基質金屬蛋白酶3對基質金屬蛋白酶9的激活被TSP-1抑制。表明其具有調節(jié)關鍵蛋白酶的特性。TSP-1信號通過整合素蛋白(CD47)通過羧基末端發(fā)生[6]。正是通過這些相互作用,TSP-1介導了其各種免疫調節(jié),抗血管生成和傷口愈合等功能。
2 血小板反應蛋白在眼組織中的分布
TSP1在正常成年哺乳動物眼睛的角膜、小梁網(wǎng)、晶狀體上皮、虹膜、視網(wǎng)膜血管、玻璃體等表達,且該蛋白在視網(wǎng)膜色素上皮(RPE)中產生[7]。RPE細胞還可產生TSP2-4[8]。Sekiyama等[9]證明TSP-1在角膜和角膜緣上皮中表達,且高水平的TSP-1只出現(xiàn)在角膜上皮以下,推測這獨特的分布與角膜血管的豐富和完整性有關。TSP-2主要存在于人角膜內皮、小梁網(wǎng)、葡萄膜網(wǎng)狀結構和晶狀體上皮中,TSP-3位于角膜、鞏膜等部位,TSP-4大部分地位于角膜、小梁網(wǎng)、鞏膜、視網(wǎng)膜上[7]。
3 血小板反應蛋白功能
3.1 免疫調節(jié) TSP-1是體內轉化生長因子-β1(TGF-β1)的主要激活劑[10]。TSP-1在Th17和Treg細胞的發(fā)育過程中都是至關重要的,TSP-1對眼組織中Treg的誘導也是必不可少的[11]。而Treg是免疫穩(wěn)態(tài)的關鍵調節(jié)劑,通過調節(jié)細胞因子和調節(jié)樹突狀細胞功能來抑制效應T細胞[12]。
3.2 抗血管及抗淋巴管生成 TSP-1通過多種途徑抑制新生血管的生長,包括拮抗VEGF,誘導血管內皮細胞凋亡,調節(jié)內皮細胞的增殖和遷移[13]。與野生型(WT)小鼠相比,TSP-1缺陷小鼠的角膜自發(fā)淋巴管生成顯著增加,并可通過重組人TSP-1局部治療所消除[14]。這證實了TSP-1具有抗淋巴管生成的重要作用。最近的研究發(fā)現(xiàn)TSP-1的表達可被白藜蘆醇增加1.5倍以增強抗血管生成因子[15]。Tian等[16]實驗證明VR-10合成肽作為TSP1合成多肽,通過上調抗血管生成因子PEDF和下調VEGF2,抑制內皮細胞增殖和遷移,增加促凋亡基因Fas/FasL,降低了生存基因Bcl-2來參與抗血管生成作用。通過以上不同的機制,TSP-1發(fā)揮了血管生成抑制劑的作用。TSP-2也可抑制角膜新生血管形成,實現(xiàn)其抗血管生成作用[17]。最近發(fā)現(xiàn)TSP4缺乏的小鼠可導致促血管生成活性減弱,體外實驗中添加重組TSP-4可增加促血管生成特性[18]。
3.3 傷口愈合 TSP-1通過上調TGF-β1活性,在傷口愈合中起關鍵作用[10]。與WT對照小鼠相比,TSP-1基因缺失小鼠創(chuàng)傷后創(chuàng)口表現(xiàn)出愈合延遲,并伴有持續(xù)性炎癥和晚期結痂脫落[19]。Uno等[20]的實驗中,外源性TSP-1表現(xiàn)了刺激角膜創(chuàng)面再上皮化的功能[20]。Uno等[21]又發(fā)現(xiàn)了維生素A缺乏的小鼠角膜上皮清創(chuàng)后無法表達TSP-1,其再上皮化明顯延遲,作者認為TSP-1的表達可能有助于促進角膜上皮清創(chuàng)術后上皮的遷移和黏附。
3.4 神經元突觸形成 Bhattacharya等[22]發(fā)現(xiàn)TSP-1基因缺失的小鼠淚腺中含有降鈣素基因相關肽神經減少,證實了TSP-1基因缺失可導致周圍神經的損傷進而影響腺體功能。Thematsu等[23]研究發(fā)現(xiàn)與年齡匹配WT小鼠相比,老年TSP-1缺失小鼠的角膜感覺神經纖維較少且不連續(xù)。提示了TSP-1在神經纖維的結構和功能中的重要作用。Falero-Perez等[24]實驗研究還證明缺乏Bim表達的星形膠質細胞表現(xiàn)出TSP-2表達增加,TSP-1表達顯著降低。研究者認為TSP2的表達上調可能是一種穩(wěn)定神經元突觸的代償性改變。另一個研究表明,純化的TSP-4可增強層粘連蛋白支持黏附和軸突生長的能力[25]。
3.5 抑制腫瘤生長 腫瘤細胞衍生的TSP1和TSP2可能抑制腫瘤生長轉移必需的腫瘤脈管系統(tǒng),因此具有抗腫瘤作用[26]。在卵巢癌、膠質母細胞瘤的臨床前模型中,重組TSP-1 3型重復結構域(稱為3TSR)與CD36的直接相互作用抑制卵巢癌細胞和膠質母細胞的生長,被證明是有效的腫瘤生長抑制劑而提高生存率[27-28]。
3.6 抗炎 與正常結膜中TSP-1表達不變CD36表達明顯降低相比,TSP-1缺陷性結膜中CD36(有抗炎作用)表達增加,提示了TSP-1缺失可能導致結膜炎[29]。Contreras等[30]研究了TSP-1衍生肽能通過促進Treg的誘導和抑制Th17淋巴細胞的發(fā)育來逆轉TSP-1缺陷小鼠的眼表炎癥癥狀。另一個TSP-1衍生肽,Lys-Arg-Phe-Lys(KRFK),能結合Leu-Ser-Lys-Leu(Lskl)序列(維持TGF-β處于失活或潛伏狀態(tài)所必需的一個序列)[31]。因此,KRFK有望在不依賴于TSP受體(如CD47和CD36)下,激活TGF-β介導的信號轉導[31]。Soriano-Romani等[32]也通過體外實驗證明KRFK可激活TGF-β,減少樹突狀細胞上共刺激分子表達,在慢性眼表炎癥發(fā)展方面有明顯療效。
4 血小板反應蛋白家族在眼科相關疾病的研究進展
4.1 青光眼 眼內壓(IOP)過高是青光眼失明的主要原因,ECM的異常重塑增加了對小梁網(wǎng)(TM)房水流出的阻力從而導致眼壓升高,是青光眼的主要風險因素[33]。青光眼房水中TSP-1和TGF-β2的水平升高,TGF-β2刺激視神經頭(ONH)星形膠質細胞和篩板(LC)細胞的ECM蛋白表達,造成了小梁網(wǎng)和ONH的病理重塑[34]。與白內障組對比,新生血管性青光眼中TSP-1明顯上調[35]。因此,TSP-1肽拮抗劑LSKL抑制TSP1-TGFb的激活,有望在青光眼治療中發(fā)揮作用[36]。另一研究發(fā)現(xiàn)與白內障組相比,急性原發(fā)性閉角型青光眼組中TSP-2的水平明顯升高,并且與IOP呈正相關[37]。
4.2 糖尿病視網(wǎng)膜病變 增生性糖尿病視網(wǎng)膜病變(PDR)患者玻璃體中TSP-1濃度比對照組高10倍,研究者將其歸因于響應促血管生成因子來上調TSP-1,抵消和平衡PDR中的血管生成轉換[38]。與上述結果不同,Sorenson等[39]發(fā)現(xiàn)糖尿病患者眼睛中TSP-1的產生顯著減少,且TSP1基因缺失的秋田雄性小鼠表現(xiàn)出更晚期的糖尿病視網(wǎng)膜病變。這些差異是否由于技術因素或者物種因素造成的,還需要更多的研究來證明。另一個研究發(fā)現(xiàn)TSP-2基因缺乏的小鼠出生后早期視網(wǎng)膜脈管系統(tǒng)發(fā)育更快,TSP-2能否作為眼部血管形成抑制劑仍有待進一步證實[40]。
4.3 干眼(DED) Shatos等[41]通過構建干燥綜合征的小鼠模型證實了TSP-1缺失會改變細胞因子水平和淚腺細胞結構。TSP-1缺失小鼠淚腺肌上皮細胞調節(jié)能力減弱,從而導致其易患DED[42]。且暴露在干燥環(huán)境中會增加角膜上皮細胞TSP-1的表達[43]。Tan等[43]發(fā)現(xiàn)DED小鼠角膜上皮細胞較WT小鼠具有更強的抑制樹突狀細胞能力,這種作用可被TSP-1阻斷,且可被重組TSP-1滴眼液增強,這進一步證明了TSP-1在干眼病中的作用。
4.4 眼部過敏 Smith等[44]已經證明,樹突狀細胞通過向TSP-1無效宿主的眼黏膜局部轉移,阻止了繼發(fā)性T細胞增強的細胞反應,證實了樹突狀細胞衍生的TSP-1在眼部過敏的作用。因此TSP-1衍生肽4N1K滴眼液可降低過敏性眼病的嚴重程度[30]。Sarfati等[45]也證實了TSP-1介導的CD47的樹突狀細胞和T細胞功能負面調節(jié)機體免疫功能的重要性。
4.5 葡萄膜黑色素瘤 葡萄膜黑色素瘤是最常見的原發(fā)性眼內惡性腫瘤,Hiscott等[7]在脈絡膜黑色素瘤細胞中沒有檢測到TSP-1和TSP-2的表達。在葡萄膜黑色素瘤小鼠中檢測到TSP-1的表達減少,眼內過表達TSP-1或給予TSP-1模擬肽可抑制小鼠的腫瘤生長[46]。腫瘤發(fā)生的機制一種被認為是腫瘤抑制基因THY1的丟失,而THY1是TSP1合成所必需的[47]。另一種可能性是上調的環(huán)氧合酶(COX-2)可促進腫瘤血管生成,并與葡萄膜黑色素瘤不良預后的標志物有關,可能會降低TSP-1的表達[48]。
4.6 黃斑變性 年齡相關性黃斑變性(AMD)是導致老年人視力喪失的主要原因,發(fā)病機制主要與視網(wǎng)膜色素上皮(RPE)功能障礙和脈絡膜新生血管(CNV)形成有關[49]。AMD發(fā)生的重要危險因素是受損RPE部位聚集了巨噬細胞和小膠質細胞,其清除率受TSP-1及其受體CD47相互作用的影響[50]。通過研究TSP-1缺陷型小鼠的RPE發(fā)現(xiàn),TSP-1表達顯著影響RPE細胞的增殖、遷移,可造成ECM組成改變,進而導致眼部新生血管形成導致AMD[49]。TSP-1或與其他現(xiàn)有治療劑組合可能AMD是未來一種很有前景的治療方法[50]。
4.7 角膜移植 與WT小鼠相比,TSP-1缺失小鼠異體角膜移植排斥率明顯更高,從側面證明了TSP-1是移植存活的重要因素[51]。研究證明,角膜移植可以誘導淋巴管生成,抑制淋巴管生成會延長移植物存活時間[52]。TSP-1缺失的同種異體移植顯著增強了直接同種異體致敏作用,并顯著增加了免疫排斥反應水平。因此,上調TSP-1表達在促進移植存活方面是有前景的。
5 展望
目前有大量研究證明TSP對正常眼部的保護具有非常重要的意義,例如,在TSP-1基因缺失的小鼠中,可發(fā)現(xiàn)自發(fā)性干眼病、角膜血管生成的增加和傷口愈合的延遲,且此種類型小鼠發(fā)生角膜移植排斥反應的風險增加[11,14,30,51]。盡管對TSP的功能有了比較多的了解,但在正常和疾病狀態(tài)下仍有許多TSP依賴性的眼部機制尚待揭示,TSP衍生肽在治療眼部疾病上有很可觀的前景。
參考文獻
[1] Hynes R O.The extracellular matrix:not just pretty fibrils[J].Science,2009,326(5957):1216-1219.
[2] Adams J C,Lawler J.The thrombospondins[J].Cold Spring Harbor Perspectives in Biology,2011,3(10):a009712.
[3] Masli S,Sheibani N,Cursiefen C,et al.Matricellular protein thrombospondins:influence on ocular angiogenesis,wound healing and immuneregulation[J].Curr Eye Res,2014,39(8):759-774.
[4] Bein K,Simons M.Thrombospondin type 1 repeats interact with matrix metalloproteinase 2.Regulation of metalloproteinase activity[J].J Biol Chem,2000,275(41):32167-32173.
[5] Rodriguez-Manzaneque J C,Lane T F,Ortega M A,et al.
Thrombospondin-1 suppresses spontaneous tumor growth and inhibits activation of matrix metalloproteinase-9 and mobilization of vascular endothelial growth factor[J].Proc Natl Acad Sci USA,2001,98(22):12485-12490.
[6] Floquet N,Dedieu S,Martiny L,et al.Human thrombospondin’s(TSP-1)C-terminal domain opens to interact with the CD-47 receptor:a molecular modeling study[J].Arch Biochem Biophys,2008,478(1):103-109.
[7] Hiscott P,Paraoan L,Choudhary A,et al.Thrombospondin 1,thrombospondin 2 and the eye[J].Prog Retin Eye Res,2006,25(1):1-18.
[8] Carron J A,Hiscott P,Hagan S,et al.Cultured human retinal pigment epithelial cells differentially express thrombospondin-1,-2,-3,and-4[J].Int J Biochem Cell Biol,2000,32(11-12):1137-1142.
[9] Sekiyama E,Nakamura T,Cooper L J,et al.Unique distribution of thrombospondin-1 in human ocular surface epithelium[J].Invest Ophthalmol Vis Sci,2006,47(4):1352-1358.
[10] Penn J W,Grobbelaar A O,Rolfe K J.The role of the TGF-βfamily in wound healing,burns and scarring:a review[J].Int J Burns Trauma,2012,2(1):18-28.
[11] Turpie B,Yoshimura T,Gulati A,et al.Sjogren’s syndrome-like ocular surface disease in thrombospondin-1 deficient mice[J].Am J Pathol,2009,175(3):1136-1147.
[12] Foulsham W,Marmalidou A,Amouzegar A,et al.Review:The function of regulatory T cells at the ocular surface[J].Ocul Surf,2017,15(4):652-659.
[13] Lawler P R,Lawler J.Molecular basis for the regulation of angiogenesis by thrombospondin-1 and-2[J].Cold Spring Harb Perspect Med,2012,2(5):a006627.
[14] Cursiefen C,Maruyama K,Bock F,et al.Thrombospondin 1 inhibits inflammatory lymphangiogenesis by CD36 ligation on monocytes[J].J Exp Med,2011,208(5):1083-1092.
[15] Ishida T,Yoshida T,Shinohara K,et al.Potential role of sirtuin 1 in Müller glial cells in mice choroidal neovascularization[J/OL].PLoS One,2017,12(9):e0183775.
[16] Tian R,Han F,Yang J,et al.VR-10 Thrombospondin-1 Synthetic Polypeptide’s Impact on Rhesus Choroid-Retinal Endothelial Cells[J].Cell Physiol Biochem,2018,46(2):609-617.
[17] Volpert O V,Tolsma S S,Pellerin S,et al.Inhibition of angiogenesis by thrombospondin-2[J].Biochem Biophys Res Commun,1995,217(1):326-332.
[18] Muppala S,F(xiàn)rolova E,Xiao R,et al.Proangiogenic Properties of Thrombospondin-4[J].Arterioscler Thromb Vasc Biol,2015,35(9):1975-1986.
[19] Agah A,Kyriakides T R,Lawler J,et al.The lack of thrombospondin-1(TSP1)dictates the course of wound healing in double-TSP1/TSP2-null mice[J].Am J Pathol,2002,161(3):831-839.
[20] Uno K,Hayashi H,Kuroki M,et al.Thrombospondin-1 accelerates wound healing of corneal epithelia[J].Biochem Biophys Res Commun,2004,315(4):928-934.
[21] Uno K,Kuroki M,Hayashi H,et al.Impairment of thrombospondin-1 expression during epithelial wound healing in corneas of vitamin A-deficient mice[J].Histol Histopathol,2005,20(2):493-499.
[22] Bhattacharya S,García-Posadas L,Hodges R R,et al.
Alteration in nerves and neurotransmitter stimulation of lacrimal gland secretion in the TSP-1(-/-)mouse model of aqueous deficiency dry eye[J].Mucosal Immunol,2018,11(4):1138-1148.
[23] Tatematsu Y,Khan Q,Blanco T,et al.Thrombospondin-1 Is Necessary for the Development and Repair of Corneal Nerves[J].Int J Mol Sci,2018,19(10):3191.
[24] Falero-Perez J,Sheibani N,Sorenson C M.Bim expression modulates the pro-inflammatory phenotype of retinal astroglial cells[J/OL].PLoS One,2020,15(5):e0232779.
[25] Dunkle E T,Zaucke F,Clegg D O.Thrombospondin-4 and matrix three-dimensionality in axon outgrowth and adhesion in the developing retina[J].Exp Eye Res,2007,84(4):707-717.
[26] Lawler J,Detmar M.Tumor progression:the effects of thrombospondin-1 and-2[J].Int J Biochem Cell Biol,2004,36(6):1038-1045.
[27] Russell S,Duquette M,Liu J,et al.Combined therapy with thrombospondin-1 type I repeats(3TSR)and chemotherapy induces regression and significantly improves survival in a preclinical model of advanced stage epithelial ovarian cancer[J].FASEB J,2015,29(2):576-588.
[28] Choi S H,Tamura K,Khajuria R K,et al.Antiangiogenic variant of TSP-1 targets tumor cells in glioblastomas[J].Mol Ther,2015,23(2):235-243.
[29] Soriano-Romaní L,Contreras-Ruiz L,García-Posadas L,
et al.Inflammatory Cytokine-Mediated Regulation of Thrombospondin-1 and CD36 in Conjunctival Cells[J].J Ocul Pharmacol Ther,2015,31(7):419-428.
[30] Contreras Ruiz L,Mir F A,Turpie B,et al.Thrombospondin-derived peptide attenuates Sjogren’s syndrome-associated ocular surface inflammation in mice[J].Clin Exp Immunol,2017,188(1):86-95.
[31] Sweetwyne M T,Murphy-Ullrich J E.Thrombospondin1 in tissue repair and fibrosis:TGF-β-dependent and independent mechanisms[J].Matrix Biol,2012,31(3):178-186.
[32] Soriano-Romani L,Contreras-Ruiz L,Lopez-Garcia A,et al.
Topical Application of TGF-beta-Activating Peptide,KRFK,Prevents Inflammatory Manifestations in the TSP-1-Deficient Mouse Model of Chronic Ocular Inflammation[J].Int J Mol Sci,2018,20(1):9.
[33] Quigley H A.Glaucoma[J].Lancet,2011,377(9774):1367-1377.
[34] Fuchshofer R.The pathogenic role of transforming growth factor-β2 in glaucomatous damage to the optic nerve head[J].Exp Eye Res,2011,93(2):165-169.
[35]劉國立,王寧利.新生血管性青光眼患者房水中血小板反應蛋白-1的表達及其與血管內皮生長因子相關關系的臨床研究[J/OL].中華眼科醫(yī)學雜志(電子版),2018,8(4):163-169.
[36] Murphy-Ullrich J E,Downs J C.The Thrombospondin1-TGF-beta Pathway and Glaucoma[J].J Ocul Pharmacol Ther,2015,31(7):371-375.
[37] Wang J,F(xiàn)u M,Liu K,et al.Matricellular Proteins Play a Potential Role in Acute Primary Angle Closure[J].Curr Eye Res,2018,43(6):771-777.
[38] Klaassen I,De Vries E W,Vogels I M C,et al.Identification of proteins associated with clinical and pathological features of proliferative diabetic retinopathy in vitreous and fibrovascular membranes[J/OL].PLoS One,2017,12(11):e0187304.
[39] Sorenson C M,Wang S,Gendron R,et al.Thrombospondin-1 Deficiency Exacerbates the Pathogenesis of Diabetic Retinopathy[J].J Diabetes Metab,2013(Suppl 12).
[40] Fei P,Palenski T L,Wang S,et al.Thrombospondin-2 Expression During Retinal Vascular Development and Neovascularization[J].J Ocul Pharmacol Ther,2015,31(7):429-444.
[41] Shatos M A,Hodges R R,Morinaga M,et al.Alteration in cellular turnover and progenitor cell population in lacrimal glands from thrombospondin 1(-/-)mice,a model of dry eye[J].Experimental Eye Research,2016,153:27-41.
[42] Garcia-Posadas L,Hodges R R,Utheim T P,et al.Lacrimal Gland Myoepithelial Cells Are Altered in a Mouse Model of Dry Eye Disease[J].Am J Pathol,2020,190(10):2067-2079.
[43] Tan X,Chen Y,F(xiàn)oulsham W,et al.The immunoregulatory role of corneal epithelium-derived thrombospondin-1 in dry eye disease[J].Ocul Surf,2018,16(4):470-477.
[44] Smith R E,Reyes N J,Khandelwal P,et al.Secondary allergic T cell responses are regulated by dendritic cell-derived thrombospondin-1 in the setting of allergic eye disease[J].
J Leukoc Biol,2016,100(2):371-380.
[45] Sarfati M,F(xiàn)ortin G,Raymond M,et al.CD47 in the immune response:role of thrombospondin and SIRP-alpha reverse signaling[J].Curr Drug Targets,2008,9(10):842-850.
[46] Wang S,Neekhra A,Albert D M,et al.Suppression of Thrombospondin-1 Expression During Uveal Melanoma Progression and Its Potential Therapeutic Utility[J].Arch Ophthalmol,2012,130(3):336-341.
[47] Abeysinghe H R,Cao Q,Xu J,et al.THY1 expression is associated with tumor suppression of human ovarian cancer[J].Cancer Genet Cytogenet,2003,143(2):125-132.
[48] Sennlaub F,Valamanesh F,Vazquez-Tello A,et al.
Cyclooxygenase-2 in human and experimental ischemic proliferative retinopathy[J].Circulation,2003,108(2):198-204.
[49] Farnoodian M,Kinter J B,Yadranji Aghdam S,et al.
Expression of pigment epithelium-derived factor and thrombospondin-1 regulate proliferation and migration of retinal pigment epithelial cells[J/OL].Physiol Rep,2015,3(1):e12266.
[50] Farnoodian M,Sorenson C M,Sheibani N.Negative Regulators of Angiogenesis,Ocular Vascular Homeostasis,and Pathogenesis and Treatment of Exudative AMD[J].J Ophthalmic Vis Res,2018,13(4):470-486.
[51] Saban D R,Bock F,Chauhan S K,et al.Thrombospondin-1 derived from APCs regulates their capacity for allosensitization[J].J Immunol,2010,185(8):4691-4697.
[52] Cursiefen C,Cao J,Chen L,et al.Inhibition of hemangiogenesis and lymphangiogenesis after normal-risk corneal transplantation by neutralizing VEGF promotes graft survival[J].Invest Ophthalmol Vis Sci,2004,45(8):2666-2673.
(收稿日期:2021-01-04) (本文編輯:田婧)