1.(2020·上海松江區(qū)高三一模)記Sn為數(shù)列{an}的前n項(xiàng)和,已知點(diǎn)(n,an)在直線y=10-2x上,若有且只有兩個(gè)正整數(shù)n滿足Sn≥k,則實(shí)數(shù)k的取值范圍是( )
A.(8,14] B.(14,18]
2.(2020·江西高三模擬)已知數(shù)列{an}滿足a1+2a2+3a3+…+nan=2n,設(shè)bn=,Sn為數(shù)列{bn}的前n項(xiàng)和.若Sn<t對(duì)任意n∈N*恒成立,則實(shí)數(shù)t的最小值為( )
A.1 B.2
3.(2019·河南鶴壁高中高三月考)已知等差數(shù)列{an}中,若a3,a11是方程x2-2x-1=0的兩根,單調(diào)遞減數(shù)列{bn}(n∈N*)通項(xiàng)公式為bn=λn2+a7n,則實(shí)數(shù)λ的取值范圍是( )
4.已知遞增的等差數(shù)列{an}的前n項(xiàng)和為Sn,a1·a7=5,a2+a6=6,對(duì)于n∈N*,不等式恒成立,則整數(shù)M的最小值是( )
A.1 B.2
C.3 D.4
5.(2020·蘇州陸慕高中高二期中)已知數(shù)列{bn}滿足,若數(shù)列{bn}是單調(diào)遞減數(shù)列,則實(shí)數(shù)λ的取值范圍是( )
6.(2020·湖南常德一中高三月考)設(shè){an}是無窮數(shù)列,若存在正整數(shù)k,使得對(duì)任意n∈N*,均有an+k>an,則稱{an}是間隔遞增數(shù)列,k是{an}的間隔數(shù),下列說法正確的是( )
A.公比大于1的等比數(shù)列一定是間隔遞增數(shù)列
B.已知an=n+,則{an}是間隔遞增數(shù)列
C.已知an=2n+(-1)n,則{an}是間隔遞增數(shù)列且最小間隔數(shù)是2
D.已知an=n2-tn+2020,若{an}是間隔遞增數(shù)列且最小間隔數(shù)是3,則4≤t<5
7.(2020·深圳實(shí)驗(yàn)學(xué)校高三月考)設(shè)Sn為等比數(shù)列{an}的前n項(xiàng)和,滿足a1=3,且a1,-2a2,4a3成等差數(shù)列,則下列結(jié)論正確的是( )
B.3Sn=6+an
C.若數(shù)列{an}中存在兩項(xiàng)ap,as使得,則的最小值為
9.在數(shù)列{an}中,則an=________;λan≥4n對(duì)所有n∈N*恒成立,則λ的取值范圍是________.
10.(2020·云南師大附中高三月考)已知數(shù)列{an}的前n項(xiàng)和為Sn,當(dāng)n∈N*時(shí),Sn=2n+1-n-2.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)證明:當(dāng)n∈N*時(shí),
11.已知數(shù)列{an},{bn},{cn}中,a1=b1=c1=1,cn=an+1-an,cn+1=·cn(n∈N*).
(1)若數(shù)列{bn}為等比數(shù)列,且公比q>0,且b1+b2=6b3,求q與an的通項(xiàng)公式;
(2)若數(shù)列{bn}為等差數(shù)列,且公差d>0,證明:c1+c2+…+cn<1+.