蔣玉潔
摘要:在數(shù)學教學過程中,教師一般會在教學中選擇“問題導思”來正確引導學生。在促進學生思考和不斷提問的環(huán)節(jié),合理提高了學生學習數(shù)學的能力。因此,教師必須高度重視以“問題串”作為正確引導學習和訓練的教學。尤其是在課程目標的設(shè)計、教學策略的選擇和教學計劃的控制上,教師必須對學生的疑問和教師的教學方法進行討論,通過有效的教學策略和正確的引導,才能對自身數(shù)學教學能力和學生自我學習做以優(yōu)化,希望可以給出一些有用的建議。
關(guān)鍵詞:小學生數(shù)學教學;問題串;對策
根據(jù)教育改革的基本要求、學生的班級要求及其教育理念等,研究與學生班級相一致的“問題串”學習的正確指導方法,以引導思維,對學生學習數(shù)學水平的提高,具有重要的現(xiàn)實意義。
一、設(shè)計課程目標,優(yōu)化教學效率
在數(shù)學教學環(huán)節(jié),大部分是針對課程目標的設(shè)計方案,而在以問題串為正確引導的數(shù)學教育環(huán)節(jié),教師應(yīng)以課程目標為標準設(shè)計教學方案。以問導思中,需要一個問題匹配一個關(guān)鍵的知識點,在問題與問題之間的設(shè)計方案的環(huán)節(jié)中,要執(zhí)行相同的總體目標,每個問題都可以有自己特定的意義。問題導思的實現(xiàn)對學生來說意義重大,有一定的引導作用。
例如,在關(guān)于“圓的認識”的教學環(huán)節(jié)中,基于圓的半徑特點的教學是本課程內(nèi)容的重點課程內(nèi)容。借助這里的一個課程目標,老師制定了“問題串”的設(shè)計方案,就可以對這一學方向進行關(guān)注。因此,為了更好更快地讓同學們增加對圓的半徑和外徑的認識,在此一道題的正確引導學習過程中,我為同學們制定了這樣一系列的難題:
1.在連接圓上一點和圓心的直線中,如果仔細觀察,這條直線有什么特點?
2.對于這條線段,學生通過課程預(yù)習知道它的名稱嗎?
3.怎么樣的線段才是圓的半徑呢?
4.在同一個圓內(nèi),你能畫多少條半經(jīng)線?
5.為什么圓的半徑有很多條線?
在基于明確目標的“以問導思”正確指導學習的環(huán)節(jié)中,不僅增加了學生的實踐活動和研究,而且使學生在從簡單的認識和思考下對圓的半徑有了更深的認識。根據(jù)一系列問題串進行正確的教育引導,提高了學生數(shù)學教學的興趣,有效增加了學生在數(shù)學教學中思考和探索的沖動,更有利于提高學習成績和學習效率。
二、把控問題難度,滿足學生要求
在小學課程中,教師要關(guān)注“問題串”的設(shè)計方案,充分考慮相對難度系數(shù)。尤其是對于不同的小學生,他們對問題的掌握和思考是不同的。因此,在這里教學的正確引導下,需要根據(jù)“問題串”的不同難度系數(shù)的設(shè)置來滿足不同學生的學習需求。
比如在“找規(guī)律”中,引導對盆花擺放規(guī)律進行觀察和學習,以便更好地讓學生在解決問題過程中達到更好的學習效率。我來為學生制定以下問題:
1.根據(jù)對照片的觀察,你發(fā)現(xiàn)了什么樣的規(guī)律?你可以用什么方法來表達這個規(guī)律?
2.根據(jù)這個規(guī)律,第16盆花是什么顏色的?第30盆花是什么顏色?
3.如果能按照這個規(guī)律再擺放,第120盆花和第121盆花的規(guī)律是什么?
這里在設(shè)計簡單問題串的過程中,從易到難的正確引導方法促進了學生的觀察、思考和交流。學生在處理數(shù)學問題的過程中,按照他們所看到的規(guī)律,進行推理,提升了學生的學習效率,滿足了不同學生的訓練需求,更能合理促進學生的理解和思考。
三、合理提出問題,引導學生思考
在設(shè)計這個問題串的過程中,最重要的目標是讓小學生在教學和學習的同時思考的緊密結(jié)合的基礎(chǔ)上提高效率。因此,在問題串的設(shè)計過程中,一定要注意正確引導,為學生考慮。在加強問題與問題之間聯(lián)系的過程中,可以更合理地提高學生考量的實際效果,此類問題的教學更有意義。
例如,在教學“倍數(shù)和因數(shù)”過程中,在設(shè)計程序的問題時,我首先從小學生的學習需求出發(fā),為學生提出了以下問題。 (1) 如果你現(xiàn)在有 12 個同樣大小的正方形,你能把它們拼成一個什么樣的形式? (2)關(guān)于這個正方形的總面積,可以用什么樣的乘法計算方法來表示?在第三個問題制定環(huán)節(jié),學生首先要從多方面探索和思考(1)(2)問題。學生處理完前兩個問題后,我提出了這個問題:(3)根據(jù)習題,思考乘法公式中各個數(shù)之間的聯(lián)系?在由淺入深的學習過程中,學生必須先了解前兩個常見問題,才能合理思考第三個問題。它激發(fā)了學生的思考,能夠更好地達到這種實踐效果。
四、結(jié)語
以問導思的教學方法在長期的教學實踐活動中起到了很好的實踐作用。就教育而言,這不僅是一種教學策略,更是一種教學藝術(shù)。在以問題串為正確引導的學習過程中,可以進一步增強學生的學習思維,促進教學與學習有一定的深度。針對當前教學存在的問題,正確引導,教師必須不斷研究,才能找到合理的方式,促進小學生的成長和發(fā)展。
參考文獻:
[1] 張強.如何引導小學生用不同思路解決數(shù)學問題[J].讀寫算(教育教學研究),2015(34):159.
[2] 甘泉.利用思維導圖提高小學生數(shù)學問題解決能力的實踐研究[J].課堂內(nèi)外(小學教研),2021(6):60.