• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看

      ?

      生物質(zhì)熱解過程中氮遷移轉(zhuǎn)化機(jī)理研究進(jìn)展

      2022-02-06 00:58:42黃思彪肖庭熠卿夢霞
      農(nóng)業(yè)工程學(xué)報 2022年19期
      關(guān)鍵詞:中氮含氮焦炭

      劉 亮,鄭 揚(yáng),黃思彪,肖庭熠,田 紅,卿夢霞

      生物質(zhì)熱解過程中氮遷移轉(zhuǎn)化機(jī)理研究進(jìn)展

      劉 亮,鄭 揚(yáng),黃思彪,肖庭熠,田 紅,卿夢霞※

      (長沙理工大學(xué)能源與動力工程學(xué)院,長沙 410114)

      生物質(zhì)熱解產(chǎn)物中熱解氣和熱解油具有較高能源利用價值,可作為替代燃料或化工原料,但伴隨熱解過程遷移至熱解氣/油中的氮元素不僅會影響其品質(zhì),熱解氣/油進(jìn)一步利用后也會污染大氣環(huán)境。該研究圍繞生物質(zhì)資源制備清潔能源的總目標(biāo),系統(tǒng)分析生物質(zhì)熱解過程中氮遷移轉(zhuǎn)化機(jī)理,重點(diǎn)論述氣相氮、液相氮和焦炭氮的生成與轉(zhuǎn)化機(jī)理。通過總結(jié)前人研究,得出生物質(zhì)熱解氣中的含氮物質(zhì)主要為HCN、NH3等,其中NH3主要來源于氨基酸熱解釋放的氨基以及HCN在焦炭表面的水解轉(zhuǎn)化;HCN主要來源于腈、含氮雜環(huán)等一次熱解產(chǎn)物的二次裂解;熱解油中的含氮物質(zhì)主要為含氮雜環(huán)、腈與酰胺,其中含氮雜環(huán)主要由部分氨基酸片段或氨基酸間的脫水縮合反應(yīng)產(chǎn)生;腈主要來源于氨基酸分子脫H2反應(yīng)以及酰胺脫H2O反應(yīng);酰胺主要來源于NH3與羧基的置換反應(yīng)。不同生物質(zhì)種類與熱解工況下氮的遷移轉(zhuǎn)化特性復(fù)雜多樣,生物質(zhì)種類以及熱解過程中的壓力、停留時間、升溫速率、溫度、熱解氣氛、粒徑、催化劑等因素均會影響熱解過程中氮的遷移轉(zhuǎn)化路徑,最終影響生物質(zhì)熱解氣/油中含氮物質(zhì)的組成及分布。進(jìn)一步提出生物質(zhì)熱解過程中氮排放控制未來研究方向,以期為實(shí)現(xiàn)農(nóng)村生物質(zhì)資源高效清潔利用提供參考。

      生物質(zhì);熱解;氣相氮;液相氮;焦炭氮;NO

      0 引 言

      生物質(zhì)具備分布廣泛、易于存儲運(yùn)輸、近零排放等優(yōu)點(diǎn),在世界能源戰(zhàn)略中的地位日益凸顯[1]。生物質(zhì)廢棄物轉(zhuǎn)化為生物能源主要有熱化學(xué)和生物化學(xué)2種途徑,其中,熱解技術(shù)可以減少土地資源占用且適用性廣,是生物質(zhì)資源化利用中最有前景的技術(shù)之一[2]。生物質(zhì)熱解產(chǎn)物中的熱解氣與熱解油可作為能源燃料或化工原料,其中熱解氣可直接作為高熱值可燃?xì)?;熱解油可直接作為液體燃料,其中含有吲哚、酰胺等也是重要的化工原料[3]。

      生物質(zhì)中蘊(yùn)含豐富的氮元素[4],其在熱解過程中會遷移至熱解氣/油等產(chǎn)物中,轉(zhuǎn)化為相應(yīng)的NO前驅(qū)物或其他含氮物質(zhì)。NO前驅(qū)物存在于熱解氣中,主要為HCN、NH3和HNCO,其中NH3被吸入肺后容易通過肺泡進(jìn)入血液,與血紅蛋白結(jié)合,破壞運(yùn)氧功能;HCN是一種劇毒氣體,嚴(yán)重危害人體健康。NO前驅(qū)物在空氣中燃燒又會轉(zhuǎn)化為NO,嚴(yán)重影響人體健康與環(huán)境安全[5]。而含氮物質(zhì)主要以含氮雜環(huán)、腈與酰胺等形式存在于熱解油中,其含量過高時會影響熱解油品質(zhì)[6]。部分含氮雜環(huán)高溫下易分解生成HCN與HNCO,腈具有生物毒性,且高溫下易分解生成HCN[7]。

      生物質(zhì)作為未來重要的清潔能源,掌握其熱解過程中N的遷移轉(zhuǎn)化路徑與規(guī)律,有助于控制其熱解過程中控制含氮物質(zhì)向熱解氣/油中的轉(zhuǎn)化,對生物質(zhì)能源的高效化、清潔化利用具有重要意義。

      1 生物質(zhì)中氮的賦存形態(tài)

      生物質(zhì)中氮元素主要賦存于蛋白質(zhì)中,約占生物質(zhì)中氮總量的60%~80%;有5%的氮以游離形態(tài)的氨基酸形式存在;其余則存在于核酸、葉綠素、酶、維生素和激素等物質(zhì)中[8]。不同生物質(zhì)中蛋白質(zhì)氮含量略有差異,如:稻殼與豆萁中蛋白質(zhì)氮含量高達(dá)92%~97%,木質(zhì)生物質(zhì)中為70%~77%,而麥秸、煙草中蛋白質(zhì)氮僅含約62%[9]。農(nóng)業(yè)廢棄物(麥稈、水稻秸稈、玉米秸稈)中的蛋白質(zhì)含量低于食品廢物(豬肉、牛肉、大豆),其熱解氣/油中含氮物質(zhì)相對更少[10-12]。

      生物質(zhì)中蛋白質(zhì)由多種氨基酸組成,不同生物質(zhì)中各氨基酸含量顯著不同,但相對占比基本相當(dāng)[10-12],可為生物質(zhì)含氮物質(zhì)模型中氨基酸種類與占比的初步確定提供依據(jù)。總體而言,谷氨酸(Glu)與天冬氨酸(Asp)為各生物質(zhì)中主要的氨基酸物質(zhì),而半胱氨酸(Cys)、組氨酸(His)、色氨酸(Trp)與甲硫氨酸(Met)在生物質(zhì)中的含量相對較低[10-12]。

      生物質(zhì)中各氨基酸由于R基的不同,其化學(xué)性質(zhì)也有所不同,導(dǎo)致熱解過程中反應(yīng)產(chǎn)物差異顯著。表1為常見生物質(zhì)中氨基酸的分類,主要可分為極性氨基酸、非極性氨基酸、芳香類氨基酸和雜環(huán)亞氨基酸4類[13]。極性氨基酸中谷氨酸(Glu)和天門冬氨酸(Asp)的含量較高,這些氨基酸具有長側(cè)鏈,易發(fā)生脫水縮合反應(yīng)而生成多種雜環(huán)化合物[14];而非極性氨基酸中亮氨酸(Leu)與丙氨酸(Ala)含量較高,這些氨基酸易發(fā)生脫水縮合反應(yīng)生成哌嗪二酮類化合物(Diketopiperazines,DKPs)[15];芳香類氨基酸中苯丙氨酸(Phe)熱解易產(chǎn)生芳香族化合物[16];雜環(huán)亞氨基酸中酪氨酸(Tyr)熱解主要產(chǎn)生酚類物質(zhì)[17]。不同氨基酸熱解過程中的反應(yīng)路徑及產(chǎn)物均有不同,生物質(zhì)的熱解反應(yīng)機(jī)理可通過選擇相應(yīng)的氨基酸構(gòu)建含氮模型化合物開展試驗(yàn)與模擬。

      表1 常見生物質(zhì)中各氨基酸的分類[13]

      2 生物質(zhì)熱解過程氮轉(zhuǎn)化機(jī)理

      2.1 NOx前驅(qū)物的生成機(jī)理

      生物質(zhì)熱解過程中氮元素會在氣相、液相與固相產(chǎn)物中遷移,轉(zhuǎn)變?yōu)橄鄳?yīng)的氣相氮、液相氮與焦炭氮。NO前驅(qū)物一方面直接來源于氣相氮,也可由液相氮與焦炭氮的進(jìn)一步轉(zhuǎn)化生成。

      2.1.1 氣相氮轉(zhuǎn)化為NO前驅(qū)物

      氣相氮主要有2個來源:一是生物質(zhì)中的蛋白質(zhì)等含氮物質(zhì)直接一次裂解生成;二是蛋白質(zhì)等一次裂解后形成的雜環(huán)化合物隨著溫度升高后繼續(xù)分解產(chǎn)生[18-19],其中NH3、HNCO、HCN是NO前驅(qū)物[20-21]。NO前驅(qū)物進(jìn)一步反應(yīng)后主要轉(zhuǎn)化為NO,但是在一定條件下也可以轉(zhuǎn)化為N2。氣相氮對NO的產(chǎn)生具有直接影響[22],因此,了解氣相氮的生成機(jī)理對生物質(zhì)的清潔利用具有重要意義。

      氣相氮在生物質(zhì)熱解轉(zhuǎn)化過程中的來源略有不同。如圖1所示,NH3主要有2個來源[23]:一是生物質(zhì)中氨基酸熱解釋放的氨基(路徑1),這是熱解初期NH3的主要來源;二是HCN與H2O在焦炭的催化作用下反應(yīng)生成NH3與CO[24-25](路徑6)。溫度的升高會促進(jìn)NH3的析出,導(dǎo)致停留在焦炭表面參與反應(yīng)的NH3減少[26],因此通過轉(zhuǎn)化的HCN也隨之減少。HCN主要有3個來源:一是生物質(zhì)一次熱解中生成的各種含氮雜環(huán)隨著溫度進(jìn)一步分解生成[24](路徑3);二是高溫下熱解油中腈類物質(zhì)二次裂解生成[7](路徑2);三是熱解油中的環(huán)酰胺進(jìn)一步分解生成[27]。隨熱解溫度升高,NH3和HCN的生成量均增加[18]。但不同升溫速率下其生成特性有所不同,低升溫速率下NH3是主要產(chǎn)物,而高升溫速率下HCN是唯一產(chǎn)物,在高溫環(huán)境下,生成NH3的主要途徑來自氣態(tài)HCN在焦炭催化作用下與氫自由基的反應(yīng),因此當(dāng)溫度逐漸升高時HCN會快速減少而NH3則快速增加[28]。HNCO化學(xué)性質(zhì)不穩(wěn)定、具有毒性、且缺少標(biāo)準(zhǔn)標(biāo)定光譜,因此難以分析其生成路徑以及生成量。有研究認(rèn)為,熱解生成的HNCO含量非常少,且易還原成HCN,所以對NO生成影響較小[19]。

      圖1 NOx前驅(qū)物的生成路徑[18-19]

      2.1.2 液相氮轉(zhuǎn)化為NO前驅(qū)物

      液相氮中含量較高的物質(zhì)有五元環(huán)氮、六元環(huán)氮、甲基吡啶、喹啉和多環(huán)含氮化合物,這些物質(zhì)主要來源于氨基酸熱解[29]。液相氮含量與組分特性受生物質(zhì)成分影響,如纖維素會促進(jìn)氮元素向液相氮中的遷移。此外,熱解條件也會改變液相氮的遷移轉(zhuǎn)化,如反應(yīng)溫度的升高則會導(dǎo)致液相氮向氣相氮的轉(zhuǎn)化,但不同溫度條件下其轉(zhuǎn)化產(chǎn)物差異明顯[30]。在400~800 ℃溫度范圍內(nèi),溫度升高會促進(jìn)生物油進(jìn)一步裂解生成HCN和NH3,但當(dāng)溫度超過600 ℃時,HCN的產(chǎn)率高于NH3[31]。當(dāng)反應(yīng)溫度超過1 000 ℃時,熱穩(wěn)定性強(qiáng)的含氮物質(zhì)易生成NH3,熱穩(wěn)定性弱的則生成HCN[32]。多環(huán)含氮化合物比單環(huán)含氮化合物具有更好的熱穩(wěn)定性,更易轉(zhuǎn)變?yōu)镹H3[33]。此外,熱解氣氛也會影響液相氮向氣相氮的轉(zhuǎn)化特性,如在較低氣體溫度及高水蒸汽條件下易生成NH3,而高氣體溫度和低水蒸汽條件下則易生成HCN[34]。

      2.1.3 焦炭氮轉(zhuǎn)化為NOx前驅(qū)物

      焦炭氮中的N元素主要以N-C、N-H鍵的形式存在[35]。當(dāng)熱解溫度達(dá)到900 ℃時,生物質(zhì)中仍有30%的N存在于焦炭中[18]。焦炭氮主要來源于氨基酸的分子內(nèi)脫水成環(huán)反應(yīng)、分子間脫水成環(huán)反應(yīng)[36-37]和蛋白質(zhì)側(cè)鏈間的相互反應(yīng)[38]。隨著熱解反應(yīng)的進(jìn)行,焦炭氮在高溫下會繼續(xù)裂解,轉(zhuǎn)化為氣相氮,此時,若反應(yīng)氣氛中有足夠的H自由基,焦炭氮會與H自由基反應(yīng)生成NH3[39](路徑5),反之則更傾向于生成HCN[40](路徑4)。在熱解過程中加入適量的H2O可生成H自由基,從而有助于降低HCN的生成[41]。

      2.2 熱解油中含氮物質(zhì)的生成機(jī)理

      生物質(zhì)中氮元素向熱解油中的遷移轉(zhuǎn)化機(jī)理如圖2所示,其主要產(chǎn)物為含氮雜環(huán)、腈與酰胺等物質(zhì)[6]。

      含氮雜環(huán)主要有吡啶、吡咯、DKPs、吲哚以及多種五、六元環(huán)化合物[26]。含氮雜環(huán)直接來源于蛋白質(zhì)的裂解,其中吡咯主要由脯氨酸和賴氨酸片段組成[42];DKPs通常由蛋白質(zhì)的2個氨基酸之間的脫水縮合反應(yīng)生成[15];吡咯、吡啶和哌啶類化合物也來源于蛋白質(zhì)片段的縮合反應(yīng)[42];吲哚主要由色氨酸和苯丙氨酸轉(zhuǎn)化而來[17](路徑1、2),其中色氨酸通過R基的斷裂可以直接生成吲哚,苯丙氨酸通過氨基與苯環(huán)環(huán)化反應(yīng)以及脫羧基反應(yīng)生成吲哚;含氮五元環(huán)或六元環(huán)主要通過部分具有長側(cè)鏈的氨基酸如谷氨酸、天冬氨酸等發(fā)生脫水縮合反應(yīng)生成[14](路徑6、7)。隨著熱解反應(yīng)的進(jìn)行,部分含氮雜環(huán)會隨溫度升高而裂解,而超過6個環(huán)的多環(huán)化合物,因具有較好的熱穩(wěn)定性,高溫時不易裂解[17]。

      腈類物質(zhì)主要通過氨基酸分子脫H2反應(yīng)以及酰胺脫H2O反應(yīng)生成(路徑9、10)[43-44]。其中,脫H2反應(yīng)能壘較高,反應(yīng)要吸收大量的熱,溫度升高會促進(jìn)腈類物質(zhì)的生成。但高溫下腈類物質(zhì)自身會發(fā)生裂解反應(yīng)[21],導(dǎo)致其最終生成量逐漸下降。

      酰胺類物質(zhì)主要由NH3與羧基通過置換反應(yīng)生成[43-44](路徑8)。生物質(zhì)熱解油中的酰胺多具有長鏈結(jié)構(gòu),長鏈酰胺隨著溫度的升高會裂解成短鏈酰胺[14]。高溫環(huán)境會促進(jìn)酰胺發(fā)生脫H2O反應(yīng)生成腈類物質(zhì)[43]。此外,高溫會促使熱解氣中NH3直接析出而不與羧基反應(yīng),降低酰胺類物質(zhì)生成[26]。

      圖2 生物質(zhì)熱解油中含氮組分的生成路徑[18-19]

      3 影響氮遷移路徑的因素

      不同生物質(zhì)組分及其中的氮含量與分布均有所不同,這必將導(dǎo)致不同生物質(zhì)熱解過程中含氮物質(zhì)的遷移轉(zhuǎn)化路徑不同。此外,熱解過程中的壓力、停留時間、升溫速率、熱解溫度、熱解氣氛、粒徑與催化劑等因素也會影響相應(yīng)的氮的遷移轉(zhuǎn)化特性[45]。表2給出了上述因素對N轉(zhuǎn)化的影響。

      3.1 生物質(zhì)種類

      生物質(zhì)主要由木質(zhì)素、纖維素、半纖維素、蛋白質(zhì)與淀粉等組分組成,其在熱解過程中極易發(fā)生相互反應(yīng)而影響N的遷移轉(zhuǎn)化,如糖類物質(zhì)易與蛋白質(zhì)或氨基酸發(fā)生美拉德反應(yīng)[46],促進(jìn)各種含氮化合物的生成,木質(zhì)素易與蛋白質(zhì)或氨基酸發(fā)生聚合反應(yīng)[47],促進(jìn)N在熱解油及熱解焦中的固定,這些相互作用均會影響氮的遷移路徑。由于不同生物質(zhì)中的各組分含量占比不同,相應(yīng)的熱解產(chǎn)物組成特性也存在差異。如餐廚垃圾熱解生成的氣相氮與液相氮高于農(nóng)林廢棄生物質(zhì)[4];農(nóng)林廢棄生物質(zhì)中棉稈熱解產(chǎn)生的焦炭氮含量低于水稻秸稈,但氣相氮含量高于玉米稈[48]。

      表2 不同因素對N轉(zhuǎn)化的影響

      生物質(zhì)中氨基酸與木質(zhì)素和纖維素等其他組分間的反應(yīng)也會影響熱解產(chǎn)物的組成與分布特性。天冬氨酸與纖維素、半纖維素或木質(zhì)素共熱解過程中,產(chǎn)生的NH3和HCN高于天冬氨酸單獨(dú)熱解;脯氨酸與纖維素、半纖維素或木質(zhì)素共熱解過程中,產(chǎn)生的HCN高于脯氨酸單獨(dú)熱解[47];木質(zhì)素、纖維素與氨基酸共熱解時發(fā)生的美拉德反應(yīng)減少了氮向生物油的轉(zhuǎn)化,從而提高熱解油的品質(zhì)[49];葡萄糖與苯丙氨酸、谷氨酸共熱解時均以聚合反應(yīng)為主,生成大量的含氮雜環(huán)[46];天冬酰胺與葡萄糖共熱解過程中,生成的HCN高于天冬酰胺單獨(dú)熱解,而生成的NH3和HNCO則會下降[50]。葡萄糖、果糖與甘氨酸共熱解時生成的HCN低于甘氨酸單獨(dú)熱解[51]。不同氨基酸與生物質(zhì)中其他典型組分間相互作用對控制HCN或NH3的排放以及提高熱解油的品質(zhì)具有一定作用。

      生物質(zhì)蛋白質(zhì)中不同的氨基酸間也存在相互作用,從而影響含氮物質(zhì)的遷移轉(zhuǎn)化過程。如谷氨酸與甘氨酸共熱解時焦炭氮增加;谷氨酸與亮氨酸共熱解時氣相氮減少,且主要為NH3;谷氨酸與脯氨酸共熱解時氣相氮中HCN含量高于NH3;谷氨酸與苯丙氨酸共熱解時HCN生成溫度降低且生成量顯著下降[52]。不同氨基酸間的相互作用各不相同,生物質(zhì)中蛋白質(zhì)的熱解反應(yīng)過程復(fù)雜,單一采用1種或幾種氨基酸作為含氮模型化合物并不能充分研究N的遷移轉(zhuǎn)化路徑。直接選用蛋白質(zhì)作為含氮模型化合物可探究各氨基酸在熱解過程中的相互作用,減小實(shí)際生物質(zhì)與模型化合物熱解特性間的差異。

      此外,生物質(zhì)中存在少量具有催化作用的礦物質(zhì),其對生物質(zhì)熱解過程中氮的遷移轉(zhuǎn)化也會產(chǎn)生影響[53-54]。生物質(zhì)中許多礦物元素都可以促進(jìn)焦炭氮向HCN的轉(zhuǎn)化[55];鉀、鈣或鐵可以改變氨基酸的初級分解反應(yīng)途徑,進(jìn)而改變DKPs的二級裂解途徑[55];鉀離子還可以促進(jìn)大分子液相氮發(fā)生重聚反應(yīng),增加氣相氮與焦炭氮的生成量[56]。

      3.2 升溫速率

      升溫速率的變化會改變生物質(zhì)熱解初始反應(yīng)路徑,從而影響熱解產(chǎn)物的組成及分布特性[57]。低升溫速率下,氣相氮的生成量較低,液相氮的生成量較高。升溫速率提高會促進(jìn)液相氮的裂解而導(dǎo)致氣相氮生成量增加[58],其中丙氨酸、亮氨酸、異亮氨酸、脯氨酸等熱解生成HCN的量均隨著升溫速率的提高而增加[59]。高升溫速率下焦炭表面孔隙更為豐富,有助于氣相氮快速析出,但熱解過程焦炭產(chǎn)率基本不變[60]。此外,升溫速率對生物質(zhì)不同典型組分熱解特性的影響存在差異,如較低的升溫速率下木質(zhì)素會促進(jìn)氣相氮的生成,而纖維素則促進(jìn)了液相氮的生成[61]??傮w而言,較高的升溫速率會促進(jìn)生物油裂解生成NO前驅(qū)物,低升溫速率條件下有助于熱解油的生成。

      3.3 熱解溫度

      生物質(zhì)熱解過程中熱解溫度的升高會促進(jìn)熱解油與熱解焦的二次裂解,促進(jìn)氣相氮的生成,但不同溫度下液相氮與焦炭氮的生成轉(zhuǎn)化特性顯著不同[62-63]。

      當(dāng)溫度低于500 ℃時,溫度升高促進(jìn)了液相氮的生成;當(dāng)溫度高于500 ℃時,溫度升高反而抑制了其生成[33]。低溫下,溫度升高促進(jìn)熱解反應(yīng)過程,一次熱解生成的液相氮含量不斷增加;當(dāng)溫度超過500 ℃時,生物油及其中的液相氮自身開始分解,且隨著溫度的升高其分解速率不斷加快[64-65]。由上述可知,高溫會促進(jìn)氣相氮的生成并減少生物油的產(chǎn)量,而低溫則會導(dǎo)致熱解不完全。因此,選擇合適的熱解溫度對提高熱解油產(chǎn)量以及減少氣相氮的產(chǎn)生具有重要意義。

      焦炭氮的生成量隨著溫度的升高也呈現(xiàn)出先上升后下降的趨勢,高溫會使焦炭氮轉(zhuǎn)化為氣相氮[66],但隨溫度升高焦炭中剩余的焦炭氮熱穩(wěn)定性逐漸上升[67]。焦炭中的N大多以吡咯啉-N、吡啶-N、季銨鹽-N和吡啶-N-O的形式存在。這些物質(zhì)的熱穩(wěn)定性排序?yàn)椋哼量┻?N<吡啶-N<季銨鹽-N<吡啶-N-O[66]。

      3.4 熱解氣氛

      熱解氣氛會影響生物質(zhì)熱解反應(yīng)過程,熱解過程中加入水蒸氣加入提高了H自由基含量而促進(jìn)NH3的產(chǎn)生,且提高了熱解氣中氫氣產(chǎn)率[68]。熱解氣氛中O2的加入與H2O具有相似的作用,在O2與H2O氣氛下,生物質(zhì)熱解過程中會生成大量的OH、O、H自由基,從而促進(jìn)HCN向NH3的轉(zhuǎn)化[69]。在麥稈的熱解過程中,發(fā)現(xiàn)CO2可促進(jìn)氮析出,增加N2的產(chǎn)量,同時減少焦炭氮與氣相氮的生成[70]。熱解過程中加入H2能夠促進(jìn)液相氮的裂解[71],而NH3的加入則會導(dǎo)致液相氮生成量大幅上升[72]。不同的反應(yīng)氣氛對生物質(zhì)熱解過程影響不同,合適的調(diào)控反應(yīng)氣氛可實(shí)現(xiàn)生物質(zhì)熱解過程中氮的選擇性控制。

      3.5 停留時間與壓力

      熱解反應(yīng)的停留時間對氮元素遷移轉(zhuǎn)化產(chǎn)生的影響可以分為2種:固相反應(yīng)物停留時間與氣相產(chǎn)物停留時間。在相同的工作溫度和加熱頻率下,隨著固相反應(yīng)物停留時間的縮短,焦炭氮含量降低,氣相氮含量增加。氣相產(chǎn)物停留時間一般不影響生物質(zhì)的一次熱解,但是會影響焦油氮的二次裂解。氣相產(chǎn)物停留時間越長,焦油氮的二次裂解反應(yīng)越劇烈,導(dǎo)致焦油氮向氣相氮發(fā)生顯著轉(zhuǎn)化[73-74]。

      壓力的大小通過影響氣相產(chǎn)物停留時間來影響熱解產(chǎn)物的二次裂解,壓力越大氣相氮與液相氮的停留時間越長,導(dǎo)致相應(yīng)的液相氮二次裂解反應(yīng)時間更長。此外,當(dāng)壓力逐漸升高時,生物質(zhì)熱解反應(yīng)活化能逐漸減小,熱解反應(yīng)會更劇烈[75]。

      3.6 粒 徑

      生物質(zhì)粒徑越大,熱解過程揮發(fā)分析出越慢,氣相氮的生成量大幅度增加,液相氮與焦炭氮的生成量減少[62]。生物質(zhì)的粒徑是作用于熱解過程中的升溫速率以及傳熱傳質(zhì)從而改變熱解產(chǎn)物[76]。較小的粒徑會促進(jìn)熱解反應(yīng)的進(jìn)行,增加氣相氮的生成。較大的粒徑會增加生物質(zhì)的加熱時間,導(dǎo)致含氮化合物長時間在低溫下熱解,生成大量的焦炭氮和不可冷凝氣體[77]。因此,適當(dāng)增大生物質(zhì)的粒徑有利于減少熱解過程中氣相氮的生成。

      3.7 催化劑

      催化劑的添加可以減少熱解所需時間,降低熱解所需溫度,對熱解過程中氮元素的遷移轉(zhuǎn)化具有顯著的影響[78]。

      Fe2O3、Co3O4和NiO均可以促進(jìn)液相氮的生成,其中Co3O4的促進(jìn)效果更顯著[79]。赤泥中的Fe3O4能夠降低生物質(zhì)熱解油中含氮化合物的含量[80]。CaCO3可減少熱解后剩余焦炭氮含量,增加氣相氮和液相氮的生成量[81]。CaO能促進(jìn)焦炭中氮的固定,降低反應(yīng)活化能并強(qiáng)烈抑制NH3和HCN的析出[82],相比于HCN,CaO對NH3的抑制作用更大[83]。鐵鹽類催化劑能夠促進(jìn)生物質(zhì)的熱解,增加焦炭氮的含量[84]。KCl能夠促進(jìn)焦炭氮的生成[56]。此外,近些年一些新型催化劑逐漸被廣泛使用,如生物炭以及分子篩催化劑。松木鋸末焦炭(PSC)催化劑可以有效地抑制高溫下焦油中大分子化合物的縮聚反應(yīng),從而減少液相氮的產(chǎn)生[71]。HZSN-5分子篩催化劑能夠促進(jìn)大分子液相氮的裂解,減少液相氮的生成[80]。

      不同催化劑的催化效果差異較大,選擇合適的催化劑對提高熱解油的質(zhì)量與產(chǎn)量,減少NO前驅(qū)物的生成具有重要作用。

      4 結(jié) 論

      本文針對生物質(zhì)熱解過程中氮元素的遷移轉(zhuǎn)化機(jī)理對前人的研究進(jìn)行了歸納與總結(jié),對熱解過程中NO前驅(qū)物以及熱解油中典型含氮物質(zhì)的產(chǎn)生機(jī)制進(jìn)行了分析并結(jié)合相應(yīng)的機(jī)理圖進(jìn)行解釋說明;對生物質(zhì)種類、升溫速率、熱解溫度、熱解氣氛、停留時間、壓力、粒徑與催化劑等外部因素對熱解過程中氮元素遷移的影響進(jìn)行了歸納與總結(jié),具體結(jié)論如下。

      1)生物質(zhì)熱解過程中氮元素會遷移至三相產(chǎn)物中。其中,熱解氣中的含氮物質(zhì)主要是NH3與HCN;熱解油中的含氮物質(zhì)主要是含氮雜環(huán)、腈與酰胺。

      2)氣相氮中NH3主要來源于氨基酸熱解釋放的氨基以及HCN在焦炭表面的水解轉(zhuǎn)化,HCN主要來源于腈、含氮雜環(huán)等一次熱解產(chǎn)物的二次裂解。

      3)液相氮中含氮雜環(huán)主要由部分氨基酸的片段以及氨基酸間的脫水縮合生成。腈主要來源于氨基酸分子脫H2反應(yīng)以及酰胺的脫H2O反應(yīng)。酰胺主要由NH3與羧基的置換反應(yīng)生成。

      4)生物質(zhì)種類以及熱解反應(yīng)參數(shù)如升溫速率、熱解溫度、熱解氣氛、停留時間、壓力、粒徑、催化劑等均會影響氮的遷移路徑,最終改變熱解產(chǎn)物中氮的組成與分布特性。

      5)有效控制生物質(zhì)中氮元素向熱解氣與熱解油中的遷移轉(zhuǎn)化是實(shí)現(xiàn)其高效清潔燃燒的重要問題之一。但現(xiàn)階段煙氣中的NO常采用尾部脫除技術(shù),無法從根源上減少污染物的排放;通過總結(jié)現(xiàn)有研究發(fā)現(xiàn)熱解油中含氮組分多樣,且不同含氮物質(zhì)的遷移轉(zhuǎn)化特性存在差異,難以通過單一控制某一參數(shù)實(shí)現(xiàn)液相氮的控制。因此,探究生物質(zhì)熱解過程中氣相氮的遷移轉(zhuǎn)化路徑以減少NO前驅(qū)物的生成,通過控制熱解參數(shù)、生物質(zhì)摻混熱解等調(diào)控減少熱解油中含氮物質(zhì)的生成是未來生物質(zhì)熱解技術(shù)需關(guān)注的重點(diǎn)方向。

      [1] 單明. 生物質(zhì)能開發(fā)利用現(xiàn)狀及挑戰(zhàn)[J]. 可持續(xù)發(fā)展經(jīng)濟(jì)導(dǎo)刊,2022(4):48-49.

      Shan Ming. Current situation and challenge of biomass energy development and utilization[J]. China Sustainability Tribune, 2022(4): 48-49.(in Chinese with English abstract)

      [2] 王芳,劉曉風(fēng),陳倫剛,等. 生物質(zhì)資源能源化與高值利用研究現(xiàn)狀及發(fā)展前景[J]. 農(nóng)業(yè)工程學(xué)報,2021,37(18):219-231.

      Wang Fang, Liu Xiaofeng, Chen Lungang, et al. Research status and development prospect of energy and high value utilization of biomass resources[J]. Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE), 2021, 37(18): 219-231. (in Chinese with English abstract)

      [3] 李志成,王輝輝,買文鵬,等. 酰胺的合成方法綜述[J]. 廣東化工,2013,40(3):62-63,90.

      Li Zhicheng, Wang Huihui, Mai Wengpeng, et al. Synthetic methods of the amide[J]. Guangdong Chemical Industry, 2013, 40(3): 62-63, 90. (in Chinese with English abstract)

      [4] Qing M X, Long Y T, Luo Y D, et al. Insights into the slagging process during the utilization of food waste: Ash-making temperature and additives[J]. Chemical Engineering Science, 2022, 255: 117680.

      [5] 仉利,姚宗路,趙立欣,等. 生物質(zhì)熱解制備高品質(zhì)生物油研究進(jìn)展[J]. 化工進(jìn)展,2021,40(1):139-150.

      Zhang Li, Yao Zonglu, Zhao Lixin, et al. Research progress on preparation of high quality bio-oil by pyrolysis of biomass[J]. Chemical Industry and Engineering Progress, 2021, 40(1): 139-150. (in Chinese with English abstract)

      [6] 董長青,楊勇平,高攀,等. 生物質(zhì)熱解過程中含氮模型化合物研究進(jìn)展[J]. 環(huán)境污染與防治,2019,41(1):110-117.

      Dong Changqin, Yang Yongping, Gao Pan, et al. The mechanism of nitrogen conversion during the pyrolysis of biomass: A review of model compounds study[J]. Environmental Pollution and Control, 2019, 41(1): 110-117. (in Chinese with English abstract)

      [7] 龔千代. 甘氨酸與DKP高溫?zé)峤夂a(chǎn)物生成機(jī)理研究[D]. 長沙:長沙理工大學(xué),2017.

      Gong Qiandai. Mechanistic study on the generation of nitrogen-containing products from high-temperature pyrolysis of glycine and DKP[D]. Changsha: Changsha University of Technology, 2017. (in Chinese with English abstract)

      [8] Yuan S, Chen X, Li W, et al. Nitrogen conversion under rapid pyrolysis of two types of aquatic biomass and corresponding blends with coal[J]. Bioresource Technology, 2011, 102(21): 10124-10130.

      [9] 王鵬,朱立軍,尚軍,等. 國內(nèi)外不同卷煙總氮、蛋白質(zhì)氮、總植物堿氮的差異分析[J]. 湖北農(nóng)業(yè)科學(xué),2011,50(7):1406-1407,1410.

      Wang Peng, Zhu Lijun, Shang Jun, et al. The variation analysis of total nitrogen, proteinnitrogen, nicotine nitrogen contents in different cigarettes[J]. Hubei Agricultural Science, 2011, 50(7): 1406-1407, 1410. (in Chinese with English abstract)

      [10] 陳超,唐潔,姜濤,等. 不同類型玉米氨基酸組成及含量的比較分析[J]. 糧食儲藏,2020,49(4):38-41.

      Chen Chao, Tang Jie, Jiang Tao, et al. Comparative analysis of amino acid composition and content in different maize[J]. Grain Storage, 2020, 49(4): 38-41. (in Chinese with English abstract)

      [11] 歐行奇, 李新華, 朱彬. 甘薯莖尖與常見葉菜類蔬菜氨基酸含量及組成的比較分析[J]. 氨基酸和生物資源,2007,29(3):5.

      Ou Xingqi, Li Xinhua, Zhu Bin. Comparison of amino acid content and composition between vegetable sweet potato tips and leaf vegetables[J]. Amino Acids & Biological Resources, 2007, 29(3): 5. (in Chinese with English abstract)

      [12] Dhyani V, Bhaskar T. A comprehensive review on the pyrolysis of lignocellulosic biomass[J]. Renewable Energy, 2018, 129: 695-716.

      [13] 陳德民. 生物質(zhì)中氮賦存形式與熱解過程氮遷移轉(zhuǎn)化實(shí)驗(yàn)研究[D]. 武漢:華中科技大學(xué),2016.

      Chen Demin. Experimental Study on Nitrogen Fugitive Forms in Biomass and Nitrogen Migration Transformation during Pyrolysis[D]. Wuhan: Huazhong University of Science and Technology, 2016. (in Chinese with English abstract)

      [14] Kang P, Qin W, Fu Z Q, et al. Generation mechanism of NOand N2O precursors (NH3and HCN) from aspartic acid pyrolysis: A DFT study[J]. International Journal of Agricultural and Biological Engineering, 2017, 99: 169-176.

      [15] Fabbri D, Adamiano A, Falini G, et al. Analytical pyrolysis of dipeptides containing proline and amino acids with polar side chains. Novel 2,5-diketopiperazine markers in the pyrolysates of proteins[J]. Journal of Analytical & Applied Pyrolysis, 2012, 95: 145-155.

      [16] 田紅,何正文,劉亮,等. 基于量子化學(xué)理論的苯丙氨酸熱解過程中NO前驅(qū)體生成機(jī)理研究[J]. 太陽能學(xué)報,2021, 42(10): 317-323.

      Tian Hong, He Zhengwen, Liu Liang, et al. Study on formation mechanism of NOprecursor in pyrolysis process of phenylalanine based on quantum chemidtry theory[J]. Acta Energiae Solaris Sinica, 2021, 42(10): 317-323. (in Chinese with English abstract)

      [17] Kim Y M, Han T U, Lee B, et al. Analytical pyrolysis reaction characteristics of Porphyratenera[J]. Algal Research, 2018, 32: 60-69.

      [18] 柏繼松. 生物質(zhì)燃燒過程氮和硫的遷移、轉(zhuǎn)化特性研究[D]. 杭州:浙江大學(xué),2012:49.

      Bai Jisong. Migration and Transformation Characteristics of Nitrogen and Sulfur During Biomass Combustion[D]. Hangzhou: Zhejiang University, 2012: 49. (in Chinese with English abstract)

      [19] Zhou J Q, Gao P, Dong C Q, et al. TG-FTIR analysis of nitrogen conversion during straw pyrolysis: A model compound study[J]. Journal of Fuel Chemistry and Technology, 2015, 43(12): 1427-1432.

      [20] Wang X, Tang X H, Yang X Y. Pyrolysis mechanism of microalgae Nannochloropsis sp. based on model compounds and their interaction[J]. Energy Conversion and Management, 2017, 140: 203-210.

      [21] 劉亮,龍雨田,卿夢霞,等. 餐廚垃圾典型組分的熱解產(chǎn)物分布特性[J]. 可再生能源,2022,41(3):11-16.

      Liu Liang, Long Yutian, Qing Mengxia, et al. Distribution characteristics of pyrolysis products of typical kitchen waste fractions[J]. Renewable Energy, 2022, 41(3): 11-16. (in Chinese with English abstract)

      [22] Li D, Gao S Q, Song W L, et al. NO reduction in decoupling combustion of biomass and biomass-coal blend[J]. Energy & Fuels, 2009, 23(1): 224-228.

      [23] Ren Q Q, Zhao C S. NOand N2O precursors from biomass pyrolysis: Role of cellulose, hemicellulose and lignin[J]. Environmental Science & Technology, 2013, 47(15): 8955-8961.

      [24] Kang P, Qin W, Fu Z Q, et al. Generation mechanism of NOand N2O precursors (NH3and HCN) from aspartic acid pyrolysis: A DFT study[J]. International Journal of Agricultural and Biological Engineering, 2017, 99: 169-176.

      [25] 周建強(qiáng),高攀,董長青,等. 固體生物質(zhì)燃燒中氮氧化物產(chǎn)生機(jī)理綜述[J]. 熱力發(fā)電,2018,47(12):1-9,16.

      Zhou Jianqiang, Gao Pan, Dong Changqin, et al. Formation mechanism of nitrogen oxides during solid biomass fuel burning:A review[J]. Thermoelectric Power Generation, 2018, 47(12): 1-9, 16. (in Chinese with English abstract)

      [26] 展新,吳文廣,崔國民. 生物質(zhì)氣化過程中熱解焦油的生成及其均相轉(zhuǎn)化機(jī)理[J]. 能源研究與信息,2019,35(3):125-133.

      Zhan Xin, Wu Wenguang, Cui Guoming. Formation and homogeneous conversion mechanism of biomass pyrolysis tar[J]. Energy Research and Information, 2019, 35(3): 125-133. (in Chinese with English abstract)

      [27] Hansson K M, Samuelsson J, Tullin C, et al. Formation of HNCO, HCN, and NH3from the pyrolysis of bark and nitrogen-containing model compounds[J]. Combustion and Flame, 2004, 137(3): 265-277.

      [28] Gong Q D, Liu L, Tian H, et al. Theoretic and experiment study on nitrogen-containing products of glycine during high temperature pyrolysis[J]. Acta Energiae Solaris Sinica, 2019, 4: 1107-1113.

      [29] Chen H F, Tomoaki N, Kunio Y. Characteristics of tar, NOprecursors and their absorption performance with different scrubbing solvents during the pyrolysis of sewage sludge[J]. Applied Energy, 2011, 88(12): 5032-5041.

      [30] 李小華,焦麗華,樊永勝,等. 纖維素木聚糖和木質(zhì)素含量對生物質(zhì)熱解特性及產(chǎn)物的影響[J]. 農(nóng)業(yè)工程學(xué)報,2015,31(13):236-243.

      Li Xiaohua, Jiao Lihua, Fan Yongshen, et al. Effects of cellulose, xylan and lignin content on biomass pyrolysis characteristics and product distribution[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(13): 236-243. (in Chinese with English abstract)

      [31] Zhao C, Yan Z Z, Yang S, et al. Affecting the migration of nitrogen elements during coal pyrolgsis[J]. Applied Chemical Industry, 2018, 47(4): 208-211.

      [32] Wei F, Cao J P, Zhao X Y, et al. Formation of aromatics and removal of nitrogen in catalytic fast pyrolysis of sewage sludge: A study of sewage sludge and model amino acids[J]. Fuel, 2018, 218: 148-154.

      [33] Neves D, Thunman H, Matos A, et al. Characterization and prediction of biomass pyrolysis products[J]. Progress in Energy & Combustion Science, 2011, 37(5): 611-630.

      [34] Archan G, Scharier R, Leonhard P, et al. Detailed NOprecursor measurements within the reduction zone of a novel small-scale fuel flexible biomass combustion technology[J]. Fuel, 2021, 302(15): 113-121.

      [35] 周賽,劉虎,于鵬飛,等. 基于密度泛函理論的CO2氧化含氮焦炭的機(jī)理研究[J]. 燃料化學(xué)學(xué)報,2022,50(1):19-27.

      Zhou Sai, Liu Hu, Yu Pengfei, et al. Study on the mechanism of oxidation of nitrogen-containing char by CO2based on density functional theory[J]. Journal of Fuel Chemistry and Technology, 2022, 50(1): 19-27. (in Chinese with English abstract)

      [36] Kibet J K, Khachatryan L, Dellinger B. Molecular products from the thermal degradation of glutamic acid[J]. Journal of Agricultural and Food Chemistry, 2013, 61(32): 7696-7704.

      [37] Hao J, Guo J, Ding L, et al. TG-FTIR, Py-two-dimensional GC-MS with heart-cutting and LC-MS/MS to reveal hydrocyanic acid formation mechanisms during glycine pyrolysis[J]. Journal of Thermal Analysis and Calorimetry 2014. 115(1): 667-673.

      [38] 涂德浴,潘慶民,張傳佳,等. 生物質(zhì)成型燃料熱解半焦產(chǎn)率及理化特性[J]. 農(nóng)業(yè)工程學(xué)報,2019,35(21):229-234.

      Tu Deyu, Pan Qingmin, Zhang Chuanjia, et al. Yield and physicochemical properties of pyrolysis char of biomass briquetting pellets[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(21): 229-234. (in Chinese with English abstract)

      [39] Li C Z, Tan L L. Formation of NOand SOprecursors during the pyrolysis of coal and biomass. Part III. Further discussion on the formation of HCN and NH3during pyrolysis[J]. Fuel, 2000, 79(15): 1899-1906.

      [40] Chen H, Wang Y, Xu G, et al. Fuel-N evolution during the pyrolysis of industrial biomass wastes with high nitrogen content[J]. Energies, 2012, 5(12): 5418-5438.

      [41] Tian F J, Yu J, Mckenzie L J, et al. Conversion of fuel-N into HCN and NH3during the pyrolysis and gasification in steam: A comparative study of coal and biomassextdagger[J]. Energy and Fuels, 2007, 21(2): 517-521.

      [42] Debono O, Villot A. Nitrogen products and reaction pathway of nitrogen compounds during the pyrolysis of various organic wastes[J]. Journal of Analytical & Applied Pyrolysis, 2015, 114: 222-234.

      [43] Kim S W, Koo B S, Lee D H. A comparative study of bio-oils from pyrolysis of microalgae and oil seed waste in a fluidized bed[J]. Bioresource Technology, 2014, 162: 96-102.

      [44] 米鐵,徐玲娜,袁羽書,等. 生物質(zhì)熱解過程中焦油形成機(jī)理的研究[J]. 華中師范大學(xué)學(xué)報(自然科學(xué)版),2013,47(5):671-675.

      Mi Tie, Xu Linna, Yuan Yushu, et al. Study of tar formation and variation mechanism for biomass pyrolysis gasification[J]. Journal of Huazhong Normal University (Natural Science Edition), 2013, 47(5): 671-675. (in Chinese with English abstract)

      [45] 胡二峰,趙立欣,吳娟,等. 生物質(zhì)熱解影響因素及技術(shù)研究進(jìn)展[J]. 農(nóng)業(yè)工程學(xué)報,2018,34(14):212-220.

      Hu Erfeng, Zhao Lixin, Wu Juan, et al. Research advance on influence factors and technologies of biomass pyrolysis[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(14): 212-220. (in Chinese with English abstract)

      [46] 宮夢,方陽,陳偉,等. 纖維素組分對氨基酸熱解的影響[J]. 化工學(xué)報,2020,71(5):2312-2319.

      Gong Meng, Fang Yang, Chen Wei, et al. Effect of cellulose composition on amino acids pyrolysis[J]. Journal of Chemical Engineering, 2020, 71(5): 2312-2319. (in Chinese with English abstract)

      [47] 吳丹焱,辛善志,劉標(biāo),等. 基于木質(zhì)素部分脫除及其含量對生物質(zhì)熱解特性的影響[J]. 農(nóng)業(yè)工程學(xué)報,2018,34(1):193-197.

      Wu Danyan, Xin Shanzhi, Liu Biao, et al. Influence of lignin content on pyrolysis characteristics of biomass based on part of lignin removal[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(1): 193-197. (in Chinese with English abstract)

      [48] 于雪斐,伊松林,馮小江,等. 熱解條件對農(nóng)作物秸稈熱解產(chǎn)物得率的影響[J]. 北京林業(yè)大學(xué)學(xué)報,2009,31(S1):174-177.

      Yu Xuefei, Yi Songlin, Feng Xiaojiang, et al. Effects of pyrolytic conditions on pyrolysis yield of crop stalks[J]. Journal of Beijing Forestry University, 2009, 31(S1): 174-177. (in Chinese with English abstract)

      [49] Chen H, Xie Y, Chen W, et al. Investigation on co-pyrolysis of lignocellulosic biomass and amino acids using TG-FTIR and Py-GC/MS[J]. Energy Conversion and Management, 2019, 196: 320-329.

      [50] Tian H, Wei Y Y, Huang Z J, et al. The nitrogen transformation and controlling mechanism of NH3and HCN conversion during the catalytic pyrolysis of amino acid[J]. Fuel, 2023, 333(1): 126215.

      [51] Hao J, Guo J, Xie F, et al. Correlation of hydrogen cyanideformation with 2, 5-diketopiperazine and nitrogen heterocycliccompounds from co-pyrolysis of glycine and glucose/fructose[J]. Energy& Fuels, 2013, 27(8): 4723-4728.

      [52] 周建強(qiáng). 麥稈熱解過程中有機(jī)氮轉(zhuǎn)化機(jī)理研究[D]. 北京:華北電力大學(xué),2019.

      Zhou Jianqiang. Study on the Mechanism of Organic Nitrogen Conversion During Straw Pyrolysis[D]. Beijing: North China University of Electric Power, 2019. (in Chinese with English abstract)

      [53] Liu Z, Balasubramanian R. A comparative study of nitrogen conversion during pyrolysis of coconut fiber, its corresponding biochar and their blends with lignite[J]. Bioresour Technol, 2014, 151: 85-90.

      [54] Ohshima Y, Tsubouchi N, Ohtsuka Y. Iron-catalyzed nitrogen removal as N2from PAN-derived activated carbon[J]. Applied Catalysis B: Environmental, 2012, 111: 614-620.

      [55] Ren Q Q, Zhao C S. NOand N2O precursors from biomass pyrolysis: Role of cellulose, hemicellulose and lignin.[J]. Environmental Science & Technology, 2013, 47(15): 170-174.

      [56] 譚洪,王樹榮,駱仲泱,等. 金屬鹽對生物質(zhì)熱解特性影響試驗(yàn)研究[J]. 工程熱物理學(xué)報,2005,26(5):742-744.

      Tan Hong, Wang Shurong, Luo Zhongyang, et al. Influence of metallic salt on biomass flash pyrolysis characteristics[J]. Journal of Engineering Thermophysics, 2005, 26(5): 742-744. (in Chinese with English abstract)

      [57] Li J, Liu Y W, Shi J Y, et al. The investigation of thermal decomposition pathways of phenylalanine and tyrosine by TG-FTIR[J]. Thermochimica Acta, 2007, 467(1): 20-29.

      [58] Tan L L, Li C Z. Formation of NOand SOprecursors during the pyrolysis of coal and biomass. Part II. Effects of experimental conditions on the yields of NOand SOprecursors from the pyrolysis of a Victorian brown coal[J]. Fuel, 2000, 79(15): 1891-1897.

      [59] 郝菊芳,王洪波,曹得坡,等. 升溫速率對氨基酸裂解生成含氮?dú)怏w的影響研究[J]. 化學(xué)研究與應(yīng)用,2013,25(7):981-986.

      Hao Jufang, Wang Hongbo, Cao Depo, et al. Effect of heating rate on the formation of nitrogenous gases from the pyrolysis of amino acids[J]. Chemical Research and Applications, 2013, 25(7): 981-986. (in Chinese with English abstract)

      [60] 李永玲,吳占松. 秸稈熱解特性及熱解動力學(xué)研究[J]. 熱力發(fā)電,2008,37(7):1-5.

      Li Yongling, Wu Zhansong. Study on charicters and dynamics concerning pyrolysis of corn stalks[J]. Thermal Power Generation, 2008, 37(7): 1-5. (in Chinese with English abstract)

      [61] Chen H P, Si Y H, Chen Y Q, et al. NOprecursors from biomass pyrolysis: Distribution of amino acids in biomass and Tar-N during devolatilization using model compounds[J]. Fuel, 2017, 187: 367-375.

      [62] 劉嘯天,于潔,孫路石. 溫度與粒徑對生物質(zhì)熱解特性影響實(shí)驗(yàn)研究[J]. 能源研究與管理,2022(1):57-64.

      Liu Xiaotian, Yu Jie, Sun Lushi. Experimental study on effects of temperature and particle size on biomass pyrolysis characteristics[J]. Energy Research and Management, 2022(1): 57-64. (in Chinese with English abstract)

      [63] 楊選民,王雅君,邱凌,等. 溫度對生物質(zhì)三組分熱解制備生物炭理化特性的影響[J]. 農(nóng)業(yè)機(jī)械學(xué)報,2017,48(4):284-290.

      Yang Xuanming, Wang Yajun, Qiu Ling, et al. Effect of temperature on physicochemical properties of biochar prepared by pyrolysis of three components of biomass[J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(4): 284-290. (in Chinese with English abstract)

      [64] Kathirvel B, Susaimanickam A, Eldon R, et al. Effect of reaction temperature on the conversion of algal biomass to bio-oil and biochar through pyrolysis and hydrothermal liquefaction - science direct[J]. Fuel, 2021, 285(1): 119106.

      [65] Li J, Tian Y Y, Zong P J, et al. Thermal cracking behavior, products distribution and char/steam gasification kinetics of seawater spirulina by TG-FTIR and Py-GC/MS[J]. Renewable Energy, 2020, 145: 1761-1771.

      [66] Xu, S Y, Chen, J F, Peng, H Y, et al. Effect of biomass type and pyrolysis temperature on nitrogen in biochar, and the comparison with hydrochar[J]. Fuel, 2021, 291(1): 120128.

      [67] 李飛躍,汪建飛,謝越,等. 熱解溫度對生物質(zhì)炭碳保留量及穩(wěn)定性的影響[J]. 農(nóng)業(yè)工程學(xué)報,2015,31(4):266-271.

      Li Feiyue, Wang Jianfei, Xie Yue, et al. Effects of pyrolysis temperature on carbon retention and stability of biochar[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(4): 266-271. (in Chinese with English abstract)

      [68] 付鵬. 生物質(zhì)熱解氣化氣相產(chǎn)物釋放特性和焦結(jié)構(gòu)演化行為研究[D]. 武漢:華中科技大學(xué),2010.

      Fu Peng. Study on the Release Characteristics and Coke Structure Evolution Behavior of Gas Phase Products From Biomass Pyrolysis Gasification[D]. Wuhan: Huazhong University of Science and Technology, 2010. (in Chinese with English abstract)

      [69] 詹昊,張曉鴻,陰秀麗,等. 生物質(zhì)熱化學(xué)轉(zhuǎn)化過程含N污染物形成研究[J]. 化學(xué)進(jìn)展,2016,12:1880-1890.

      Zhan Hao, Zhang Xiaohong, Yin Xiuli, et al. Formation of nitrogenous pollutants during biomass thermo-chemical conversion[J]. Progress in Chemistry, 2016, 12: 1880-1890. (in Chinese with English abstract)

      [70] 洪文鵬,張鈺,姜海峰,等. CO2氣氛耦合粉煤灰催化生物質(zhì)熱解生油特性分析[J]. 農(nóng)業(yè)工程學(xué)報,2022,38(4):235-241.

      Hong Wenpeng, Zhang Yu, Jiang Haifeng, et al. Characteristics of bio-oil generated from biomass pyrolysis catalyzed by coal fly ash under CO2atmosphere[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2022, 38(4): 235-241. (in Chinese with English abstract)

      [71] Li J, Tian Y Y, Qiao Y Y, et al. Synergistic effect of hydrogen atmosphere and biochar catalyst on tar decomposition and methane-rich gas production during biomass pyrolysis[J]. Fuel, 2022, 330(15): 125680.

      [72] Zheng Y W, Li D H, Wang J D, et al. Ammonia (NH3)/ nitrogen (N2) torrefaction pretreatment of waste biomass for the production of renewable nitrogen-containing chemicals via catalytic ammonization pyrolysis: Evolution of fuel-N under a N2/NH3-rich atmosphere[J]. Journal of the Energy Institute. 2022, 102: 143-159.

      [73] 馬承榮,肖波,楊家寬,等. 生物質(zhì)熱解影響因素研究[J]. 環(huán)境技術(shù),2005,5:16-18,41.

      Ma Chengrong, Xiao Bo, Yang Jiakuan, et al. Study on the effects of operating conditions of biomass pyrolysis[J]. Environmental Technology, 2005, 5: 16-18, 41. (in Chinese with English abstract)

      [74] Rolando Z, Kridter S, Emilia B. Rapid pyrolysis of agricultural residues at high temperature[J]. Biomass and Bioenergy, 2002, 23(5): 357-366.

      [75] Cetin E, Gupta R, Moghtaderi B. Effect of pyrolysis pressure and heating rate on radiata pine char structure and apparent gasification reactivity[J]. Fuel, 2004, 84(10): l328-l334.

      [76] 馬培勇,孫亞棟,邢獻(xiàn)軍,等. 粒徑對棉稈成型顆粒熱解動力學(xué)特性的影響[J]. 太陽能學(xué)報,2016,37(5):1308-1314.

      Ma Peiyong, Sun Yadong, Xing Xianjun, et al. Effect of particle size on pyrolysis kinetic characteristics of cotton stalk briquette[J]. Acta Energiae Solaris Sinica, 2016, 37(5): 1308-1314. (in Chinese with English abstract)

      [77] 何明明. 生物質(zhì)快速熱解生物油產(chǎn)率和組分的影響因素[J].木材加工機(jī)械,2010,21(1):38-41.

      He Mingming. Influnce factors of biomass fast pyrolysis bio-oil' production rate and composition[J]. Wood Processing Machinery, 2010, 21(1): 38-41. (in Chinese with English abstract)

      [78] 楊延璐,許成君,仝坤,等. 污泥熱解催化劑的研究進(jìn)展[J]. 化工環(huán)保,2020,40(6):580-585.

      Yang Yanlu, Xu Chengjun, Tong Kun, et al. Research progresses on catalysts for sludge pyrolysis[J]. Environmental Protection of Chemical Industry, 2020, 40(6): 580-585. (in Chinese with English abstract)

      [79] 何正文. 堿(土)金屬對生物質(zhì)熱解過程中含氮化合物轉(zhuǎn)化過程的影響[D]. 長沙:長沙理工大學(xué),2021.

      He Zhengwen. Effect of Alkali (earth) Metals on The Conversion Process of Nitrogenous Compounds in Biomass Pyrolysis[D]. Changsha: Changsha University of Science and Technology, 2021. (in Chinese with English abstract)

      [80] Mohamed H A, Nuuo B, Zeid A A, et al. Transforming red mud into an efficient acid-base catalyst by hybridization with mesoporous ZSM-5 for co-pyrolysis of biomass and plastics[J]. Chemical Engineering Journal, 2022, 430: 132965.

      [81] 孫振杰,黃思思,時號,等. 生物質(zhì)炭負(fù)載鎳鈣催化劑催化裂解/重整生物質(zhì)熱解氣研究[J]. 農(nóng)業(yè)工程學(xué)報,2021,37(17):211-217.

      Sun Zhenjie, Huang Sisi, Shi Hao, et al. Investigation into the catalytic cracking/reforming of biomass pyrolysis gas by biochar supported Ni-Ca catalyst[J]. Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE), 2021, 37(17): 211-217. (in Chinese with English abstract)

      [82] 惠吉成. CaO對污泥中蛋白質(zhì)熱解生成NO前驅(qū)體的脫除機(jī)理研究[D]. 吉林:東北電力大學(xué),2019.

      Hui Jicheng. Study on the Removal Mechanism of CaO to Protein Pyrolysis to NOPrecursors in Sludge[D]. Jilin: Northeast Dianli University, 2019.

      [83] Guo S, Liu T C, Hui J C, et al. Effects of calcium oxide on nitrogen oxide precursor formation during sludge protein pyrolysis[J]. Energy, 2019, 189: 213-217.

      [84] Xia S W, Yang H P, Lei S S, et al. Iron salt catalytic pyrolysis of biomass: Influence of iron salt type[J]. Energy, 2022, 262: 125415.

      Review of nitrogen migration and transformation during biomass pyrolysis

      Liu Liang, Zheng Yang, Huang Sibiao, Xiao Tingyi, Tian Hong, Qing Mengxia※

      (,,410114,)

      Biomass pyrolysis can generate tar and gas products with high industrial value. But the nitrogen (N) element in the biomass can inevitably migrate to the products along with the pyrolysis process, thus possibly polluting the environment. Focusing on the overall goal of preparing clean energy from biomass resources, this study systematically analyzes nitrogen migration and conversion mechanism during biomass pyrolysis, focusing on the research progress of the generation and conversion mechanism of gas nitrogen, tar nitrogen and char nitrogen. The NOprecursors can be the HCN and NH3in the biomass pyrolysis gas. Specifically, the NH3comes from the amino acids that are released from the amino acid pyrolysis and hydrolysis of HCN on the surface of char, while the HCN is from the secondary cracking of primary pyrolysis products, such as nitrile and N-containing heterocycle. The N-containing substances in the pyrolysis oil include the N-containing heterocycles, nitrile, and amide. Furthermore, the N-containing heterocycles can be produced by the fragmentation of some amino acids and by dehydration condensation between the amino acids. The nitrile is derived from the de-H2reaction of amino acid molecules and the de-H2O reaction of amides. The substitution reactions can also be used to form amides from NH3and carboxyl groups. More importantly, the biomass varies greatly in the different pyrolysis characteristics and products, due to the composition during the reaction. The higher heating rates can promote tar cracking for higher NOprecursor production during biomass pyrolysis, while the lower heating rates can contribute to tar production for better quality. The pyrolysis temperature and atmospheres of biomass can pose a large effect on the yield and composition of the pyrolysis products. The pyrolysis in the O2and H2O atmosphere can enhance the conversion of HCN to NH3, while the pyrolysis in the CO2atmosphere can reduce the production of NOprecursors. In terms of the pyrolysis pressure, the gas-N residence time can facilitate the reaction path of the secondary pyrolysis for the migration path of nitrogen. The larger particle sizes of the biomass can increase the NOprecursors but less the tar production, whereas, the smaller particle sizes can promote the N fixation in the char. The catalysts can reduce the pyrolysis time and the temperature for the N migration and conversion during biomass pyrolysis. The mineral elements (such as K, Ca, and Fe) in the biomass can promote the conversion of nitrogenous substances in the coke into the HCN. By contrast, the metal oxides (such as Fe2O3, Co3O4, and NiO) can be used to enhance the production of Tar-N, where Co3O4has the best performance. The KOH can reduce the types of hydrocarbon compounds in the pyrolysis oil, but for less NH3and HCN production. The current NOtreatments are the catalytic, plasma, microbial, absorption, and adsorption methods. All tail-end treatments cannot reduce the emission of pollutants with low efficiency and high energy consumption. Anyway, the N migration and transformation mechanism in the pyrolysis of biomass can reduce the emission of N-containing pollutants at the source during the pyrolysis process.

      biomass; pyrolysis; gas phase nitrogen; tar nitrogen; char nitrogen; NO

      10.11975/j.issn.1002-6819.2022.19.025

      TK6

      A

      1002-6819(2022)-19-0227-10

      劉亮,鄭揚(yáng),黃思彪,等. 生物質(zhì)熱解過程中氮遷移轉(zhuǎn)化機(jī)理研究進(jìn)展[J]. 農(nóng)業(yè)工程學(xué)報,2022,38(19):227-236.doi:10.11975/j.issn.1002-6819.2022.19.025 http://www.tcsae.org

      Liu Liang, Zheng Yang, Huang Sibiao, et al. Review of nitrogen migration and transformation during biomass pyrolysis[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2022, 38(19): 227-236. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2022.19.025 http://www.tcsae.org

      2022-07-11

      2022-09-30

      湖南省教育廳重點(diǎn)項(xiàng)目(21A0201);湖南省自然科學(xué)基金項(xiàng)目(2022JJ40489)

      劉亮,博士,教授,研究方向?yàn)槊号c生物質(zhì)高效清潔利用。Email:liuliang_hn@163.com

      卿夢霞,博士,講師,研究方向?yàn)槊号c生物質(zhì)高效清潔利用。Email:qingmx@csust.edu.cn

      猜你喜歡
      中氮含氮焦炭
      2020年我國累計(jì)出口焦炭349萬t
      焦炭塔鼓脹變形合于使用評價
      不同焦鋼比下未來7億t粗鋼對焦炭需求的預(yù)測(按照全國焦炭產(chǎn)量計(jì)算)
      煤化工(2019年3期)2019-08-06 02:30:14
      清水江水體和沉積物中氮、磷的分布及變化趨勢
      杜馬斯燃燒法快速測定乳制品的含氮量
      飲用水中含氮消毒副產(chǎn)物的形成與控制
      新型含氮雜環(huán)酰胺類衍生物的合成
      蒸餾滴定法測定高溫合金中氮的含量
      西藏濕地生態(tài)系統(tǒng)中氮循環(huán)微生物數(shù)量和多樣性研究
      西藏科技(2015年4期)2015-09-26 12:12:59
      焦炭全自動質(zhì)檢系統(tǒng)改進(jìn)與完善
      河南科技(2014年1期)2014-02-27 14:04:22
      礼泉县| 图片| 鸡泽县| 泸州市| 昆山市| 凯里市| 玛多县| 乌拉特后旗| 甘肃省| 浦东新区| 安溪县| 鹿泉市| 栖霞市| 石门县| 车致| 仪陇县| 南平市| 化德县| 太保市| 卓资县| 兴隆县| 托里县| 万全县| 吴川市| 延长县| 孟津县| 平南县| 弥渡县| 三门县| 瑞丽市| 依兰县| 蚌埠市| 惠来县| 长武县| 慈溪市| 广饶县| 华容县| 宜春市| 扶沟县| 江永县| 洛南县|