馬增福 王麗莉 趙小彥 羅翠霞
摘? ?要:通過義務(wù)教育階段的數(shù)學(xué)學(xué)習(xí),學(xué)生能獲得適應(yīng)社會生活和進一步發(fā)展所必需的數(shù)學(xué)的基礎(chǔ)知識、基本技能、基本思想、基本活動經(jīng)驗。教師要幫助學(xué)生學(xué)會運用數(shù)學(xué)的思維方式進行思考,增強他們發(fā)現(xiàn)問題和提出問題的能力、分析和解決問題的能力。通過課堂教學(xué)使學(xué)生獲得“四基”,增強“四能”,發(fā)展“數(shù)學(xué)核心素養(yǎng)”。
關(guān)鍵詞:小學(xué)數(shù)學(xué);四基;四能;有機融合;核心素養(yǎng)
中圖分類號:G623.5? ?文獻標(biāo)識碼:A? ?文章編號:1009-010X(2022)04-0004-05
二、“圖形與幾何”與“數(shù)學(xué)核心素養(yǎng)”有機融合
小學(xué)數(shù)學(xué)“圖形與幾何”的內(nèi)容主要包括:圖形的認識、測量、圖形的運動和圖形與位置。在教學(xué)這些內(nèi)容時,應(yīng)充分運用“圖形與幾何”的直觀性,在學(xué)生獲得“四基”,增強“四能”的同時,幫助學(xué)生建立“符號意識”和“數(shù)感”,發(fā)展空間觀念、推理能力和運算能力,建立模型思想。
(一)教學(xué)圖形的認識
圖形的認識包括:認識平面圖形,如認識“線”,認識“角”,認識長方形、正方形、三角形、平行四邊形、梯形和圓等,認識立體圖形,如長方體、正方體和圓柱體等,如:
1.一年級下冊“認識圖形(一)”,認識長方形、正方形、三角形、平行四邊形、圓。這是教材第一次安排認識平面圖形。一些教師教學(xué)此內(nèi)容時會出現(xiàn)教學(xué)不到位或超綱越位。教材呈現(xiàn)的長方形等四種圖形,每組至少有三個或三個以上不同大小、不同方向和不位置的圖形,如長方形呈現(xiàn)了形狀、大小、長短、寬窄都不相同的四個圖形。設(shè)計意圖是通過不完全歸納初步認識長方形的簡單特點。教學(xué)時,首先通過分類把形狀相象的卡片放在一起,也可以畫出每組圖形或出示教材中的插圖,初步了解各種圖形的不同形狀,然后逐個認識長方形等四種圖形。讓學(xué)生觀察這四個長方形的不同點和相同點,發(fā)現(xiàn)這四個圖形大小不同、邊的長短、寬窄也都不同;相同點是每個圖形都有四條邊,都有個方方的角,每個圖形中都有兩條比較長的邊和兩條比較短的邊。教師歸納:有四條邊,四個方方的角,有兩條比較長的邊和兩條比較短的邊,把具有這種特點的圖形叫做長方形。再觀察另一組圖形(正方形)與長方形有哪些相同點,有什么不同點?發(fā)現(xiàn)與長方形相同點是都有四條邊和四個方方的角,不同點是看著四條邊都一樣長,教師歸納把具有四條邊、四個方方的角,看著四條邊都一樣長的圖形再起一個名稱叫做正方形……最后讓學(xué)生閉上眼睛想一想每種圖形各是什么樣子,說一說各有什么特點?在這一教學(xué)活動中,學(xué)生不僅經(jīng)歷認識長方形、正方形、平行四邊形、三角形和圓的過程,了解各種圖形的基本特點,能辨認各種圖形,而且發(fā)展了空間觀念,感受要通過幾個圖形共有的特點(不完全歸納)才能得出一個結(jié)論。
2.五年級下冊“長方體和正方體”中“長方體和正方體的認識”。教學(xué)例1時,首先指導(dǎo)學(xué)生用長方體實物模型認識長方體的“面、棱、頂點”,然后讓學(xué)生自主探索一個長方體有幾個面?都是什么形狀?哪些“面”之間有關(guān)系?在學(xué)生出現(xiàn)數(shù)“面”個數(shù)用到“這是一個面,這是一個面……”時,教師指導(dǎo)學(xué)生如何數(shù)“面”的個數(shù)?拿一個長方體放在手掌上不要動,然后按方位有序數(shù)面的個數(shù),如上面、下面,左面、右面,前面、后面,一共有三組相對的面,共有六個面。之后學(xué)生在表達“面”的形狀、之間關(guān)系時就不會出現(xiàn)“這一個面”“那一個面”等沒有空間位置的用詞,會用上下兩個面是相對的面,都是長方形,面積相等……接著讓學(xué)生自主探索長方體“棱、頂點”的數(shù)量、特點等等的時候,學(xué)會有序探索和表達。有例1的教學(xué)過程,學(xué)生自主探索例2“正方體的特征”就水到渠成了。
在整個教學(xué)活動中,借助長方體實物或模型,不僅使學(xué)生經(jīng)歷探索、發(fā)現(xiàn)、歸納長方體面、棱和頂點數(shù)量、形狀,面與面之間、棱與棱之間關(guān)系及認識長方體、正方體特征的過程,而且能想象、描述出長方體的樣子,如長方體是由上面和下面、左面和右面、前面和后面,這六個面圍成的立體。這樣也就發(fā)展了學(xué)生空間觀念和推理能力。
(二)教學(xué)測量
測量的內(nèi)容包括:認識長度、面積和體積(容積)單位,測量、估測物體的長度,探索圖形的周長、面積、體積(容積)公式等。如:
1.認識長度單位。如二年級上冊“厘米的認識”。在學(xué)生了解生活中不同長度計量單位的基礎(chǔ)上學(xué)習(xí)國際統(tǒng)一的長度計量單位。例2,第一,通過直尺認識“厘米”是一個統(tǒng)一的長度單位。知道直尺上從“0”刻度到“1”刻度的長度是1厘米。厘米可以用字母“cm”表示;第二,讓學(xué)生在直尺找出其他1厘米的長度,如從“2”刻度到“3”刻度的長度也是1厘米,從“5”刻度到“6”刻度的長度也是1厘米等;第三,讓學(xué)生說一說從“0”刻度到“3”刻度的長度是幾厘米,為什么?知道“0”刻度到“3”刻度的長度有3個1厘米的長度,所以長度是3厘米,再推理出直尺4厘米的長度有哪些等等;第四,讓學(xué)生指出自己熟悉的哪些物品長度大約是1厘米。例3,教學(xué)測量物體的長度。首先學(xué)會用直尺上從“0”刻度開始測量物體長度的方法,優(yōu)秀學(xué)生可以拓展到用“斷尺”從某一刻度開始測量物體的長度。通過實物“直觀”、動手操作、猜想、驗證等活動,學(xué)生不僅知道了量比較短的物體可以用“厘米”作單位,認識了長度單位“厘米”,用字母“cm”表示,學(xué)會了測量較短物體的長度的方法,而且建立對長度單位“1厘米”和“幾厘米”長度的感悟,能想象、比劃出1厘米、幾厘米有多長,能指出熟悉物品大約有多長等,依此來培養(yǎng)、發(fā)展學(xué)生的數(shù)感和空間觀念。
2.五年級下冊“長方體、正方體的體積”。本課是在學(xué)生認識了體積和體積單位,知道物體的體積是物體所占空間的大小,也是物體包含體積單位數(shù)量多少及學(xué)會計算圖形面積的基礎(chǔ)上學(xué)習(xí)的。教學(xué)時,首先讓學(xué)生猜測一下物體的體積可能與哪些條件有關(guān)?然后小組活動,探索長方體體積的計算方法。要求:①每個小組20塊棱長1厘米的小正方體;②把20塊小正方體擺成不同形狀的長方體,記錄每種長方體的相關(guān)數(shù)據(jù)填在含有“長、寬、高、小正方體的數(shù)量、長方體的體積”表中;③觀察、分析表中數(shù)據(jù),思考長方體的體積與所擺成的形狀有關(guān)系嗎?與每個長方體的長、寬、高及小正方體的數(shù)量有什么關(guān)系?在討論、交流時重點關(guān)注學(xué)生對“5×2”“5×2×2”含義的理解?!?×2”即表示底(上)層小正方體的數(shù)量,也是底(上)層的體積,還可以表示底面(長5厘米、寬2厘米)的面積。“5×2×2”既表示這個長方體所含小正方體的數(shù)量,還可以理解為“長×寬×高”的積,也是這個長方體的體積。這一活動要使師生達成共識,即用一定數(shù)量小正方體擺成的長方體的體積與擺的形狀沒有關(guān)系,只與擺成的這個長方體的長、寬、高有關(guān),長方體的體積=長×寬×高。在學(xué)生理解了長方體計算公式基礎(chǔ)上,自主學(xué)習(xí)并掌握該公式的字母表達式:V=a×b×h。最后讓學(xué)生想一想,當(dāng)長方體的長、寬、高都相等時這個長方體變成了什么形狀?體積怎樣計算,理解并掌握正方體體積計算公式,即:V=a×a×a=a3。本課結(jié)合搭長方體活動,學(xué)生經(jīng)歷了觀察長、寬、高的乘積與小正方體數(shù)量、長方體的體積之間關(guān)系,歸納、推導(dǎo)長(正)方體體積公式和用字母表示的過程,知道a3表示的含義,理解并掌握長(正)方體的體積公式及字母表達式,而且培養(yǎng)了學(xué)生的符號意識、空間觀念和模型思想。
(三)教學(xué)圖形的運動
圖形的運動主要包括:平移、旋轉(zhuǎn)、軸對稱和圖形的放大與縮小。如:四年級下冊“圖形的運動(二)”軸對稱。教學(xué)時,首先讓學(xué)生觀察教材上面的插圖或自己設(shè)計創(chuàng)造的“軸對稱”情境圖,發(fā)現(xiàn)這些美麗圖案的共同點都是軸對稱圖形??偨Y(jié):軸對稱圖形有美感。教學(xué)例1,首先指導(dǎo)學(xué)生觀察例1中的插圖,提出:你能從圖中找到對稱點嗎?對稱點有什么特點?
通過學(xué)生觀察、討論,發(fā)現(xiàn):A與A′、B與B′分別是對稱點。對稱點分別分布在對稱軸的兩邊。對稱點到對稱軸的距離分別相等,如A點和它的對稱點到對稱軸的距離都是3格,C點和它的對稱點到對稱軸的距離都是1格。選擇的對稱點都在線段的轉(zhuǎn)折處。然后讓學(xué)生在這幅圖中再找到一組對稱點,即底部的兩個直角轉(zhuǎn)折點可以分別標(biāo)為E和E′,圖的頂點轉(zhuǎn)折處可以看作是兩個對稱點的重合,到對稱軸的距離為0。最后教師指出:連結(jié)兩個對稱點(或軸上一點與一個對稱點)之間的線段叫作對稱線段。教學(xué)例2,補全軸對稱圖形的另一半。教師提出:這是一個軸對稱圖形的一半,請學(xué)生先在左邊圖中找到轉(zhuǎn)折點,有幾處?生:有六個轉(zhuǎn)折點,其中有兩個在對稱軸上。然后讓學(xué)生找出對稱(轉(zhuǎn)折)點,這是畫圖的重點也是難點。接著交流自己是怎樣找到對稱點的。生:找對稱軸以外的對稱點時,先觀察并數(shù)出圖左邊轉(zhuǎn)折點到對稱軸有幾個格長的距離,再在圖右邊相反的方向上數(shù)出幾格,確定左右兩邊的對稱點。接著讓學(xué)生連接相應(yīng)對稱點的線段,補全圖形的另一半。在例1教學(xué)活動,不僅使學(xué)生經(jīng)歷觀察、找對稱點、對稱線段、數(shù)方格、發(fā)現(xiàn)對稱點特點的過程,而且知道對稱圖形的對稱線段和對稱點,知道兩個對稱點到對稱軸的距離相等。例2借助對稱圖形的一半,經(jīng)歷找出對稱點、連線對稱線段,補全對稱圖形另一半的過程。兩次活動不僅使學(xué)生獲得了相應(yīng)的知識、技能,提高了作圖能力,而且培養(yǎng)了學(xué)生想象力和空間觀念。
(四)教學(xué)圖形與位置
圖形與位置內(nèi)容主要包括:認識上、下、左、右、前、后描述物體的相對位置,認識東、南、西、北、東北、西北、東南、西南八個方位,認識比例尺,描述簡單路線圖,在方格紙上用數(shù)對確定位置等。如:五年級上冊“位置”中“用數(shù)對確定位置”。教學(xué)可以分為三步,第一步首先指導(dǎo)學(xué)生認識班級座位中的“行”和“列”,知道“行、列”的排序方法,即面對班級學(xué)生,從左向右分別是第1列、第2列……從前向后分別是第1行、第2行……然后指名讓學(xué)生說一說自己所在的位置是第幾列、第幾行,自己前、后、左、右的同學(xué)是第幾列、第幾行等。第二步學(xué)習(xí)用“數(shù)對”表示位置,教師指出:第2列、第3行的位置可以用數(shù)對(2,3)表示,它是用符號表示位置的一種特殊方法,括號里的前一個數(shù)字表示所在位置是第幾列,后一個數(shù)字表示所在位置是第幾行,這個位置就是一個列與行的交叉點,用數(shù)對表示簡明扼要、準確。然后請同學(xué)們把自己所在的位置用數(shù)對表示,把自己好朋友的位置用數(shù)對表示,并說一說為什么用這樣的數(shù)對表示。如好朋友位于第5列、第3行,所以用(5,3)表示。第三步學(xué)習(xí)根據(jù)“數(shù)對”找到相對應(yīng)的位置,先讓學(xué)生說一說(3,1)和(4,4)分別表示哪一個位置?接著讓學(xué)生想一想、說一說數(shù)對(2,4)與(4,2)表示的位置有什么不同?根據(jù)(3,5)(3,1)和(5,2)(2,2)你能想到他們的位置有什么相同點和不同點?根據(jù)某同學(xué)的位置,推理出周圍同學(xué)的位置如何用數(shù)對表示等等。本課教學(xué)活動,不僅使學(xué)生經(jīng)歷了用數(shù)對表示位置的過程,了解用數(shù)對表示位置的意義,掌握了用數(shù)對表示位置的方法,而同時也培養(yǎng)學(xué)生符號意識,即用數(shù)對表示位置;空間觀念,即數(shù)對轉(zhuǎn)化為具體位置;推理能力,即由一個位置推理出周圍位置如何用數(shù)對表示等。
三、“統(tǒng)計與概率”與“數(shù)學(xué)核心素養(yǎng)”有機融合
小學(xué)數(shù)學(xué)“統(tǒng)計與概率”的內(nèi)容主要包括:分類、數(shù)據(jù)收集整理、統(tǒng)計表、條形、拆線和扇形統(tǒng)計圖、平均數(shù)、可能性等。教學(xué)這部分內(nèi)容,在學(xué)生獲得“四基”,增強“四能”的同時,要借助幾何直觀,展開想象,幫助學(xué)生發(fā)展空間觀念、運算能力、數(shù)據(jù)分析觀念和推理能力等。如:
二年級下冊“數(shù)據(jù)收集整理”例1,教材提供了訂做校服布料的四種顏色,即紅色、黃色、藍色和白色。問題是選擇哪種顏色合適?學(xué)生的想法不同,怎么辦?教師首先啟發(fā)學(xué)生自己想辦法,讓學(xué)生感悟到我們是為了解決問題而學(xué)習(xí)統(tǒng)計。然后指導(dǎo)學(xué)生如何解決問題,通過討論發(fā)現(xiàn),在全校進行調(diào)查人數(shù)太多,可以在班里進行調(diào)查。怎樣在班里調(diào)查呢?可以用調(diào)查表,也可以舉手表決等方式。接著教師提出:每人只能選擇一種顏色。用舉手表決或數(shù)數(shù)的方法統(tǒng)計出喜歡各種顏色的學(xué)生人數(shù)填入統(tǒng)計表格,并說明表格中的數(shù)字是我們調(diào)查全班同學(xué)得到的“數(shù)據(jù)”。當(dāng)數(shù)據(jù)統(tǒng)計出來后,指導(dǎo)學(xué)生依次完成表格下面的三個問題。讓學(xué)生體會數(shù)據(jù)中蘊含的信息,不僅可以直接看到喜歡哪種顏色的人數(shù)最多、哪種最少,可以推算出全班有多少人,還可以利用數(shù)據(jù)來推斷選擇哪種顏色,而要決定選擇哪種顏色,要用數(shù)據(jù)來說話等。比如表中數(shù)字說明本班喜歡藍色的有15人,是四種顏色中人數(shù)最多的,然后推斷出本班用藍色布料訂做校服合適。最后教師提出:全校都用藍色布料訂做校服合適嗎?師生達成共識,可征求其他班的意見,并可為學(xué)校領(lǐng)導(dǎo)決策提供依據(jù),最終由學(xué)校領(lǐng)導(dǎo)視情況作出決定。
在整個教學(xué)過程中,學(xué)生不僅經(jīng)歷了用舉手方法收集數(shù)據(jù)、整理數(shù)據(jù),用數(shù)據(jù)說話推斷選擇哪種顏色的布料做校服的過程,知道了數(shù)據(jù)收集整理的意義,知道調(diào)查收集整理數(shù)據(jù)的方法和過程等,同時培養(yǎng)學(xué)生調(diào)查意識,收集整理數(shù)據(jù)和歸納概括能力及數(shù)據(jù)分析觀念。
五年級下冊“折線統(tǒng)計圖”例2,教材呈現(xiàn)了“2001年~2010年上海的出生人口和死亡人口數(shù)”的兩個單式折線統(tǒng)計圖。教師首先指導(dǎo)學(xué)生找到兩個單式折線統(tǒng)計圖在比較“死亡人口數(shù)與出生人口數(shù)”的不足之處,即不方便比較。然后借鑒繪制復(fù)式條形圖的思維方式,繪制出“2001~2010年上海出生人口數(shù)和死亡人口數(shù)復(fù)式折線統(tǒng)計圖”。師生共同歸納制作復(fù)式折線統(tǒng)計圖應(yīng)注意幾點:(1)按制作單式拆線統(tǒng)計圖的方法畫兩條折線;(2)要用兩種顏色(或虛實)區(qū)分開;(3)要用圖例說明每條折線表示的意思。接著分析復(fù)式折線統(tǒng)計圖與單式折線統(tǒng)計圖有什么不同?單式折線統(tǒng)計圖不方便比較兩組數(shù)據(jù)之間的關(guān)聯(lián),而復(fù)式折線統(tǒng)計圖可以直觀比較兩組數(shù)據(jù)的變化情況。之后師生可以從復(fù)式折線統(tǒng)計圖發(fā)現(xiàn)和發(fā)掘出很多蘊涵著的信息。如觀察復(fù)式統(tǒng)計圖:
(1)可以看出上海出生人口數(shù)、死亡人口數(shù)的變化的總趨勢都是增加,死亡人口數(shù)增加的幅度小些,而出生人口數(shù)增加的幅度大些;
(2)每年的死亡人口數(shù)都比出生人口數(shù)多,也就是說從2001年到2010年上海市的人口處于負增長。其中2001年死亡人口遠遠大于出生人口數(shù),相差3萬多人,2007年相差最少,約1千多人;
(3)結(jié)合全國2001~2010年出生人口數(shù)和死亡人口數(shù)統(tǒng)計表,發(fā)現(xiàn)與上海市的共同規(guī)律是:死亡人口數(shù)逐年上升,說明全國和上海一樣正處于老齡化社會;
(4)上海市人口負增長情況由2001年的3萬多人到2010年的8千多人,總趨勢在減少。推測2010年以后死亡人口數(shù)與出生人口數(shù)在某年份可能持平,以后出生人口數(shù)可能要大于死亡人口中數(shù);
(5)從出生人口數(shù)折線統(tǒng)計圖分析,九年中有五年人口數(shù)為增長,四年人口數(shù)下降。其中2003年至2004年出生人口數(shù)增加幅度最大,一年大約增加2萬多人。推測2012年出生人口數(shù)可能達到11萬人,以后年份出生人口總趨勢是增長;
(6)從死亡人口數(shù)折線統(tǒng)計圖分析,九年中有兩年死亡人口減少,其他年份都是增加,但增加幅度不大,尤其是2008年到2010年兩年死亡人口數(shù)增加1700余人。預(yù)測年死亡人口數(shù)突破11萬人,可能需要2至3年時間;
(7)折線統(tǒng)計圖1格中的一段折線,從左下到右上,傾斜度越大,增長幅度越大,越平緩增長幅度越小;從左上到右下,傾斜度越大,下降幅度越大,越平緩下降幅度越小。
本課教學(xué),不僅使學(xué)生經(jīng)歷了發(fā)現(xiàn)單式折線統(tǒng)計圖不便于比較一組數(shù)據(jù)之關(guān)聯(lián),制作復(fù)式折線統(tǒng)計圖及觀察、分析復(fù)式折線統(tǒng)計圖特點和優(yōu)勢并作出合理預(yù)測的過程,知道復(fù)式折線統(tǒng)計圖中的“圖例”,了解復(fù)式折線統(tǒng)計圖中數(shù)據(jù)的變化趨勢、比較方法,能作出合理的預(yù)測,而且培養(yǎng)學(xué)生數(shù)據(jù)分析觀念與合理推測能力。
以上內(nèi)容是根據(jù)聽課記錄、指導(dǎo)建議整理出的實踐經(jīng)驗,難免有不當(dāng)之處,敬請同行斧正。
【責(zé)任編輯 王? ?悅】