335500 江西省萬年縣萬年中學(xué) 徐 廣
335500 江西省萬年縣萬年一中 李 敏
函數(shù)的奇偶性是函數(shù)的重要性質(zhì),也是高考的重點(diǎn)與熱點(diǎn),更是廣大高中生的易錯(cuò)點(diǎn).學(xué)好函數(shù)的奇偶性一直是廣大高中生的訴求,要掌握好函數(shù)奇偶性的判斷方法,可以從以下三個(gè)方面入手.
.
設(shè)函數(shù)y
=f
(x
),x
∈I
,且對(duì)任意x
∈I
,恒有-x
∈I
(即定義域要關(guān)于原點(diǎn)對(duì)稱),(1)若f
(-x
)=-f
(x
),則稱y
=f
(x
)為奇函數(shù);(2)若f
(-x
)=f
(x
),則稱y
=f
(x
)為偶函數(shù).上述定義從理論上說明,定義域關(guān)于原點(diǎn)對(duì)稱是函數(shù)具有奇偶性的一個(gè)前提.相當(dāng)一部分學(xué)生常常忽視所給函數(shù)的定義域,直接用函數(shù)奇偶性的判別式確定其奇偶性,很容易得出錯(cuò)誤的結(jié)論.
例1
判斷函數(shù)的奇偶性.錯(cuò)解:
由題意可得F
(x
)=x
,從而有F
(-x
)=F
(x
),所以y
=F
(x
)為偶函數(shù).評(píng)析:
上述解答沒有求出函數(shù)的定義域,忽視了判斷函數(shù)的定義域是否關(guān)于原點(diǎn)對(duì)稱.正解:
因?yàn)?p>y=F
(x
)的定義域?yàn)?-∞,1)∪(1,+∞),不關(guān)于原點(diǎn)對(duì)稱,所以y
=F
(x
) 不具有奇偶性.因此,教師在講授新課時(shí),一定要強(qiáng)調(diào)定義域關(guān)于原點(diǎn)對(duì)稱的重要性與先決性.
類似的,函數(shù)不具有奇偶性.
例2
若函數(shù)在定義域上為奇函數(shù),求實(shí)數(shù)k
的值.錯(cuò)解:
因?yàn)?p>f(x
)是奇函數(shù),所以f
(0)=0,即從而有k
=1.評(píng)析:
上述解法沒有考慮0是否屬于f
(x
)的定義域,而是默認(rèn)f
(x
)在x
=0處有定義.正解:
由f
(-x
)=-f
(x
),得整理可得k
(2+2-)=2+2-,從而有k
=1或k
=-1.經(jīng)驗(yàn)證,均合題意.例3
設(shè)函數(shù)為奇函數(shù),求實(shí)數(shù)a
的值.解析:
注意到函數(shù)的定義域要關(guān)于原點(diǎn)對(duì)稱,已知x
≠-2且x
≠a
,所以要保證定義域?qū)ΨQ,則a
=2,這是f
(x
)為奇函數(shù)的必要條件,經(jīng)驗(yàn)證,符合題意.p
,q
為互質(zhì)的奇數(shù)),y
=sinx
,y
=tanx
,y
=cotx
為奇函數(shù);為互質(zhì)的正整數(shù),p
為偶數(shù)(p
,q
為互質(zhì)的正整數(shù),p
為偶數(shù)),y
=cosx
為偶函數(shù);y
=0既是奇函數(shù)又是偶函數(shù).在掌握了初等函數(shù)的奇偶性后,對(duì)于給定的復(fù)雜函數(shù)的奇偶性,往往不需要直接用定義方法來證明或判斷,而是用合成方法處理.
設(shè)在公共定義域內(nèi),函數(shù)f
(x
)和f
(x
)為奇函數(shù),而g
(x
)與g
(x
)為偶函數(shù),k
,c
為常數(shù),則有如下結(jié)論.
(1)當(dāng)k
≠0時(shí),y
=kf
(x
)為奇函數(shù),y
=kg
(x
)為偶函數(shù).特別地,當(dāng)k
=0時(shí),y
=kf
(x
)和y
=kg
(x
)既是奇函數(shù)也是偶函數(shù).(2)當(dāng)c
≠0時(shí),y
=f
(x
)+c
不是奇函數(shù),y
=g
(x
)+c
為偶函數(shù).(3)y
=f
(x
)±f
(x
)為奇函數(shù),y
=g
(x
)±g
(x
)為偶函數(shù).為奇函數(shù),為偶函數(shù).定義域可能會(huì)有所變化,例如和
(5)y
=f
(x
)f
(x
)為偶函數(shù),y
=g
(x
)g
(x
)為偶函數(shù).(6)y
=f
(x
)g
(x
)為奇函數(shù).(7)設(shè)h
(x
)=kf
(x
)+cg
(x
)(其中f
(x
)不為偶函數(shù),g
(x
)不為奇函數(shù)),若h
(x
)為奇函數(shù),則c
=0;若h
(x
)為偶函數(shù),則k
=0.
例4
判斷下列函數(shù)的奇偶性.解:
(1)f
(x
)在(-∞,0)∪(0,+∞)上為奇函數(shù);(2)g
(x
)在R
上的為奇函數(shù);(3)h
(x
) 在上為偶函數(shù).例5
設(shè)F
(x
)=x
+(t
-1)x
為R
上的奇函數(shù),求實(shí)數(shù)t
的值.解:
由題意可得t
-1=0,即t
=1.這里可以直接省去用F
(-1)=-F
(1)計(jì)算得出結(jié)果,或者由計(jì)算稍微復(fù)雜的F
(-x
)+F
(x
)=0推導(dǎo)得到結(jié)果.例6
若函數(shù)在(-2,2)上為奇函數(shù),求實(shí)數(shù)a
與b
的值.分析:
因?yàn)?p>f(x
)在x
=0處有定義,所以f
(0)=0,可得a
=1,所以分子為x
,是奇函數(shù),而f
(x
)為奇函數(shù),所以分母x
+bx
+1必須為偶函數(shù),即有b
=0.解:
因?yàn)?p>f(x
)的定義域?yàn)?-2,2),所以有f
(0)=0,即a
=1,從而可得為偶函數(shù),進(jìn)而有b
=0.這里主要應(yīng)用了函數(shù)y
=0既是奇函數(shù)也是偶函數(shù)的性質(zhì),在判斷加減復(fù)合的過程中,將“雜項(xiàng)”變換為常數(shù)0,消除它的影響.對(duì)于復(fù)合函數(shù)的奇偶性,也可以用復(fù)合法則進(jìn)行判斷.
設(shè)函數(shù)y
=f
(t
)與t
=g
(x
)分別為復(fù)合函數(shù)y
=f
[g
(x
)]的外層函數(shù)(簡(jiǎn)稱外函數(shù))和內(nèi)層函數(shù)(簡(jiǎn)稱內(nèi)函數(shù)),則y
=f
[g
(x
)]的奇偶性如表1所示.
表1
y=ft t=gx y=fgx 奇函數(shù)奇函數(shù)奇函數(shù)奇函數(shù)偶函數(shù)偶函數(shù)偶函數(shù)奇函數(shù)偶函數(shù)偶函數(shù)偶函數(shù)偶函數(shù)
由奇函數(shù)和偶函數(shù)的性質(zhì),可知奇函數(shù)中自變量帶有負(fù)號(hào)可以向外提出,而偶函數(shù)自變量中的負(fù)號(hào)不能向外提出,即可內(nèi)消.
因此,可以歸納出判斷復(fù)合函數(shù)奇偶性的方法.
首先,判斷定義域是否關(guān)于原點(diǎn)對(duì)稱;其次,不論是幾層復(fù)合函數(shù),一旦有一層為偶函數(shù),則復(fù)合函數(shù)為偶函數(shù),否則為奇函數(shù).例7
判斷下列函數(shù)的奇偶性.(1)f
(x
)=sin(x
-x
);(2)g
(x
)=cos(x
+x
);(3)h
(x
)=|tanx
|.解:
(1)f
(x
)為R
上的奇函數(shù);(2)g
(x
)為R
上的偶函數(shù);(3)h
(x
)為上的偶函數(shù).這種方法方便學(xué)生在審題時(shí)確定函數(shù)的奇偶性,但在處理具體問題時(shí),一定要確認(rèn)其定義域關(guān)于原點(diǎn)的對(duì)稱性.
對(duì)于奇(偶)函數(shù)平移后得到的新函數(shù),在此將其稱為具有局部奇偶性函數(shù),常用分離方法處理這類問題.
例8
設(shè)函數(shù)f
(x
)=a
sinx
-bx
+1,且f
(3)=5,求f
(-3)的值.分析:
對(duì)于函數(shù)f
(x
)=a
sinx
-bx
+1,其中a
sinx
-bx
為奇函數(shù),y
=f
(x
)的圖像可由g
(x
)=a
sinx
-bx
的圖像向上平移1個(gè)單位得到.要求f
(-3),關(guān)鍵要求出g
(-3)的值,而g
(-3)=-g
(3).顯然,g
(3)=f
(3)-1.解:
設(shè)g
(x
)=a
sinx
-bx
,則f
(x
)=g
(x
)+1,所以f
(3)=g
(3)+1=5.從而,g
(3)=4,g
(-3)=-g
(3)=-4,則f
(-3)=g
(-3)+1=-3.綜上可知,要熟練掌握函數(shù)的奇偶性,不但要深刻理解奇偶性的定義,而且要能領(lǐng)會(huì)奇偶函數(shù)的本質(zhì)特征.