• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看

      ?

      栽培稻芽期耐低溫全基因組關(guān)聯(lián)分析

      2022-12-01 07:41:58逄洪波程露于茗蘭陳強李玥瑩吳隆坤王澤潘孝武鄭曉明
      中國農(nóng)業(yè)科學 2022年21期
      關(guān)鍵詞:冷性發(fā)芽率基因組

      逄洪波,程露,于茗蘭,陳強,李玥瑩,吳隆坤,王澤,潘孝武,鄭曉明

      栽培稻芽期耐低溫全基因組關(guān)聯(lián)分析

      逄洪波1,程露1,于茗蘭1,陳強2,李玥瑩1,吳隆坤3,王澤1,潘孝武4,鄭曉明5,6

      1沈陽師范大學生命科學學院,沈陽 110034;2沈陽師范大學實驗教學中心,沈陽 110034;3沈陽師范大學糧食學院,沈陽 110034;4湖南省農(nóng)業(yè)科學院水稻研究所,長沙 410125;5中國農(nóng)業(yè)科學院作物科學研究所,北京 100081;6海南三亞中國農(nóng)業(yè)科學院國家南繁研究院,海南三亞 571700

      【目的】水稻是重要的糧食作物,芽期是水稻生長發(fā)育過程中最脆弱的時期,直播稻遭遇冷害時發(fā)芽率大幅降低,減產(chǎn)嚴重。深入了解耐冷性的遺傳機制,為培育芽期強耐受性水稻品種奠定基礎(chǔ)?!痉椒ā恳允澜绶秶鷥?nèi)14個國家代表性的238份水稻種質(zhì)資源為試驗材料,于2021和2022年在沈陽開展表型鑒定試驗,統(tǒng)計不同水稻品種在人工氣候培養(yǎng)箱15℃低溫條件下第1—10天的發(fā)芽率和相對發(fā)芽率,利用R語言繪制5—10 d的頻率直方圖,通過表型豐富度Hill值選擇宜作關(guān)聯(lián)分析的天數(shù),將發(fā)芽率和相對發(fā)芽率表型數(shù)據(jù)與重測序數(shù)據(jù)相結(jié)合,進行基于混合線性模型MLM(QK)的全基因組關(guān)聯(lián)分析,并對所獲得的SNP位點進行耐冷候選基因的預測?!窘Y(jié)果】發(fā)芽率頻數(shù)分布直方圖和表型豐富度計算結(jié)果顯示第8天發(fā)芽率多態(tài)性最好,其Hill值為0.84,高于其他幾天發(fā)芽率(0.48—0.83),可用于全基因組關(guān)聯(lián)分析;主成分分析結(jié)果顯示,這些水稻品種可以分為、、、和5個亞群;2個指標進行的GWAS分析檢測到3個相同的顯著性SNP位點,均位于第4染色體,解釋表型的11.9%—25.4%;在上下游各50 kb進行基因搜索,共發(fā)現(xiàn)24個相關(guān)候選基因,進一步開展LD和單倍型分析,發(fā)現(xiàn)和的不同單倍型耐冷性之間存在極顯著差異。被編碼區(qū)SNP分為5個單倍型,且Hap_3的耐冷性顯著強于Hap_1;被編碼區(qū)SNP分為18個單倍型,且77 bp處的氨基酸變異(S>L)存在秈粳差異。結(jié)果表明,編碼糖基轉(zhuǎn)移酶的基因和編碼F-box蛋白基因可能與水稻芽期耐冷性密切相關(guān)?!窘Y(jié)論】在238份水稻種質(zhì)資源中共檢測到3個與芽期耐冷性顯著關(guān)聯(lián)的SNP位點,篩選出2個與水稻芽期耐冷性相關(guān)的候選基因。

      水稻;芽期;耐冷性;發(fā)芽率;全基因組關(guān)聯(lián)分析

      0 引言

      【研究意義】水稻(L.)是一種重要的糧食作物,世界上60%以上人口以水稻作為主食[1-3]。與其他作物不同,水稻對溫度較為敏感[4-5]。據(jù)統(tǒng)計,全球每年約1 500萬hm2水稻種植區(qū)遭受低溫冷害,造成大面積減產(chǎn),尤其是日本、韓國以及中國東北和西南地區(qū),嚴重影響世界糧食安全[6-9]。因此,提高水稻耐冷性已成為水稻育種的重要目標。低溫對水稻各個發(fā)育階段均會產(chǎn)生影響[10-13]。萌發(fā)期是確保水稻幼苗穩(wěn)定生長、直接影響最終產(chǎn)量的重要階段[9]。直播稻可以大量減少勞動力和種植成本[14],隨著直播稻在亞洲溫帶國家的大面積應(yīng)用,芽期耐冷性已經(jīng)成為水稻種植所面臨的一個重要挑戰(zhàn)[15]。因此,挖掘芽期耐冷基因?qū)ε嘤屠淦贩N、擴大水稻播種面積乃至提高水稻產(chǎn)量至關(guān)重要?!厩叭搜芯窟M展】培育耐冷品種一直受育種專家的關(guān)注。水稻芽期耐冷性遺傳結(jié)構(gòu)復雜,屬于數(shù)量性狀,受多個基因共同控制,已有對水稻芽期耐冷性的相關(guān)研究,定位了一系列與芽期耐冷性相關(guān)的QTL[16],同時,研究表明,發(fā)芽率是衡量水稻芽期耐冷性強弱的重要指標[17-21]。如LI等[22]以發(fā)芽率作為芽期耐冷指標,對粳稻和秈稻品種的重組自交系群體進行芽期表型耐冷評價,最終選擇前四代品種發(fā)芽率用于后續(xù)QTL分析;FUJINO等[11]以2份不同粳稻品種的重組自交系為研究對象,測定其發(fā)芽率并用于QTL分析,共檢測到、和3個與低溫萌發(fā)相關(guān)的QTL。全基因組關(guān)聯(lián)分析(genome-wide association studies,GWAS)是以基因組重測序為背景,以連鎖不平衡(linkage disequilibrium,LD)為基礎(chǔ),利用自然群體在全基因組范圍內(nèi)的遺傳變異多態(tài)性,深入探討基因型與表型變化之間的相關(guān)性,進而獲得最有可能影響特征性狀的相關(guān)候選基因或基因組區(qū)域的一種方法[23-27]。GWAS分析突破了傳統(tǒng)的單個數(shù)量性狀基因定位的局限性,不需構(gòu)建專門群體,利用現(xiàn)有的自然群體就可進行分析,且所關(guān)聯(lián)的位點多態(tài)性等位基因數(shù)量龐大,一次可關(guān)聯(lián)多個性狀[28-29]。目前,全基因組關(guān)聯(lián)分析已經(jīng)廣泛應(yīng)用于大豆[30-31]、擬南芥[32]、玉米[33]、水稻[34]和棉花[35]等眾多作物發(fā)育性狀以及農(nóng)藝性狀等研究中,并確定了多種性狀的許多QTL。該方法已成功應(yīng)用于探究水稻芽期耐冷性相關(guān)的遺傳基因座[36-37]。如FUJINO等[36]以63份日本水稻種質(zhì)資源為材料,進行水稻低溫發(fā)芽率的篩選,鑒定到115個SSR標記和另外2種標記,并確定了17個與芽期耐冷性相關(guān)聯(lián)的QTL;PAN等[37]以174份中國水稻品種為材料展開全基因組關(guān)聯(lián)分析,鑒定出51個與水稻芽期和孕穗期耐冷相關(guān)的QTL;ZHANG等[6]對249份秈稻品種進行全基因組關(guān)聯(lián)分析,在第1染色體上定位到與水稻芽期耐冷性顯著相關(guān)的QTL,并鑒定3種芽期耐冷性候選基因;HAN等[38]對200份水稻品種進行全基因組關(guān)聯(lián)分析,共在7條染色體上定位到9個與水稻低溫發(fā)芽率相關(guān)的QTL?!颈狙芯壳腥朦c】隨著年輕人員的外出打工和農(nóng)業(yè)生產(chǎn)的機械化,直播稻面積不斷增大。盡管低溫發(fā)芽性在水稻栽培中具有重要意義,但其遺傳機制尚不清楚?!緮M解決的關(guān)鍵問題】本研究選取來自14個國家的238份水稻種質(zhì)資源為材料,利用人工氣候培養(yǎng)箱進行低溫脅迫,將重測序數(shù)據(jù)與芽期發(fā)芽率表型數(shù)據(jù)相結(jié)合,進行全基因組關(guān)聯(lián)分析。旨在通過全基因組關(guān)聯(lián)技術(shù)篩選出與水稻芽期耐冷性狀顯著相關(guān)的單核苷酸多態(tài)性位點,進而挖掘與芽期耐冷性相關(guān)的基因,為培育優(yōu)良耐冷性品種水稻提供基因資源。

      1 材料與方法

      1.1 試驗材料

      238份水稻品種包括55個溫帶粳稻()、26個熱帶粳稻()、87個秈稻()、66個奧斯稻()和4個香稻(),分別屬于中國、印度和日本等14個不同國家,代表世界范圍內(nèi)具有代表性的水稻種植區(qū)域和品種類型,由中國農(nóng)業(yè)科學院作物科學研究所提供。所有水稻材料2021年種植于中國農(nóng)業(yè)科學院三亞南繁基地(中國海南,108.37°E,18.10°N),收獲干燥后-40℃保存。材料具體信息詳見電子附表1。

      1.2 發(fā)芽率和相對發(fā)芽率指標的測定

      2020—2021年,在沈陽進行表型鑒定試驗。將供試材料置于50℃烘箱中處理72 h,以打破休眠。參考FUJINO等[11]和LI等[22]方法測定發(fā)芽率,每份試驗材料挑選40粒飽滿成熟的種子,以8行5列(8×5)用已滅菌鑷子整齊地鋪在有潤濕的雙層濾紙的玻璃培養(yǎng)皿(直徑9 cm)中,加入10 mL無菌水,分別放置于低溫15℃和對照30℃(12 h光照/12 h黑暗),光強為8 000 lx,相對濕度60%的人工氣候培養(yǎng)箱(RDN-1000E-4,寧波樂電儀器制造有限公司)中低溫處理10 d。以種子露白作為萌發(fā)標準,每天統(tǒng)計發(fā)芽種數(shù),用于發(fā)芽率指標的計算,每個品種3次重復。計算公式如下:

      發(fā)芽率(%)=(15℃低溫發(fā)芽的種子數(shù)量/種子總數(shù))×100;

      相對發(fā)芽率(%)=(15℃處理發(fā)芽率/對照發(fā)芽率30℃)×100。

      1.3 數(shù)據(jù)處理與分析

      1.3.1 表型數(shù)據(jù)整理 利用R語言(v3.5.0)繪制發(fā)芽率頻數(shù)分布直方圖。

      1.3.2 數(shù)據(jù)質(zhì)量控制 使用Illumina HiSeq 2500 Sequencing Systems Platform(Illumina Inc., San Diego, CA,USA)對238份水稻材料進行全基因組測序,通過SICKLE(https://github.com/najoshi/sickle)修剪reads的3’末端,處理raw reads以獲得per read≤20的average quality score(QS)。將high-quality reads與水稻參考基因組序列日本晴(MSU 7.0)進行比對(日本晴序列下載自http://rice.plantbiology.msu.edu/ pub/data/Eukaryotic_Projects/o_sativa/annotation_dbs/pseudomolecules/version_7.0/all.dir/)。利用Perl腳本結(jié)合plink2軟件,對所有原始標記位點進行處理,去除稀有變異位點、高缺失率位點、高雜合率位點和嚴重偏離哈迪-溫伯格平衡的位點,最終篩選出高質(zhì)量的SNP顯著性位點,經(jīng)數(shù)據(jù)質(zhì)量控制后用于后續(xù)全基因組關(guān)聯(lián)分析的高質(zhì)量SNP數(shù)量為7 143 225個。

      1.3.3 群體遺傳結(jié)構(gòu)分析 利用Admixture軟件進行群體結(jié)構(gòu)分析,得到Q矩陣用于后續(xù)線性模型構(gòu)建。利用GCTA軟件(v1.93.2)進行主成分分析(principal component analysis,PCA),獲得各個PC的方差解釋率及樣本在各個PC中的得分矩陣。在GWAS中,為避免可能存在的小家系導致假陽性,往往會把親緣關(guān)系矩陣作為隨機效應(yīng)協(xié)變量矩陣(K矩陣)加入GWAS模型。

      1.3.4 全基因組關(guān)聯(lián)分析 利用GEMMA軟件(v0.98.1)比較全基因組關(guān)聯(lián)測序4種分析模型(GLM、GLM(Q)、MLM(K)和MLM(QK))所得結(jié)果,最終采用混合線性模型(MLM(QK))模型進行GWAS分析,即將群體結(jié)構(gòu)(Q)和個體遺傳關(guān)系(K)加入混合線性模型中,對Q和K的影響進行預測評估,從而控制和減少對目標基因關(guān)聯(lián)定位的影響[39]。Admixture最優(yōu)K值對應(yīng)的群體結(jié)構(gòu)矩陣作為相應(yīng)模型的Q矩陣,GCTA(v1.93.2)軟件計算的樣品間親緣關(guān)系矩陣作為相應(yīng)模型的K矩陣。GWAS分析結(jié)果采用曼哈頓圖和QQ圖進行展示。

      1.3.5 LD分析和單倍型分析 使用LDBlockShow軟件的默認參數(shù)進行LD分析。單倍型分析所用165個栽培稻(56個粳稻和109個秈稻,具體信息見電子附表2)的編碼區(qū)序列是從FRGB數(shù)據(jù)庫(https://www. rmbreeding.cn/)下載,使用ClustalX 1.81進行序列比對,DnaSP 6進行核苷酸多態(tài)性和單倍型分析。

      2 結(jié)果

      2.1 水稻芽期耐冷性表型數(shù)據(jù)分析

      共統(tǒng)計238個水稻供試品種在15℃低溫條件下第1—10天的發(fā)芽率,由于前4 d發(fā)芽品種很少,故在此只展示第5—10天發(fā)芽率的頻數(shù)直方圖(圖1)。根據(jù)遺傳學中的表型豐富度Hill多樣性指標[40]進行5— 10 d的發(fā)芽率多樣性計算,計算公式為:

      第5—10天的發(fā)芽率豐富度依次為0.48、0.65、0.78、0.84、0.83和0.80,第8天的發(fā)芽率豐富度最高,為0.84,故選擇第8天的發(fā)芽率數(shù)據(jù)用于后續(xù)的全基因組關(guān)聯(lián)分析。

      2.2 水稻芽期耐冷性的全基因組關(guān)聯(lián)分析

      2.2.1 群體遺傳結(jié)構(gòu)分析 基于篩選后的SNP標記,利用GCTA軟件(v1.93.2)對238供試材料進行主成分分析,獲得各個PC的方差解釋率及樣本在各個PC中的得分矩陣。經(jīng)計算,將數(shù)據(jù)矩陣轉(zhuǎn)化成圖片(圖2),前3個主成分的方差解釋率分別為10.21%、6.82%和3.43%,可以解釋群體遺傳結(jié)構(gòu)20.46%變異。根據(jù)PCA分析結(jié)果,可將238水稻品種劃分為5個類群,分別為、、、和。

      基于篩選后的SNP標記,利用GCTA軟件(v1.93.2)對238供試材料進行親緣關(guān)系分析,即兩特定材料之間的遺傳相似度與任意材料之間的遺傳相似度的相對值。根據(jù)親緣關(guān)系kinship頻率分布圖(圖3-A),可以清晰展示樣本間親緣關(guān)系值的主要分布圖范圍,從而推斷樣本間遺傳差異的大小。其中,圖中的負值可能是由于標準化的結(jié)果,值的大小表示兩樣本之間關(guān)系的相似性即相對遠近,值越大,說明兩樣本之間相似性遠大,即親緣關(guān)系越近;值越小,說明兩樣本之間相似性越小,即親緣關(guān)系越遠。由圖3可見,絕大多數(shù)試驗材料的親緣關(guān)系位于-0.5,說明大部分試驗材料之間的相似性較小,親緣關(guān)系相對較遠。因此,可以避免因家系群體對全基因組關(guān)系分析結(jié)果產(chǎn)生假陽性。根據(jù)親緣關(guān)系矩陣繪制熱圖(圖3-B),可將供試材料分為5個亞群,與PCA分析結(jié)果一致。

      圖2 水稻全基因組單核苷酸多態(tài)性數(shù)據(jù)的主成分分析

      A:樣本間親緣關(guān)系直方圖;B:樣本間親緣關(guān)系熱圖

      2.2.2 GWAS定位目標性狀SNP位點 采用混合線性模型MLM(QK)進行GWAS分析(圖4),閾值設(shè)為-log10()=7,利用發(fā)芽率指標僅在第4染色體上關(guān)聯(lián)到3個顯著性SNP位點,分別是Chr.4:14334616、Chr.4:14333724和Chr.4:14528782,可以解釋形態(tài)學性狀的11.9%—25.4%,其中,Chr.4:14334616 與發(fā)芽率的關(guān)聯(lián)程度最高,為8.69E-08。利用相對發(fā)芽率共關(guān)聯(lián)到3個顯著性SNP,均位于第4染色體上,且這3個位點與利用發(fā)芽率關(guān)聯(lián)到的位點完全相同,可以解釋形態(tài)學性狀的13.1%—25.6%,與相對發(fā)芽率性狀關(guān)聯(lián)程度最高的SNP位點(Chr.4:14334616)為9.23E-08。

      圖4 238個水稻品種發(fā)芽率和相對發(fā)芽率的全基因組關(guān)聯(lián)分析

      2.2.3 篩選水稻芽期耐冷候選基因 根據(jù)發(fā)芽率和相對發(fā)芽率2個指標的關(guān)聯(lián)結(jié)果,第4染色體Chr.4:14333724、Chr.4:14334616和Chr.4:14528782重復出現(xiàn),故后續(xù)對這3個顯著性SNP進一步深入分析。搜索每個顯著性SNP位點上、下游各50 kb區(qū)間,預測可能與芽期耐冷性狀相關(guān)聯(lián)的基因,共關(guān)聯(lián)到24個基因(—),通過國家水稻數(shù)據(jù)中心(www.ricedata.com)對關(guān)聯(lián)的基因進行Interpro蛋白功能預測(表1)。將顯著性SNP位點所在區(qū)域的曼哈頓圖放大,同關(guān)聯(lián)到的24個基因進行共線分析,同時繪制了LD單倍型塊圖(圖5),結(jié)合基因注釋結(jié)果,推測含有CCHC結(jié)構(gòu)域的鋅指蛋白基因()、編碼糖基轉(zhuǎn)移酶的基因(和)和含有F-box結(jié)構(gòu)域的基因()可能與芽期耐冷性相關(guān)。

      2.2.4 候選基因的核苷酸多樣性和單倍型分析 為了進一步分析4個候選基因是否與芽期耐冷性相關(guān),對3K數(shù)據(jù)庫中165個栽培稻品種的編碼區(qū)序列進行核苷酸比對,結(jié)果顯示,和不存在SNP位點(結(jié)果未展示)。中鑒定出4個SNP(圖6-A),分別為164 bp(R>H)、194 bp(Q>R)、206 bp(L>P)和235 bp(C>T)。其中235 bp位置的突變C>T引入了終止密碼子。進一步的單倍型分析結(jié)果顯示,存在5種單倍型;Hap_1為主要單倍型,有145個品種(占84.8%);其次是具有22個秈稻品種的Hap_3。只有單倍型Hap_1中同時包含粳稻和秈稻(圖6-A)。為進一步分析這些單倍型之間的差異,比較核苷酸多態(tài)性與相對發(fā)芽率之間的相關(guān)性。Hap_1(43.23%)和Hap_3(61.51%)間存在顯著差異(曼-惠特尼秩和檢驗,=0.005),說明Hap_3是優(yōu)異單倍型。存在9個SNP和1個Indel(圖6-B)。其中,6個SNP為有義突變,分別為77 bp(S>L)、166 bp(K>D)、466 bp(H>D)、563 bp(R>H)、567 bp(K>N)和1 018 bp(C>R)。這些SNP將分成18個單倍型(Hap_1—Hap_18);只有Hap_4、Hap_7和Hap_8中同時含有粳稻和秈稻。單倍型中品種數(shù)量最多的是Hap_4,有86個(52.12%),其次是Hap_3,有26個品種(15.76%)。有趣的是,77 bp處的基因變異(S>L)在秈稻和粳稻亞種之間是不同的。據(jù)此,可以將這些單倍型分為A組(平均發(fā)芽率=40.25%)和B組(平均發(fā)芽率=54.80),結(jié)合相對發(fā)芽率的表型數(shù)據(jù),發(fā)現(xiàn)這兩組之間存在顯著差異(曼-惠特尼秩和檢驗,=0.004)。同樣,Hap_4(40.75%)和Hap_2(75.45%)(曼-惠特尼秩和檢驗,=0.001)、Hap_4(40.75%)和Hap_3(62.66%)之間也存在顯著性差異(曼-惠特尼秩和檢驗,=0.002),Hap_2(75.45%)和Hap_3(62.66%)之間沒有顯著性差異(Mann-Whitney秩和檢驗,=0.295),說明77 bp(S>L)是關(guān)鍵的核苷酸變異位點。同時,Hap_4—Hap_7的兩兩比較分析,均沒有顯著性差異,說明609和1 344 bp的無義突變可能不會影響其耐冷性,也可能與Hap_5—Hap_7的樣本量小有關(guān)。而其他單倍型的數(shù)量太少,無法進行相關(guān)的統(tǒng)計分析。

      圖中間部分24個黑色方框依次為24個候選基因,紅色豎線代表3個顯著性SNP所在位置,4個灰色箭頭分別指LOC_Os04g24830、LOC_Os04g24840、LOC_Os04g24850和LOC_Os04g25140

      3 討論

      3.1 水稻芽期耐冷指標篩選

      芽期低溫脅迫是導致中國南部水稻種植區(qū),特別是直接稻種植區(qū)減產(chǎn)的重要因素[41-42]。耐冷性是多個基因共同控制的復雜性狀[43-44],表型鑒定是研究耐冷性狀的重要手段[6, 45]。水稻芽期各形態(tài)指標測定時間短、簡便易行,在進行大規(guī)模水稻耐冷種質(zhì)資源的篩選和鑒定方面具有一定的優(yōu)勢。種子在低溫條件下的發(fā)芽率是具有遺傳學性狀的表現(xiàn)之一,其基因型很大程度上決定了種子芽期的耐冷性,因此,種子的低溫發(fā)芽率可以作為調(diào)查水稻芽期耐冷性的重要指標[46-47]。目前,已有前人在水稻芽期耐冷篩選和鑒定方面開展了一些相應(yīng)的研究,如CRUZ等[48]以種子萌發(fā)指數(shù)百分比作為芽期耐冷指標對不同起源的24份水稻種質(zhì)資源進行評價,共篩選出4份強耐冷品種;JI等[18]以發(fā)芽率作為一個芽期耐冷指標來評估低溫萌發(fā)能力的遺傳控制,并在此基礎(chǔ)上使用重組置換系進行水稻耐冷QTL分析;YE等[49]以17份水稻種質(zhì)資源為材料,以發(fā)芽率和平均發(fā)芽速度為指標對其萌發(fā)階段進行耐冷評價。故本研究以水稻芽期發(fā)芽率為耐冷評價指標對耐冷性進行快速鑒定。

      表1 24個候選基因其基因注釋

      3.2 水稻芽期耐冷基因位點鑒定方法

      GWAS通過重測序識別高分辨率SNP,以鑒定復雜數(shù)量性狀的靶基因區(qū)域,精確度更高,且可以一次關(guān)聯(lián)定位到多個性狀[28-29],已經(jīng)被廣泛用于識別作物性狀相關(guān)的遺傳基因座,并為其遺傳基礎(chǔ)提供新的見解。如對非生物脅迫的響應(yīng)[50-51]、生物應(yīng)激[52-53]以及許多其他農(nóng)藝性狀特征[54-55]等。HUANG等[24]以517個水稻地方品種為材料,第一次證實將GWAS和重測序數(shù)據(jù)相結(jié)合可以用于水稻復雜性狀的研究。FUJINO等[36]以63個水稻品種為材料展開全基因組關(guān)聯(lián)分析,鑒定出6個與水稻抽穗期和17個與水稻芽期耐冷相關(guān)的QTL;MIURA等[45]以98個粳稻和秈稻品種的回交自交系為研究對象,測定其發(fā)芽率并用于QTL分析,共檢測到、、、和5個與低溫萌發(fā)相關(guān)的QTL;JIANG等[56]對2個不同粳、秈稻品系雜交的F2進行全基因組關(guān)聯(lián)分析,共在7條染色體上定位到了11個與水稻低溫發(fā)芽率相關(guān)的QTL。故本研究采用全基因組關(guān)聯(lián)分析法對238份水稻種質(zhì)資源進行耐冷性相關(guān)基因位點檢測。

      紅色代表粳稻和秈稻共有的單倍型,藍色代表基因編碼區(qū)SNP中的有義突變;綠色表示235 bp處核苷酸變異(C>T)導致基因提前出現(xiàn)終止子;黃色表示粳稻和秈稻在77 bp處存在堿基差異(C>T)

      3.3 與水稻芽期耐冷相關(guān)的候選基因

      基于發(fā)芽率的全基因組關(guān)聯(lián)分析共得到了3個顯著性SNP,均位于第4染色體,關(guān)聯(lián)到24個基因。進一步對其進行LD和單倍型分析,結(jié)果發(fā)現(xiàn),和各自具有的SNP將其分成了5個和18個單倍型,的Hap_3是優(yōu)異單倍型,在77 bp處的變異(S>L)可能與粳稻和秈稻的分化有關(guān)。編碼糖基轉(zhuǎn)移酶,與之前發(fā)現(xiàn)的調(diào)控孕穗期耐冷基因Ctb2位點相距12.3 Mb[57],且CTB2也是個編碼葡糖基轉(zhuǎn)移酶基因。低溫脅迫下,Ctb2通過影響甾醇糖苷和乙?;薮继擒盏暮烤S持細胞膜的滲透性,保護花粉粒及花粉外壁結(jié)構(gòu),最終提高水稻的耐冷性。無獨有偶,LI等[58]發(fā)現(xiàn)擬南芥中的UDP-糖基轉(zhuǎn)移酶UGT79B2/3過表達植株耐冷性增強,且其表達受CBF1直接調(diào)控。SHI等[59]鑒定的苗期耐冷基因OsUGT90A1也屬于糖基轉(zhuǎn)移酶家族成員,而糖基轉(zhuǎn)移酶屬于GT家族中最大的一個分支,參與很多代謝過程,故推測很有可能在水稻芽期低溫脅迫的響應(yīng)中發(fā)揮著重要作用。編碼的是含有F-box結(jié)構(gòu)域的蛋白質(zhì)基因,與SAITO等[60]分離的開花期耐冷基因相距約17 Mb,也屬于F-box 蛋白,以往研究表明,F(xiàn)-box蛋白整合了幾乎所有的植物激素信號通路,在調(diào)節(jié)各種發(fā)育過程和應(yīng)激反應(yīng)中發(fā)揮重要作用[61-63]。水稻中耐冷相關(guān)基因MAIF1編碼的也是F-box蛋白[62],因此,本研究篩選編碼F-box蛋白的基因有很大可能參與芽期耐冷調(diào)控,當然還需要進一步功能分析加以驗證。

      4 結(jié)論

      在第4染色體上檢測到3個完全一致的顯著性SNP,篩選出2個與水稻芽期耐冷性密切相關(guān)基因(和)。

      [1] ZHENG S, LIU S, FENG J, WANG W, WANG Y, YU Q, LIAO Y, MO Y, XU Z, LI L, GAO X, JIA X, ZHU J, CHEN R. Overexpression of a stress response membrane protein geneenhances rice tolerance to salt, cold and heavy metal stress. Environmental and Experimental Botany, 2021, 182: 104327.

      [2] WANG H, LEE A R, PARK S Y, JIN S H, LEE J, HAM T H, PARK Y, ZHAO W G, KWON S W. Genome-wide association study reveals candidate genes related to low temperature tolerance in rice () during germination. 3 Biotech, 2018, 8(5): 1-13.

      [3] CHENG S H, CAO L Y, ZHUANG J Y, CHEN S G, ZHAN X D, FAN Y Y, ZHU D F, MIN S K. Super hybrid rice breeding in china: achievements and prospects. Journal of Integrative Plant Biology, 2007, 49(6): 805-810.

      [4] VILAS J M, CORIGLIANO M G, CLEMENTE M, MAIALE S J, RODRIGUEZ A A. Close relationship between the state of the oxygen evolving complex and rice cold stress tolerance. Plant Science, 2020, 296: 110488.

      [5] SIPASEUTH, BASNAYAKE J, FUKAI S, FARRELL T C, SENTHONGHAE M, SENGKEO, PHAMIXAY S, LINQUIST B, CHANPHENGSAY M. Opportunities to increasing dry season rice productivity in low temperature affected areas. Field Crops Research, 2007, 102(2): 87-97.

      [6] ZHANG M, YE J, XU Q, FENG Y, YUAN X, YU H, WANG Y, WEI X, YANG Y. Genome-wide association study of cold tolerance of Chineserice varieties at the bud burst stage. Plant Cell Reports, 2018, 37(3): 529-539.

      [7] SUH J P, JEUNG J U, LEE J I, CHOI Y H, YEA J D, VIRK P S, MACKILL D J, JENA K K. Identification and analysis of QTLs controlling cold tolerance at the reproductive stage and validation of effective QTLs in cold-tolerant genotypes of rice (L.). Theoretical and Applied Genetics, 2010, 120(5): 985-995.

      [8] FUJINO K, MATSUDA Y. Genome-wide analysis of genes targeted by qLTG3-1 controlling low-temperature germinability in rice. Plant Molecular Biology, 2010, 72(1): 137-152.

      [9] FUJINO K, SEKIGUCHI H, MATSUDA Y, SUGIMOTO K, ONO K, YANO M. Molecular identification of a major quantitative trait locus, qLTG3-1, controlling low-temperature germinability in rice. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(34): 12623-12628.

      [10] SAITO K, HAYANO-SAITO Y, MARUYAMA-FUNATSUKI W, SATO Y, KATO A. Physical mapping and putative candidate gene identification of a quantitative trait locus Ctb1 for cold tolerance at the booting stage of rice. Theoretical and Applied Genetics, 2004, 109(3): 515-522.

      [11] FUJINO K, SEKIGUCHI H, SATO T, KIUCHI H, NONOUE Y, TAKEUCHI Y, ANDO T, LIN S Y, YANO M. Mapping of quantitative trait loci controlling low-temperature germinability in rice (L.). Theoretical and Applied Genetics, 2004, 108(5): 794-799.

      [12] ANDAYA V C, TAI T H. Fine mapping of thelocus, a major QTL for seedling cold tolerance in rice. Theoretical and Applied Genetics, 2006, 113(3): 467-475.

      [13] LOU Q, CHEN L, SUN Z, XING Y, LI J, XU X, MEI H, LUO L. A major QTL associated with cold tolerance at seedling stage in rice (L.). Euphytica, 2007, 158(1): 87-94.

      [14] KUMAR V, LADHA J K. Direct seeding of rice. recent developments and future research needs. Advances in Agronomy, 2011, 111: 297-413.

      [15] IWATA N, SHINADA H, KIUCHI H, SATO T, FUJINO K. Mapping of QTLs controlling seedling establishment using a direct seeding method in rice. Breeding Science, 2010, 60(4): 353-360.

      [16] ZHANG Z H, QU X S, WAN S, CHEN L H, ZHU Y G. Comparison of QTL controlling seedling vigour under different temperature conditions using recombinant inbred lines in rice (). Annals of Botany, 2005, 95(3): 423-429.

      [17] CHEN L, LOU Q J, SUN Z X, XING Y Z, XIN-QIAO Y U, LUO L J. Qtl mapping of low temperature on germination rate of rice. Rice Science, 2006, 13(2): 93-98.

      [18] JI S L, JIANG L, WANG Y H, ZHANG W W, LIU X, LIU S J, CHEN L M, ZHAI H Q, WAN J M. Quantitative trait loci mapping and stability for low temperature germination ability of rice. Plant Breeding, 2009, 128(4): 387-392.

      [19] WAN J M, JIANG L, TANG J Y, WANG C M, HOU M Y, JING W, ZHANG L X. Genetic dissection of the seed dormancy trait in cultivated rice (L.). Plant Science, 2006, 170(4): 786-792.

      [20] SUGIMOTO K, TAKEUCHI Y, EBANA K, MIYAO A, HIROCHIKA H, HARA N, ISHIYAMA K, KOBAYASHI M, BAN Y, HATTORI T, YANO M. Molecular cloning of Sdr4, a regulator involved in seed dormancy and domestication of rice. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(13): 5792-5797.

      [21] SHARIFI P. Evaluation on sixty-eight rice germplasms in cold tolerance at germination stage. Rice Science, 2010, 17(1): 77-81.

      [22] LI L, LIU X, XIE K, WANG Y, LIU F, LIN Q, WANG W, YANG C, LU B, LIU S, CHEN L, JIANG L, WAN J. qLTG-9, a stable quantitative trait locus for low-temperature germination in rice (L.). Theoretical and Applied Genetics, 2013, 126(9): 2313-2322.

      [23] ALBINANA C, GROVE J, MCGRATH J J, AGERBO E, WRAY N R, BULIK C M, NORDENTOFT M, HOUGAARD D M, WERGE T, BORGLUM A D, MORTENSEN P B, PRIVE F, VILHJALMSSON B J. Leveraging both individual-level genetic data and GWAS summary statistics increases polygenic prediction. American Journal of Human Genetics, 2021, 108(6): 1001-1011.

      [24] HUANG X, WEI X, SANG T, ZHAO Q, FENG Q, ZHAO Y, LI C, ZHU C, LU T, ZHANG Z, LI M, FAN D, GUO Y, WANG A, WANG L, DENG L, LI W, LU Y, WENG Q, LIU K, HUANG T, ZHOU T, JING Y, LI W, LIN Z, BUCKLER E S, QIAN Q, ZHANG Q F, LI J, HAN B. Genome-wide association studies of 14 agronomic traits in rice landraces. Nature Genetics, 2010, 42(11): 961-967.

      [25] HUANG X, ZHAO Y, WEI X, LI C, WANG A, ZHAO Q, LI W, GUO Y, DENG L, ZHU C, FAN D, LU Y, WENG Q, LIU K, ZHOU T, JING Y, SI L, DONG G, HUANG T, LU T, FENG Q, QIAN Q, LI J, HAN B. Genome-wide association study of flowering time and grain yield traits in a worldwide collection of rice germplasm. Nature Genetics, 2011, 44(1): 32-39.

      [26] ZHAO K, TUNG C W, EIZENGA G C, WRIGHT M H, ALI M L, PRICE A H, NORTON G J, ISLAM M R, REYNOLDS A, MEZEY J, MCCLUNG A M, BUSTAMANTE C D, MCCOUCH S R. Genome-wide association mapping reveals a rich genetic architecture of complex traits in. Nature Communications, 2011, 2(1): 1-10.

      [27] HSIAO C F, CHIU Y F, CHIANG F T, HO L T, LEE W J, HUNG Y J, CHEN Y D, DONLON T A, JORGENSON E, CURB D, RISCH N, HSIUNG C A, GROUP S A S. Genome-wide linkage analysis of lipids in nondiabetic Chinese and Japanese from the SAPPHIRe family study. American Journal of Hypertension, 2006, 19(12): 1270-1277.

      [28] NICOLAE D L, GAMAZON E, ZHANG W, DUAN S, DOLAN M E, COX N J. Trait-associated SNPs are more likely to be eQTLs: annotation to enhance discovery from GWAS. PLoS Genetics, 2010, 6(4): e1000888.

      [29] YANG J, FERREIRA T, MORRIS A P, MEDLAND S E, GENETIC INVESTIGATION OF A T C, REPLICATION D I G, META ANALYSIS C, MADDEN P A, HEATH A C, MARTIN N G, MONTGOMERY G W, WEEDON M N, LOOS R J, FRAYLING T M, MCCARTHY M I, HIRSCHHORN J N, GODDARD M E, VISSCHER P M. Conditional and joint multiple-SNP analysis of GWAS summary statistics identifies additional variants influencing complex traits. Nature Genetics, 2012, 44(4): 369-375.

      [30] LI Y H, LI D, JIAO Y Q, SCHNABLE J C, LI Y F, LI H H, CHEN H Z, HONG H L, ZHANG T, LIU B, LIU Z X, YOU Q B, TIAN Y, GUO Y, GUAN R X, ZHANG L J, CHANG R Z, ZHANG Z, REIF J, ZHOU X A, SCHNABLE P S, QIU L J. Identification of loci controlling adaptation in Chinese soya bean landraces via a combination of conventional and bioclimatic GWAS. Plant Biotechnology Journal, 2020, 18(2): 389-401.

      [31] HWANG E Y, SONG Q, JIA G, SPECHT J E, HYTEN D L, COSTA J, CREGAN P B. A genome-wide association study of seed protein and oil content in soybean. BMC Genomics, 2014, 15(1): 1-12.

      [32] WU S, ALSEEKH S, CUADROS-INOSTROZA A, FUSARI C M, MUTWIL M, KOOKE R, KEURENTJES J B, FERNIE A R, WILLMITZER L, BROTMAN Y. Combined use of genome-wide association data and correlation networks unravels key regulators of primary metabolism in. PLoS Genetics, 2016, 12(10): e1006363.

      [33] WENG J, XIE C, HAO Z, WANG J, LIU C, LI M, ZHANG D, BAI L, ZHANG S, LI X. Genome-wide association study identifies candidate genes that affect plant height in Chinese elite maize (L.) inbred lines. PLoS One, 2011, 6(12): e29229.

      [34] WU J, FENG F, LIAN X, TENG X, WEI H, YU H, XIE W, YAN M, FAN P, LI Y, MA X, LIU H, YU S, WANG G, ZHOU F, LUO L, MEI H. Genome-wide association study (GWAS) of mesocotyl elongation based on re-sequencing approach in rice. BMC Plant Biology, 2015, 15: 218.

      [35] LI Z, WANG X, CUI Y, QIAO K, ZHU L, FAN S, MA Q. Comprehensive genome-wide analysis of thaumatin-like gene family in four cotton species and functional identification ofinvolved in regulating tolerance toand drought. Frontiers in Plant Science, 2020, 11: 575015.

      [36] FUJINO K, OBARA M, SHIMIZU T, KOYANAGI K O, IKEGAYA T. Genome-wide association mapping focusing on a rice population derived from rice breeding programs in a region. Breeding Science, 2015, 65(5): 403-410.

      [37] PAN Y, ZHANG H, ZHANG D, LI J, XIONG H, YU J, LI J, RASHID M A, LI G, MA X, CAO G, HAN L, LI Z. Genetic analysis of cold tolerance at the germination and booting stages in rice by association mapping. PLoS One, 2015, 10(3): e0120590.

      [38] HAN L Z, ZHANG Y Y, QIAO Y L, CAO G L, ZHANG S Y, KIM J H, KOH H J. Genetic and QTL analysis for low-temperature vigor of germination in rice. Acta Genetica Sinica, 2006, 33(11): 998-1006.

      [39] ZHOU X, STEPHENS M. Genome-wide efficient mixed-model analysis for association studies. Nature Genetics, 2012, 44(7): 821-824.

      [40] PEET R K. The measurement of species diversity. Annual Review of Ecology and Systematics, 1974, 5(1): 285-307.

      [41] YANG J, YANG M, SU L, ZHOU D, HUANG C, WANG H, GUO T, CHEN Z. Genome-wide association study reveals novel genetic loci contributing to cold tolerance at the germination stage in indica rice. Plant Science, 2020, 301: 110669.

      [42] LIN J, ZHU W Y, ZHANG Y D, ZHU Z, ZHAO L, CHEN T, ZHAO Q Y, ZHOU L H, FANG X W, WANG Y P, WANG C L. Detection of QTL for cold tolerance at bud bursting stage using chromosome segment substitution lines in rice (). Rice Science, 2011, 18(1): 71-74.

      [43] XIAO H, CHEN J F, ZHANG Z X. Influence of deposition temperature on the structure of Si3N4 thin film prepared by MWECR-PECVD. Plasma Science & Technology, 2004, 6(5): 2485-2488.

      [44] 紀素蘭, 江玲, 王益華, 劉世家, 劉喜, 翟虎渠, 吉村醇, 萬建民. 水稻種子耐低溫發(fā)芽力的QTL定位及上位性分析. 作物學報, 2008, 34(4): 551-556.

      JI S L, JIANG L, WANG Y H, LIU S J, LIU X, ZHAI H Q, YOSHIMURA A, WAN J M. QTL and epistasis for low temperature germinability in rice. Acta Agronomica Sinica, 2008, 34(4): 551-556. (in Chinese)

      [45] MIURA K, LIN S Y, YANO M, NAGAMINE T. Mapping quantitative trait loci controlling low temperature germinability in rice (L.). Breeding Science, 2001, 51(4): 293-299.

      [46] HYUN D Y, OH M, CHOI Y M, LEE S, LEE M C, OH S. Morphological and molecular evaluation for germinability in rice varieties under low-temperature and anaerobic conditions. Journal of Crop Science and Biotechnology, 2017, 20(1): 21-27.

      [47] ANGAJI S A, SEPTININGSIH E M, MACKILL D J, ISMAIL A M. QTLs associated with tolerance of flooding during germination in rice (L.). Euphytica, 2009, 172(2): 159-168.

      [48] CRUZ R P, MILACH S C K. Cold tolerance at the germination stage of rice: methods of evaluation and characterization of genotypes. Scientia Agricola, 2004, 61(1): 1-8.

      [49] YE C, FUKAI S, GODWIN I, REINKE R, SNELL P, SCHILLER J, BASNAYAKE J. Cold tolerance in rice varieties at different growth stages. Crop and Pasture Science, 2009, 60(4): 328-338.

      [50] WANG X, WANG H, LIU S, FERJANI A, LI J, YAN J, YANG X, QIN F. Genetic variation incontributes to drought tolerance in maize seedlings. Nature Genetics, 2016, 48(10): 1233-1241.

      [51] WAN H, CHEN L, GUO J, LI Q, WEN J, YI B, MA C, TU J, FU T, SHEN J. Genome-wide association study reveals the genetic architecture underlying salt tolerance-related traits in rapeseed (L.). Frontiers in Plant Science, 2017, 8: 593.

      [52] JIA L, YAN W, ZHU C, AGRAMA H A, JACKSON A, YEATER K, LI X, HUANG B, HU B, MCCLUNG A, WU D. Allelic analysis of sheath blight resistance with association mapping in rice. PLoS One, 2012, 7(3): e32703.

      [53] KANG H, WANG Y, PENG S, ZHANG Y, XIAO Y, WANG D, QU S, LI Z, YAN S, WANG Z, LIU W, NING Y, KORNILIEV P, LEUNG H, MEZEY J, MCCOUCH S R, WANG G L. Dissection of the genetic architecture of rice resistance to the blast fungus. Molecular Plant Pathology, 2016, 17(6): 959-972.

      [54] YANG W, GUO Z, HUANG C, DUAN L, CHEN G, JIANG N, FANG W, FENG H, XIE W, LIAN X, WANG G, LUO Q, ZHANG Q, LIU Q, XIONG L. Combining high-throughput phenotyping and genome- wide association studies to reveal natural genetic variation in rice. Nature Communications, 2014, 5(1): 1-9.

      [55] WANG D, LIU J, LI C, KANG H, WANG Y, TAN X, LIU M, DENG Y, WANG Z, LIU Y, ZHANG D, XIAO Y, WANG G L. Genome-wide association mapping of cold tolerance genes at the seedling stage in rice. Rice, 2016, 9(1): 61.

      [56] JIANG L, LIU S, HOU M, TANG J, CHEN L, ZHAI H, WAN J. Analysis of QTLs for seed low temperature germinability and anoxia germinability in rice (L.). Field Crops Research, 2006, 98(1): 68-75.

      [57] LI J, ZENG Y, PAN Y, ZHOU L, ZHANG Z, GUO H, LOU Q, SHUI G, HUANG H, TIAN H, GUO Y, YUAN P, YANG H, PAN G, WANG R, ZHANG H, YANG S, GUO Y, GE S, LI J, LI Z. Stepwise selection of natural variations atandimproves cold adaptation during domestication ofrice. New Phytologist, 2021, 231(3): 1056-1072.

      [58] LI P, LI Y J, ZHANG F J, ZHANG G Z, JIANG X Y, YU H M, HOU B K.UDP‐glycosyltransferases UGT79B2 and UGT79B3, contribute to cold, salt and drought stress tolerance via modulating anthocyanin accumulation. The Plant Journal, 2017, 89(1): 85-103.

      [59] SHI Y, HUY P, LIU Y, CAO S, ZHANG Z, CHU C, SCHLPPI M R. Glycosyltransferase OsUGT90A1 helps protect the plasma membrane during chilling stress in rice. Journal of Experimental Botany, 2020, 71(9): 2723-2739.

      [60] SAITO K, HAYANO-SAITO Y, KUROKI M, SATO Y. Map-based cloning of the rice cold tolerance gene. Plant Science, 2010, 179(1/2): 97-102.

      [61] CALLIS D J. Ubiquitin, hormones and biotic stress in plants. Annals of Botany, 2007, 99(5): 787-822.

      [62] YAN Y S, CHEN X Y, YANG K., SUN Z X, FU Y P, ZHANG Y M, FANG R X. Overexpression of an F-box protein gene reduces abiotic stress tolerance and promotes root growth in rice. Molecular Plant, 2011, 4(1): 190-197.

      [63] KOCH K. Sucrose metabolism: regulatory mechanisms and pivotal roles in sugar sensing and plant development. Current Opinion in Plant Biology, 2004, 7(3): 235-246.

      Genome-wide association study of cold tolerance atthe germination stage of rice

      PANG HongBo1, CHENG Lu1, Yu MingLan1, CHEN Qiang2, LI YueYing1, WU LongKun3, WANG Ze1, PAN XiaoWu4, ZHENG XiaoMing5,6

      1College of Life Science, Shenyang Normal University, Shenyang 110034;2Experiment Teaching Center, Shenyang Normal University, Shenyang 110034;3College of Grain Science and Technology, Shenyang Normal University, Shenyang 110034;4Rice Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125;5Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081;6Sanya National Research Institute of Breeding in Hainan, Chinese Academy of Agricultural Sciences, Sanya 571700, Hainan

      【Objective】Rice is an important food crop, and its growth and development are most vulnerable at the germination stage. Under cold stress, direct-seeded rice exhibited significantly reduced germination rates (GRs) and yield compared with normally grown plants. Thus, a better understanding of genetic mechanisms regulating cold tolerance will enable to develop rice varieties with improved tolerance during germination. 【Method】238 representative rice germplasm resources from 14 countries worldwide were tested in phenotypic identification in Shenyang in 2021 and 2022; the low-temperature germination rate and relative low-temperature germination rate (LTGR and relative LTGR; 1-10 days under 15℃) were evaluated in an artificial climate incubator, and a 5-10 day LTGR histogram was constructed using R. The day suitable for GWAS was determined by phenotypic variation (Hill) and a mixed linear model combining LTGR and relative LTGR phenotype data with resequencing data. 【Result】LTGR histogram and phenotypic variation showed optimal GR on day 8 (Hill=0.84), i.e., it was higher than on other days (Hill=0.48-0.83), which could be used for GWAS. The principal component analysis results divided all germplasms into five groups—,,,, and. GWAS analysisof two indicators detected three identical significant single nucleotide polymorphisms (SNPs) related to cold tolerance in rice at the germination stage. These were located on chromosome 4, which could explain 11.9%-25.4% of the phenotype. In addition, 24 candidate genes were screened in the 50-kb region upstream and downstream of these three SNPs. Further linkage disequilibrium analysis and haplotype analysis were carried out and highly significant differences were found between different haplotypes of theandgenes for cold tolerance.was divided into five haplotypes by the coding region SNP, and Hap_3 was significantly more cold tolerant than Hap_1;was divided into 18 haplotypes by the coding region SNP and the amino acid variation (S>L) at 77 bp was different inandrice. These results showed that the genes encoding glycosyltransferases () and F-box protein () might be closely related to cold tolerance in rice.【Conclusion】 A total of three SNP loci were detected in 238 rice germplasm resources, and two candidate genes were screened for their association with cold tolerance during germination in rice.

      L.; seed germinability; cold tolerance;germination rate; GWAS

      10.3864/j.issn.0578-1752.2022.21.001

      2022-07-15;

      2022-08-17

      國家自然科學基金(31970237)、遼寧省自然科學基金面上項目(2022-MS-309)、沈陽市中青年科技創(chuàng)新人才計劃(RC190223)、沈陽師范大學“百人計劃”拔尖人才項目(SSDBRJH2002012)、沈陽師范大學重大項目孵化工程(ZD202104)

      逄洪波(通信作者),Tel:024-86593335;E-mail:panghb@synu.edu.cn。通信作者鄭曉明,E-mail:zhengxiaoming@caas.cn

      (責任編輯 李莉)

      猜你喜歡
      冷性發(fā)芽率基因組
      牛參考基因組中發(fā)現(xiàn)被忽視基因
      優(yōu)質(zhì)水稻新品種芽期耐冷性鑒定
      北方水稻(2020年2期)2020-04-21 09:00:28
      探討低溫冷凍條件對玉米種子發(fā)芽率的影響
      種子科技(2018年11期)2018-09-10 00:56:48
      低溫及赤霉素處理對絲綿木種子萌發(fā)的影響
      轉(zhuǎn)檉柳冷適應(yīng)蛋白基因水稻的獲得及抗冷性分析
      夏玉米種子發(fā)芽率對植株和產(chǎn)量性狀的影響
      黃瓜果實耐冷性與CsHSFs基因表達關(guān)系的研究
      錳離子濃度對黃瓜幼苗葉片抗冷性的影響
      基因組DNA甲基化及組蛋白甲基化
      遺傳(2014年3期)2014-02-28 20:58:49
      有趣的植物基因組
      世界科學(2014年8期)2014-02-28 14:58:31
      绥宁县| 九台市| 深泽县| 文安县| 蓝田县| 海阳市| 北京市| 饶平县| 新巴尔虎右旗| 呈贡县| 普兰店市| 巴林右旗| 茶陵县| 丰原市| 宜阳县| 陕西省| 石门县| 石家庄市| 南阳市| 元谋县| 安国市| 永丰县| 贵阳市| 乌拉特前旗| 郴州市| 金秀| 海安县| 闽侯县| 应城市| 海丰县| 南雄市| 天门市| 枝江市| 伊川县| 大方县| 遂川县| 达孜县| 隆子县| 雅安市| 宁陵县| 禄劝|