董明明,趙番番,葛建軍,趙俊亮,王丹,胥磊,張夢(mèng)華,種麗偉,黃錫霞,王雅春
新疆地區(qū)荷斯坦牛長(zhǎng)壽性與產(chǎn)奶量的遺傳力估計(jì)及相關(guān)性分析
董明明1,趙番番1,葛建軍2,趙俊亮2,王丹1,胥磊1,張夢(mèng)華1,種麗偉1,黃錫霞1,王雅春3
1新疆農(nóng)業(yè)大學(xué)動(dòng)物科學(xué)學(xué)院,烏魯木齊 830052;2新疆呼圖壁種牛場(chǎng),新疆呼圖壁 831203;3中國(guó)農(nóng)業(yè)大學(xué)動(dòng)物科學(xué)技術(shù)學(xué)院,北京 100193
【目的】產(chǎn)奶性狀和長(zhǎng)壽性狀均是奶牛育種中的重要性狀。近年來(lái)奶牛選育中追求高產(chǎn),在產(chǎn)奶量不斷提高的同時(shí),長(zhǎng)壽性卻呈下降趨勢(shì)。隨著平衡育種理念的發(fā)展,各奶業(yè)發(fā)達(dá)國(guó)家陸續(xù)將長(zhǎng)壽性狀納入其奶牛綜合選擇指數(shù)。為此,探究產(chǎn)奶量和奶牛長(zhǎng)壽性間的關(guān)系,為新疆地區(qū)制定中國(guó)荷斯坦奶牛綜合選擇指數(shù),實(shí)現(xiàn)平衡育種和奶業(yè)高質(zhì)量健康發(fā)展提供借鑒?!痉椒ā渴占陆貐^(qū)3個(gè)規(guī)?;?chǎng)1997—2020年間的各項(xiàng)生產(chǎn)記錄,計(jì)算在群天數(shù)和生產(chǎn)壽命,共計(jì)獲得7 206條奶牛長(zhǎng)壽性記錄和15 218條頭胎305 d產(chǎn)奶量記錄。收集個(gè)體三代系譜信息共計(jì)18 183條,其中包括903頭公牛以及20 883頭母牛。首先利用SAS 9.2軟件的GLM過(guò)程分析場(chǎng)、出生年份、出生季節(jié)和初產(chǎn)月齡對(duì)新疆地區(qū)中國(guó)荷斯坦牛在群天數(shù)、生產(chǎn)壽命和頭胎305 d產(chǎn)奶量的影響,計(jì)算出在群天數(shù)、生產(chǎn)壽命和頭胎305 d產(chǎn)奶量的最小二乘均值。再利用SPSS 19.0 軟件計(jì)算新疆地區(qū)中國(guó)荷斯坦牛在群天數(shù)、生產(chǎn)壽命和頭胎305 d產(chǎn)奶量Pearson相關(guān)系數(shù)。其次利用DMU軟件中AI-REML結(jié)合EM算法并配合多性狀動(dòng)物模型,估計(jì)新疆地區(qū)荷斯坦奶牛在群天數(shù)、生產(chǎn)壽命和頭胎305 d產(chǎn)奶量的遺傳方差、表型方差、協(xié)方差,計(jì)算在群天數(shù)、生產(chǎn)壽命和頭胎305 d產(chǎn)奶量之間的遺傳相關(guān)。最后利用動(dòng)物模型 BLUP 法對(duì)新疆地區(qū)中國(guó)荷斯坦牛在群天數(shù)、生產(chǎn)壽命和頭胎305 d產(chǎn)奶量進(jìn)行育種值的估計(jì),并繪制遺傳趨勢(shì)圖。【結(jié)果】對(duì)新疆地區(qū)中國(guó)荷斯坦牛在群天數(shù)、生產(chǎn)壽命和頭胎305 d產(chǎn)奶量進(jìn)行基本統(tǒng)計(jì)分析結(jié)果顯示:新疆地區(qū)中國(guó)荷斯坦奶牛平均在群天數(shù)1 754.7 d,平均生產(chǎn)壽命937.33 d,頭胎305 d產(chǎn)奶量平均為9 362.94 kg。GLM程序分析顯示不同場(chǎng)、出生年份、出生季節(jié)以及初產(chǎn)月齡效應(yīng)對(duì)在群天數(shù)、生產(chǎn)壽命以及頭胎305 d產(chǎn)奶量均有極顯著影響(<0.01)。新疆地區(qū)中國(guó)荷斯坦牛在群天數(shù)、生產(chǎn)壽命和頭胎305 d產(chǎn)奶量的遺傳力為0.11(0.03)、0.11(0.03)和0.33(0.03)。在群天數(shù)和生產(chǎn)壽命之間遺傳和表型相關(guān)高,相關(guān)系數(shù)分別為0.99和0.98;305 d產(chǎn)奶量與在群天數(shù)和生產(chǎn)壽命表型之間呈正相關(guān),相關(guān)系數(shù)分別為0.079和0.077,而遺傳相關(guān)則呈負(fù)相關(guān),相關(guān)系數(shù)分別為-0.18和-0.20。對(duì)新疆地區(qū)中國(guó)荷斯坦在群天數(shù)、生產(chǎn)壽命和頭胎305 d產(chǎn)奶量遺傳趨勢(shì)圖繪制可知,在群天數(shù)和生產(chǎn)壽命,均隨著參測(cè)牛頭數(shù)增加育種值變化較大,整體呈下降趨勢(shì);荷斯坦牛的頭胎305 d產(chǎn)奶量同樣隨著參測(cè)牛頭數(shù)的增加,育種值變化較大,但是總體呈現(xiàn)上升趨勢(shì)?!窘Y(jié)論】因此在對(duì)產(chǎn)奶量進(jìn)行選育提高同時(shí),應(yīng)當(dāng)兼顧長(zhǎng)壽性,避免隨著產(chǎn)奶量的提高,導(dǎo)致奶牛長(zhǎng)壽性的下降。
頭胎305 d產(chǎn)奶量;在群天數(shù);生產(chǎn)壽命;遺傳力;遺傳相關(guān)
【研究意義】產(chǎn)奶是奶牛養(yǎng)殖獲得產(chǎn)生經(jīng)濟(jì)效益的關(guān)鍵,為了獲得更高的經(jīng)濟(jì)效益,奶牛養(yǎng)殖者們以追求高產(chǎn)為目標(biāo),但是隨著以高產(chǎn)為育種目標(biāo)的奶牛養(yǎng)殖行業(yè)不斷地發(fā)展,產(chǎn)奶量的不斷提高,奶牛的繁殖、壽命等性狀呈現(xiàn)下降的趨勢(shì)[1-3]。隨著平衡育種理念的發(fā)展,越來(lái)越多的功能性狀受到了的關(guān)注,如奶牛長(zhǎng)壽性。奶牛長(zhǎng)壽性,即奶牛生產(chǎn)壽命的長(zhǎng)短和健康狀況的指標(biāo),奶牛長(zhǎng)壽性對(duì)奶牛生產(chǎn)成本有潛在影響,對(duì)奶牛養(yǎng)殖健康發(fā)展至關(guān)重要?!厩叭搜芯窟M(jìn)展】目前,加拿大、美國(guó)等國(guó)家已將各種生產(chǎn)壽命性狀納入選育指標(biāo)[4]。Pryce等指出:產(chǎn)奶量對(duì)生產(chǎn)壽命和繁殖力存在負(fù)面影響[5]。Knaus等[6]研究表明,高產(chǎn)荷斯坦奶牛健康狀況和繁殖力較差,被淘汰的風(fēng)險(xiǎn)較高,且高產(chǎn)奶牛生產(chǎn)壽命從原來(lái)的3.4年降至2.8年,產(chǎn)奶量提高會(huì)使奶牛的長(zhǎng)壽性下降。Van Raden等[7]利用多性狀線性動(dòng)物模型,對(duì)美國(guó)荷斯坦奶牛首次產(chǎn)犢月齡、生產(chǎn)壽命、產(chǎn)奶量、乳脂率、蛋白率以及體細(xì)胞評(píng)分的遺傳方差和協(xié)方差進(jìn)行計(jì)算,發(fā)現(xiàn)生產(chǎn)壽命和產(chǎn)奶量的遺傳相關(guān)系數(shù)為0.03,是低的正相關(guān)關(guān)系。Irano等[8]利用多性狀動(dòng)物模型研究了熱帶環(huán)境荷斯坦奶牛的3個(gè)重要性狀——產(chǎn)奶量、在群天數(shù)和乳房炎之間的遺傳相關(guān),也表明產(chǎn)奶量和在群天數(shù)之間存在低的正遺傳相關(guān)。在我國(guó),張海亮[9]等對(duì)寧夏地區(qū)荷斯坦牛生產(chǎn)壽命影響因素進(jìn)行分析,表明場(chǎng)-出生年、出生季節(jié)、牧場(chǎng)規(guī)模、淘汰原因和頭胎產(chǎn)犢月齡均對(duì)長(zhǎng)壽性有顯著影響。李想[10]等對(duì)北京地區(qū)荷斯坦牛,利用不同動(dòng)物模型進(jìn)行了遺傳參數(shù)估計(jì),表明生產(chǎn)壽命性狀遺傳力為0.047—0.069,且多性狀動(dòng)物模型預(yù)測(cè)準(zhǔn)確性更高?!颈狙芯壳腥朦c(diǎn)】目前,新疆地區(qū)關(guān)于305 d產(chǎn)奶量與奶牛長(zhǎng)壽性相關(guān)研究較少?!緮M解決的關(guān)鍵問(wèn)題】本研究以新疆地區(qū)荷斯坦牛為研究對(duì)象,通過(guò)收集荷斯坦牛在群天數(shù)、生產(chǎn)壽命和頭胎305 d產(chǎn)奶量。利用DMU軟件DMUAI模塊,結(jié)合多性狀動(dòng)物模型估計(jì)新疆地區(qū)荷斯坦奶牛在群天數(shù)、生產(chǎn)壽命和頭胎305 d產(chǎn)奶量的遺傳力,并探究它們之間的關(guān)系,為新疆地區(qū)制定荷斯坦奶牛綜合選擇指數(shù),實(shí)現(xiàn)奶業(yè)高質(zhì)量健康發(fā)展提供參考。
數(shù)據(jù)來(lái)源于新疆地區(qū)3個(gè)規(guī)模化牛場(chǎng)1997—2020年間的離群記錄,在群天數(shù)由個(gè)體號(hào)離群日期減去出生日期所得,生產(chǎn)壽命由個(gè)體號(hào)離群日期減去第一次產(chǎn)犢日期所得,共計(jì)獲得7 206條記錄。將收集到相同牧場(chǎng)的產(chǎn)奶量數(shù)據(jù)根據(jù)張文龍[11]等制定的新疆地區(qū)荷斯坦奶牛305 d產(chǎn)奶量校正系數(shù),對(duì)泌乳天數(shù)在90—305 d產(chǎn)奶量記錄進(jìn)行校正,獲得共計(jì)15 218條記錄。收集個(gè)體三代系譜信息共計(jì)18 183條,其中包括903頭公牛以及20 883頭母牛。
本研究對(duì)收集到的數(shù)據(jù)依照以下原則進(jìn)行質(zhì)控,用于后續(xù)分析,質(zhì)控標(biāo)準(zhǔn)見(jiàn)表1[9-10]。
表1 數(shù)據(jù)質(zhì)控項(xiàng)目及其標(biāo)準(zhǔn)
場(chǎng)1、2、3為新疆地區(qū)3個(gè)規(guī)?;?chǎng);根據(jù)新疆地域氣候特點(diǎn)將出生季分為4個(gè)水平,分別為3—5月(春季)、6—8月(夏季)、9—11月(秋季)、12—2月(冬季);出生年份效應(yīng)根據(jù)奶牛事件信息年份自1990—2019年,中國(guó)荷斯坦牛出生年劃分為6個(gè)水平,分別為1982—1993、1994—1998、1999—2003、2004—2008、2009—2013、2014—2019年;計(jì)算得到的頭胎產(chǎn)犢日齡計(jì)算月齡后進(jìn)行分組,將頭胎產(chǎn)犢日齡分組后作為固定效應(yīng),一共分為10個(gè)水平,分別為20—22月齡、23月齡、24月齡、25月齡、26月齡、27月齡、28月齡、29月齡、30—31月齡、32—37月齡和37月齡以上。由于37月齡以上的個(gè)體數(shù)相對(duì)較少,因此將較大月齡范圍合并為同一個(gè)組,保證每個(gè)分組中有相對(duì)合理的數(shù)據(jù)量[12]。具體水平見(jiàn)表2。
使用SAS 9.2軟件的GLM過(guò)程分析場(chǎng)、出生年份、出生季節(jié)和初產(chǎn)月齡對(duì)新疆地區(qū)中國(guó)荷斯坦牛在群天數(shù)、生產(chǎn)壽命和頭胎305 d產(chǎn)奶量的影響,計(jì)算出在群天數(shù)、生產(chǎn)壽命和頭胎305 d產(chǎn)奶量的最小二乘均值,模型如下所示:
表2 效應(yīng)水平劃分
ijklm=+i+j+k+1+ijklm
式中,ijklm為在群天數(shù)、生產(chǎn)壽命和頭胎305 d產(chǎn)奶量;μ為總體均值;i為第i個(gè)場(chǎng)的效應(yīng);j為第j出生年份的效應(yīng);k為第k出生季節(jié)的效應(yīng);1(Age at first calving)為第l個(gè)初產(chǎn)月齡的效應(yīng);ijklm為隨機(jī)誤差。
使用SPSS 19.0 軟件計(jì)算新疆地區(qū)中國(guó)荷斯坦牛在群天數(shù)、生產(chǎn)壽命和頭胎305 d產(chǎn)奶量Pearson相關(guān)系數(shù),公式如下[13]:
式中:μ、μ為、平均值,σ、σ為、標(biāo)準(zhǔn)差,如果和完全(反)相關(guān),得到的值是+1/?1,如果它們不相關(guān),得到的值是≈0。
將對(duì)新疆地區(qū)中國(guó)荷斯坦牛在群天數(shù)、生產(chǎn)壽命和頭胎305 d產(chǎn)奶量有顯著影響的因素,作為固定效應(yīng),并使用DMU軟件的DMUAI模塊,并結(jié)合EM算法,計(jì)算方差組分估計(jì)值,配合多性狀動(dòng)物模型,表達(dá)式為:
y=b+a+e
式中,y為個(gè)體觀察值向量,包括在群天數(shù)、生產(chǎn)壽命和頭胎305 d產(chǎn)奶量;b為固定效應(yīng)向量;a為加性遺傳效應(yīng)向量;e為隨機(jī)差效應(yīng)向量;分別為b、a的關(guān)聯(lián)矩陣。
得到各性狀的方差組分后帶入如下公式計(jì)算遺傳參數(shù):
遺傳力(Heritability):,其中、分別為加性遺傳方差、表型方差。遺傳相關(guān)(Genetic correlation):,其中、分別為群天數(shù)、生產(chǎn)壽命和頭胎305 d產(chǎn)奶量的加性遺傳方差,cov(、)為群天數(shù)、生產(chǎn)壽命和頭胎305 d產(chǎn)奶量的加性遺傳協(xié)方差。
對(duì)新疆地區(qū)中國(guó)荷斯坦牛在群天數(shù)、生產(chǎn)壽命和頭胎305 d產(chǎn)奶量利用動(dòng)物模型 BLUP 法進(jìn)行育種值的估計(jì),并在混合模型中,將動(dòng)物個(gè)體本身的加性遺傳效應(yīng)(育種值)當(dāng)做隨機(jī)效應(yīng)。動(dòng)物模型 BLUP 模型如下[14]:
y=b+a+e
式中,y為個(gè)體觀察值向量;b為固定效應(yīng)向量;a為隨機(jī)效應(yīng)向量;e為隨機(jī)殘差向量;和分別為b和a的結(jié)構(gòu)矩陣。
表3為新疆地區(qū)中國(guó)荷斯坦牛在群天數(shù)、生產(chǎn)壽命和頭胎305 d產(chǎn)奶量的描述性統(tǒng)計(jì)結(jié)果。平均在群天數(shù)為1 745.70 d,約為4.78年,平均胎次為2.78胎,平均生產(chǎn)壽命為937.33 d,約為2.56年。平均頭胎305 d產(chǎn)奶量為9 362.94 kg。
圖1為中國(guó)荷斯坦牛平均在群天數(shù)和生產(chǎn)壽命隨離群年份變化趨勢(shì),在群天數(shù)和生產(chǎn)壽命隨著出生年份增加,呈現(xiàn)明顯的下降趨勢(shì);2018年平均在群天數(shù)和生產(chǎn)壽命最低,分別934.15 d和216.77 d,在群天數(shù)約為2.56年,生產(chǎn)壽命不足1胎,這與牧場(chǎng)規(guī)模與飼養(yǎng)管理有關(guān),隨著牧場(chǎng)規(guī)模、生產(chǎn)水平以及飼養(yǎng)管理成本的提高,牧場(chǎng)對(duì)低產(chǎn)的標(biāo)準(zhǔn)、疾病淘汰的標(biāo)準(zhǔn)不一,導(dǎo)致牛群在群天數(shù)和生產(chǎn)壽命的降低。圖2為中國(guó)荷斯坦牛平均頭胎305 d產(chǎn)奶量隨出生年份變化趨勢(shì),荷斯坦牛頭胎305 d產(chǎn)奶量隨著出生年份的變化,呈現(xiàn)上升的趨勢(shì),2018年荷斯坦平均頭胎305 d產(chǎn)奶量達(dá)到最高為9 773.80 kg。說(shuō)明隨著對(duì)產(chǎn)奶量的不斷選育提高,荷斯坦奶牛在群天數(shù)和生產(chǎn)壽命均有明顯下降趨勢(shì)。
表3 中國(guó)荷斯坦牛在群天數(shù)、生產(chǎn)壽命和頭胎305 d產(chǎn)奶量的基本量統(tǒng)計(jì)
圖1 中國(guó)荷斯坦牛平均在群天數(shù)和生產(chǎn)壽命隨離群年份變化趨勢(shì)
圖2 中國(guó)荷斯坦牛平均頭胎305 d產(chǎn)奶量隨出生年份變化趨勢(shì)
表4為新疆地區(qū)中國(guó)荷斯坦牛在群天數(shù)、生產(chǎn)壽命和頭胎305 d產(chǎn)奶量影響因素的分析結(jié)果??梢?jiàn)不同牧場(chǎng)、出生年份、出生季節(jié)以及初產(chǎn)月齡對(duì)新疆地區(qū)中國(guó)荷斯坦牛在群天數(shù)、生產(chǎn)壽命和頭胎305 d產(chǎn)奶量均有極顯著影響(<0.001)。
由表5可知,2號(hào)牧場(chǎng)中國(guó)荷斯坦牛的在群天數(shù)和生產(chǎn)壽命顯著高于其他場(chǎng)(<0.01),而頭胎305 d產(chǎn)奶量1號(hào)牧場(chǎng)要顯著高于其他場(chǎng)(<0.01)。隨著出生年份的增加,在群天數(shù)和生產(chǎn)壽命呈先上升后下降的趨勢(shì),1999—2003年的在群天數(shù)和生產(chǎn)壽命顯著大于其他年份(<0.01),后隨著年份不斷下降,2014—2019年荷斯坦牛在群天數(shù)和生產(chǎn)壽命均顯著小于其他年份(<0.01),荷斯坦牛頭胎305 d產(chǎn)奶量則隨著年份的增加而升高,2014—2019年荷斯坦牛頭胎305 d產(chǎn)奶量顯著大于其他年份(<0.01)。根據(jù)季節(jié)的不同,在秋季出生的荷斯坦牛在群天數(shù)、生產(chǎn)壽命和頭胎305 d產(chǎn)奶量均顯著低于其他季節(jié)(<0.01)。隨著初產(chǎn)月齡的增加,荷斯坦牛的在群天數(shù)呈現(xiàn)下降趨勢(shì),初產(chǎn)月齡為37月齡以上的荷斯坦牛在群天數(shù)顯著大于其他月齡的荷斯坦牛(<0.01),初產(chǎn)月齡為20—22月齡的荷斯坦牛在群天數(shù)顯著小于其他初產(chǎn)月齡的荷斯坦牛(<0.01)。而荷斯坦牛生產(chǎn)壽命則呈現(xiàn)先上升后下降的趨勢(shì),初產(chǎn)月齡為27—28月齡的荷斯坦牛生產(chǎn)壽命顯著大于其他月齡的荷斯坦牛(<0.01)。頭胎305 d產(chǎn)奶量也呈現(xiàn)類似的趨勢(shì),初產(chǎn)月齡為24—26月齡的荷斯坦牛頭胎305 d產(chǎn)奶量顯著大于其他月齡的荷斯坦牛(<0.01)。
表4 新疆地區(qū)中國(guó)荷斯坦牛在群天數(shù)、生產(chǎn)壽命和頭胎305 d產(chǎn)奶量影響因素顯著性檢驗(yàn)(F值)
**<0.01
表5 新疆地區(qū)中國(guó)荷斯坦牛在群天數(shù)、生產(chǎn)壽命和頭胎305 d產(chǎn)奶量的最小二乘均值及多重比較
同列不同大寫字母表示差異極顯著(<0.01),相同大寫字母表示無(wú)極顯著差異(>0.01);同列不同小寫字母表示差異顯著(<0.05),相同小寫字母表示無(wú)顯著差異(>0.05)
The different capital letters in the same column indicated extremely significant difference (<0.01), and the same capital letters indicated no extremely significant difference (>0.01); The different lowercase letters in the same column mean significant difference (<0.05), while the same lowercase letters mean no significant difference (>0.05)
表6為新疆地區(qū)中國(guó)荷斯坦牛在群天數(shù)、生產(chǎn)壽命和頭胎305 d產(chǎn)奶量的遺傳力估計(jì)、表型相關(guān)和遺傳相關(guān)。平均在群天數(shù)遺傳力為0.11,生產(chǎn)壽命遺傳力為0.11,頭胎305 d產(chǎn)奶量遺傳力為0.33。在群天數(shù)和生產(chǎn)壽命之間遺傳和表型相關(guān)高,分別為0.99和0.98,而305 d產(chǎn)奶量與在群天數(shù)和生產(chǎn)壽命之間的表型相關(guān)為正相關(guān),相關(guān)系數(shù)分別為0.079和0.077,遺傳相關(guān)為負(fù),相關(guān)系數(shù)分別為-0.18和-0.20。
新疆地區(qū)中國(guó)荷斯坦在群天數(shù)、生產(chǎn)壽命和頭胎305 d產(chǎn)奶量隨出生年份變化育種值的變化趨勢(shì)可知(圖3、4),在群天數(shù)和生產(chǎn)壽命遺傳相關(guān)高,遺傳趨勢(shì)相似,均隨著參測(cè)牛頭數(shù)增加,在群天數(shù)和生產(chǎn)壽命的育種值變化較大,整體呈現(xiàn)下降趨勢(shì);荷斯坦牛的頭胎305 d產(chǎn)奶量同樣隨著參測(cè)牛頭數(shù)的增加,育種值變化較大,但是總體呈現(xiàn)上升趨勢(shì)。
表6 中國(guó)荷斯坦牛在群天數(shù)、生產(chǎn)壽命和頭胎305 d產(chǎn)奶量遺傳參數(shù)
對(duì)角線為遺傳力,上三角為表型相關(guān),下三角為遺傳相關(guān)
The diagonal is heritability, the upper triangle is phenotypic correlation, and the lower triangle is genetic correlation
圖3 中國(guó)荷斯坦牛在群天數(shù)和生產(chǎn)壽命遺傳趨勢(shì)
在本研究中,新疆地區(qū)荷斯坦牛在群天數(shù)和生產(chǎn)壽命的遺傳力結(jié)果均為0.11(0.03),與Imbayarwo- Chikosi等[15-18]研究牛生產(chǎn)壽命遺傳力估計(jì)值范圍分別為0.05—0.10、0.04—0.07、0.02—0.36、0.02—0.36結(jié)果基本一致。其他研究報(bào)告了生產(chǎn)壽命的遺傳力介于0.02—0.21之間[19],與本研究對(duì)牛生產(chǎn)壽命進(jìn)行的遺傳力估計(jì)范圍相一致。線性模型基于的假設(shè)雖與生存數(shù)據(jù)不符,但在已有研究報(bào)道中,可獲得更好的預(yù)測(cè)結(jié)果[20],表明其可以作為生產(chǎn)壽命的評(píng)估模型。
圖4 中國(guó)荷斯坦牛頭胎305天產(chǎn)奶量遺傳趨勢(shì)
新疆地區(qū)荷斯坦牛頭胎305 d產(chǎn)奶量的遺傳力為0.33(0.03),屬于中等遺傳力性狀。再娜古麗·君居列克等[21-23]報(bào)道的頭胎305 d產(chǎn)奶量均屬于中等遺傳力性狀。但本研究的估計(jì)遺傳力略大于他們的報(bào)道。Irano等[8,24-25]報(bào)道荷斯坦牛產(chǎn)奶量的遺傳力與本研究結(jié)果相似,分別為0.28、0.4和0.3。
新疆地區(qū)荷斯坦牛的在群天數(shù)和生產(chǎn)壽命之間呈強(qiáng)的正相關(guān)關(guān)系,其結(jié)果范圍為0.98—0.99,Sasaki等[19,26]研究在群天數(shù)和生產(chǎn)壽命之間也為強(qiáng)的正相關(guān),與本研究結(jié)果相似。這表明在群天數(shù)和生產(chǎn)壽命是接近相同的性狀,并且對(duì)一種性狀進(jìn)行選擇也會(huì)影響另一種性狀遺傳值變化。新疆地區(qū)荷斯坦奶牛頭胎305 d產(chǎn)奶量與在群天數(shù)和生產(chǎn)壽命之間的表型相關(guān)為正,但是相關(guān)性低,分別為0.079和0.077。而遺傳相關(guān)則為負(fù),相關(guān)系數(shù)分別為-0.18和-0.20。而Weigel等[27-28]報(bào)道產(chǎn)奶量和生產(chǎn)壽命性狀之間呈現(xiàn)較高的正遺傳相關(guān)。這可能與本研究中的3個(gè)牧場(chǎng)的飼養(yǎng)管理相關(guān),低產(chǎn)并不是最主要的淘汰原因有關(guān)。Vukasinovic等[29]報(bào)道瑞士褐牛群體中,產(chǎn)量性狀與長(zhǎng)壽性狀之間呈負(fù)的遺傳相關(guān),與本研究結(jié)果相似。張海亮等[30]報(bào)道中,產(chǎn)奶量性狀與長(zhǎng)壽性狀之間的遺傳相關(guān)在-0.5—0.7之間,與本研究結(jié)果一致。牧場(chǎng)中奶牛淘汰主要原因并非低產(chǎn),而是乳房炎、繁殖類疾病[9,31],隨著產(chǎn)奶量的提高,奶牛繁殖水平的下降以及各類疾病發(fā)生概率的增加,導(dǎo)致奶牛在群天數(shù)和生產(chǎn)壽命與頭胎305 d產(chǎn)奶量之間呈正相關(guān)。
本研究對(duì)新疆地區(qū)中國(guó)荷斯坦牛在群天數(shù)、生產(chǎn)壽命和頭胎305 d產(chǎn)奶量的遺傳趨勢(shì)進(jìn)行分析,結(jié)果表明在群天數(shù)和生產(chǎn)壽命的育種值隨年份的增加整體呈下降的趨勢(shì)。且隨著牛只數(shù)的變化,育種值變化較大,隨著年份的增加牛頭數(shù)逐漸減少,其原因可能是在群天數(shù)和生產(chǎn)壽命數(shù)據(jù)量較少。由于在群天數(shù)和生產(chǎn)壽命呈高度的遺傳相關(guān),兩個(gè)性狀的遺傳趨勢(shì)相似度很高,Jairath等[32]利用相關(guān)性狀進(jìn)行的間接選擇適合長(zhǎng)壽的選擇。當(dāng)與壽命相關(guān)的高度遺傳性狀組合成一個(gè)壽命性狀時(shí),選擇效率要比直接選擇的效率高。而新疆地區(qū)中國(guó)荷斯坦牛頭胎305 d產(chǎn)奶量的變化趨勢(shì)波動(dòng)較大,但是呈現(xiàn)上升的趨勢(shì),其原因可能與此年間中國(guó)荷斯坦牛高產(chǎn)奶牛的選育及遺傳改良有關(guān)。對(duì)比同樣年份的在群天數(shù)和生產(chǎn)壽命以及頭胎305 d產(chǎn)奶量,由于頭胎305 d產(chǎn)奶量與在群天數(shù)和生產(chǎn)壽命之間存在負(fù)遺傳相關(guān),隨著頭胎305 d產(chǎn)奶量育種值上升,在群天數(shù)和生產(chǎn)壽命的育種值明顯下降。因此在牧場(chǎng)制定育種規(guī)劃時(shí),不可一味以高產(chǎn)為育種目標(biāo),而忽略其他功能性狀的選育。
新疆地區(qū)中國(guó)荷斯坦牛在群天數(shù)和生產(chǎn)壽命遺傳力均為0.11,且在群天數(shù)和生產(chǎn)壽命之間的遺傳和表型相關(guān)均呈正相關(guān)關(guān)系,相關(guān)系數(shù)分別為0.99和0.98。頭胎305 d產(chǎn)奶量遺傳力為0.33,與在群天數(shù)和生產(chǎn)壽命之間的表型相關(guān)性均為弱正相關(guān),相關(guān)系數(shù)分別為0.079和0.077。與在群天數(shù)和生產(chǎn)壽命之間為負(fù)遺傳相關(guān),相關(guān)系數(shù)分別為-0.18和-0.20。在對(duì)提高產(chǎn)奶量的選育時(shí),應(yīng)兼顧生產(chǎn)壽命和在群天數(shù),避免因產(chǎn)奶量的提高,導(dǎo)致奶牛生產(chǎn)壽命和在群天數(shù)的下降。研究結(jié)果為制定反映平衡育種理念的新疆地區(qū)荷斯坦牛綜合選擇指數(shù)奠定基礎(chǔ)。
[1] NORMAN H D, WRIGHT J R, HUBBARD S M, MILLER R H, HUTCHISON J L. Reproductive status of Holstein and Jersey cows in the United States. Journal of Dairy Science, 2009, 92(7):3517-3528.
[2] DOBSON H, SMITH R F, ROYAL M D, KNIGHT C H, SHELDON I M. The high-producing dairy cow and its reproductive performance. Reproduction in Domestic Animals, 2010, 42(2):17-23.
[3] CHEGINI A, SHADPARVAR A A, HOSSEIN-ZADEH N G, MOHAMMAD-NAZARI B. Genetic and environmental relationships among milk yield, persistency of milk yield, somatic cell count and calving interval in Holstein cows. Revista Colombiana de Ciencias Pecuarias, 2018.
[4] 趙曉鐸, 許詩(shī)凡, 劉光磊. 北美奶牛育種指數(shù)變化及進(jìn)展情況分析. 中國(guó)奶牛, 2016(7): 26-29. doi:10.19305/j.cnki.11-3009/s.2016.07.007
ZHAO X D, XU S F, LIU G L. The change and progress analysis of dairy cattle breeding index in North American. China Dairy Cattle, 2016(7): 26-29. doi:10.19305/j.cnki.11-3009/s.2016.07.007. (in Chinese)
[5] PRYCE J E, ROYAL M D, GARNSWORTHY P C, MAO I L. Fertility in the high-yielding dairy cow.Livestock Production Science. 2004, 86: 125-135.
[6] KNAUS W. Dairy cows trapped between performance demands and adaptability. Science of Food and Agriculture, 2009, 89: 1107-1114.
[7] VAN RADEN P M, SANDERS A H, TOOKER M E, MILLER R H, NORMAN H D, KUHN M T, WIGGANS G R. Development of a national genetic evaluation for cow fertility. Journal of Dairy Science. 2004, 87: 2285-2292.
[8] IRANO N, BIGNARDI A B, EL FARO L, SANTANA M L JR, CARDOSO V L, ALBUQUERQUE L G. Genetic association between milk yield, stayability, and mastitis in Holstein cows under tropical conditions. Tropical Animal Health and Production, 2014, 46: 529-535.
[9] 張海亮, 陳紫薇, 師睿, 田佳, 高旭紅, 溫萬(wàn), 王雅春. 寧夏地區(qū)荷斯坦牛成母牛淘汰情況及長(zhǎng)壽性影響因素分析. 中國(guó)畜牧獸醫(yī), 2021, 48(1): 200-208. doi:10.16431/j.cnki.1671-7236.2021.01.022.
ZHANG H L, CHEN Z W, SHI R, TIAN J, GAO X H, WEN W, WANG Y C. Analysis of culling characteristics and influencing factors of longevity in Holstein cows in Ningxia. China Animal Husbandry & Veterinary Medicine, 2021, 48(1): 200-208. doi:10.16431/j.cnki.1671- 7236.2021.01.022. (in Chinese)
[10] 李想, 鄢新義, 羅漢鵬, 劉林, 郭剛, 王新宇, 王雅春. 不同模型估計(jì)中國(guó)荷斯坦牛生產(chǎn)壽命遺傳參數(shù). 畜牧獸醫(yī)學(xué)報(bào), 2019, 50(6): 1162-1170. doi:10.11843/j.issn.0366-6964.2019.06.006.
LI X, YAN X Y, LUO H P, LIU L, GUO G, WANG X Y, WANG Y C. Genetic parameters estimation for productive life of Chinese Holsteins by different models. Acta Veterinaria et Zootechnica Sinica, 2019,50(6): 1162-1170. doi:10.11843/j.issn.0366-6964.2019.06.006. (in Chinese)
[11] 張文龍. 新疆三個(gè)品種牛泌乳曲線的分析及產(chǎn)奶量校正系數(shù)的制定[D]. 烏魯木齊: 新疆農(nóng)業(yè)大學(xué), 2013.
ZHANG W L. The analysis of lactation curve and milk yield correction coefficient formulation on three varieties of cattle in Xinjiang[D]. Urumqi: Xinjiang Agricultural University, 2013. (in Chinese)
[12] 鄢新義, 劉澳星, 董剛輝, 郭剛, 王新宇, 劉林, 張勝利, 王雅春. 北京地區(qū)中國(guó)荷斯坦牛長(zhǎng)壽性及其影響因素分析. 中國(guó)畜牧雜志, 2016, 52(23): 1-6.
YAN X Y, LIU A X, DONG G H, GUO G, WANG X Y, LIU L, ZHANG S L, WANG Y C. Analysis of longevity and its influencing factors in Chinese Holstein population in Beijing. Chinese Journal of Animal Science, 2016, 52(23): 1-6. (in Chinese)
[13] BERTHOLD M R, HPPNER F. On Clustering Time Series Using Euclidean Distance and Pearson Correlation. aiXiv preprint, 2016, 1601: 02213.
[14] 周明坤. 多性狀BLUP法估計(jì)乳用種公牛育種值及預(yù)測(cè)精確度分析. 中國(guó)農(nóng)業(yè)科學(xué), 1991, 24(4): 75-80 .
ZHOU M K. Multi-trait blup method estimates dairy sires` breeding values and their predicted accuracies. Scientia Agricultura Sinica, 1991, 24(4): 75-80. (in Chinese)
[15] IMBAYARWO-CHIKOSI V, DZAMA K, HALIMANI T, VAN WYK J, MAIWASHE A, BANGA C. Genetic prediction models and heritability estimates for functional longevity in dairy cattle. South African Journal of Animal Science, 2015, 45(2): 105-112.
[16] GONZáLEZ-RECIO O, ALENDA R. Genetic relationship of discrete- time survival with fertility and production in dairy cattle using bivariate models. Genetics Selection Evolution, 2007, 39(4): 391. doi:10.1186/1297-9686-39-4-391.
[17] JAMROZIK J, FATEHI J, SCHAEFFER L R. Comparison of models for genetic evaluation of survival traits in dairy cattle: A simulation study. Journal of Animal Breeding & Genetics, 2008, 125(2): 75-83.
[18] VEERKAMP R F, BROTHERSTONE S, ENGEL B, MEUWISSEN, T H E. Analysis of censored survival data using random regression models. Animal Science, 2001, 72(1): 1-10.
[19] SASAKI O. Estimation of genetic parameters for longevity traits in dairy cattle: a review with focus on the characteristics of analytical models. Animal Science Journal, 2013, 84(6): 449-460.
[20] HOLTSMARK M, HERINGSTAD B, ?DEG?RD J. Predictive abilities of different statistical models for analysis of survival data in dairy cattle. Journal of Dairy Science, 2009, 92(11): 5730-5738.
[21] 再娜古麗·君居列克, 塔西買買提·馬合蘇, 木古麗·木哈西, 黃錫霞, 張維, 劉麗元.荷斯坦牛首次產(chǎn)犢日齡與305d產(chǎn)奶量遺傳參數(shù)的評(píng)估.家畜生態(tài)學(xué)報(bào), 2017, 38(5):17-20.
ZAINAGULI J, TAXIMAIMAITI M, MUGULI M, HUANG X X, ZHANG W, LIU L Y. Estimation of genetic parameters for birth weight and first parity 305 days milk yield in Holstein dairy cows. Journal of Domestic Animal Ecology, 2017, 38(5): 17-20. (in Chinese)
[22] 周靖航, 葉東東, 黃錫霞, 馬光輝, 葛建軍, 帕爾哈提·木鐵力甫, 焦陽(yáng), 劉麗元. 荷斯坦奶牛產(chǎn)奶量遺傳力的估計(jì). 新疆農(nóng)業(yè)科學(xué), 2013(1):170-174.
ZHOU J H, YE D D, HUANG X X, MA G H, GE J J, MAERHATI M, JIAO Y, LIU L Y. The heritability estimate of milk yield on Holstein milk cows. Xinjiang Agricultural Science, 2013(1): 170-174. (in Chinese)
[23] MONTALDO H H, CASTILLO-JUáREZ H, VALENCIA POSADAS M, CIENFUEGOS-RIVAS E G, RUIZ-LóPEZ F J. Genetic and environmental parameters for milk production,udder health, and fertility traits in Mexican Holstein cows. Journal of Dairy Science, 2010, 93: 2168-2175.
[24] TSURUTA S, MISZTAL I, LAWLOR T J. Changing definition of productive life in US Holsteins: Effect on genetic correlations. Journal of Dairy Science. 2005, 88: 1156-1165.
[25] PRITCHARD T, COFFEY M, MRODE R, WALL E. Genetic parameters for production, health, fertility and longevity traits in dairy cows. Animal, 2013,7: 34-46.
[26] CRUICKSHANK J, WEIGEL K A, DENTINE M R, KIRKPATRICK B W. Indirect prediction of herd life in guernsey dairy cattle. Journal of Dairy Science, 2002, 85(5): 1307-1313.
[27] WEIGEL K A, LAWLOR J T J, VANRADEN P M, WIGGANS G R. Use of linear type and production data to supplement early predicted transmitting abilities for productive life. Journal of Dairy Science, 1998, 81(7): 2040-2044.
[28] HAILE-MARIAM M, BOWMAN P J, GODDARO M E. Genetic and environmental relationship among calving interval, survival, persistency of milk yield and somatic cell count in dairy cattle. Livestock Production Science, 2003, 80(3): 189-200.
[29] VUKASINOVIC N, MOLL J, KUNZI N. Genetic relationships among longevity, milk production, and type traits in Swiss Brown cattle. Livestock Production Science, 1995, 41(1): 11-18.
[30] 張海亮, 劉澳星, 米思遠(yuǎn), 李想, 羅漢鵬, 鄢新義, 王雅春. 奶牛育種中的長(zhǎng)壽性狀. 中國(guó)農(nóng)業(yè)科學(xué), 2020, 53(19):4070-4082.
ZHANG H L, LIU A X, MI S Y, LI X, LUO H P, YAN X Y, WANG Y C. A review on longevity trait in dairy cattle breeding. Scientia Agricultura Sinica, 2020, 53(19):4070-4082. (in Chinese)
[31] 胥磊, 張夢(mèng)華, 葛建軍, 李琰, 張培大, 王祥旭, 尤震晨, 黃錫霞.新疆昌吉地區(qū)某牛場(chǎng)奶牛淘汰原因與淘汰時(shí)泌乳天數(shù)關(guān)系研究. 中國(guó)畜牧雜志, 2020,56(3):100-102+106.
XU L, ZHANG M H, GE J J, LI Y, ZHANG P D, WANG X X, YOU Z C, HUANG X X. Study on the relationship between cow culling causes and lactation days in a dairy farm in Changji, Xinjiang. Chinese Journal of Animal Science, 2020, 56(3): 100-102+106. (in Chinese)
[32] JAIRATH L K, HAYES J F, CUE R I. Multitrait restricted maximum likelihood estimates of genetic and phenotypic parameters of lifetime performance traits for Canadian Holsteins. Journal of Dairy Science, 1994, 77(1): 303-312.
Heritability Estimation and Correlation Analysis of Longevity and Milk Yield of Holstein Cattle in Xinjiang Region
DONG MingMing1, ZHAO FanFan1, GE JianJun2, ZHAO JunLiang2, WANG Dan1, XU Lei1, ZHANG MengHua1, ZHONG LiWei1, HUANG XiXia1, WANG YaChun3
1College of Animal Science, Xinjiang Agricultural University, Urumqi 830052;2Xinjiang Hutubi Cattle Breeding Farm, Hutubi 831203, Xinjiang;3College of Animal Science and Technology, China Agricultural University, Beijing 100193
【Objective】 Milk production and longevity are important traits in dairy cattle breeding. In recent years, the high milk yield has been pursued in dairy cattle breeding, while longevity has been declining. With the development of balanced breeding, the longevity traits were gradually included into the comprehensive selection index of dairy cows in developed countries. The purpose of this study was to explore the relationship between milk yield and longevity of dairy cows, and to provide the reference for Xinjiang region to develop the comprehensive selection index of Holstein dairy cows in China, so as to achieve balanced breeding and high-quality healthy development of dairy industry. 【Method】 The production records of three large-scale dairy farms in Xinjiang from 1997 to 2020 were collected, and the herd life and production life were calculated. The longevity records of 7 206 dairy cows and first parity 305 d milk yield of 15 218 first fetuses were obtained. A total of 18 183 pieces of pedigree information from three generations of individuals were collected, including 903 bulls and 20 883 cows. Firstly, the GLM process of SAS 9.2 software was used to analyze the effects of field, birth year, birth season and age at first calving on the herd days, productive life and first parity 305 d milk yield of Chinese Holstein cattle in Xinjiang region, and the least square mean values of the herd days, productive life and the first parity 305 d milk were calculated. SPSS 19.0 software was used to calculate the Pearson correlation coefficient between the number of herd days, production life and first parity 305 d milk yield of Chinese Holstein cattle in Xinjiang. Secondly, the genetic variance and covariance of herd days, productive life and first parity 305 d milk yield of Holstein dairy cows in Xinjiang were estimated by using AI-REML in DMU software combined with EM algorithm and multi-trait animal model, and the genetic correlation between herd days, productive life and first parity 305 d milk yield was calculated. Finally, the breeding values of the herd days, productive life and first parity 305 d milk yield of Chinese Holstein cattle in Xinjiang region were estimated by animal model BLUP method, and the genetic trend chart was drawn. 【Result】 The results of basic statistical analysis on the days in the herd days, productive life and first parity 305 d milk yield of Chinese Holstein cows in Xinjiang showed that the average herd days of Chinese Holstein cows in Xinjiang was 1 754.7 days, the average production life was 937.33 days, and the average first parity 305 d milk yield was 9 362.94 kg. GLM program analysis showed that the effects of different fields, birth year, birth season and age at first calving had significant effects on herd days, productive life and first parity 305 d milk yield (<0.01). The heritability of herd days, productive life and first parity 305 d milk yield of Chinese Holstein cattle in Xinjiang was 0.11 (0.03), 0.11 (0.03) and 0.33 (0.03), respectively. The genetic and phenotypic correlations between herd days span and productive life span were 0.99 and 0.98, respectively. There was a positive correlation between first parity 305 d milk yield and the phenotypes of herd days and production life, with correlation coefficients of 0.079 and 0.077, respectively, while genetic correlation was negative, with correlation coefficients of -0.18 and -0.20, respectively. The genetic trend chart of the herd days, the productive life and the first parity 305 d milk yield of Holstein in Xinjiang showed that the breeding values of the herd days and the productive life changed greatly with the increase of the number of cattle tested, and the overall trend decreased. The first parity 305 d milk yield of Holstein cattle in the first foetus also changed greatly with the increase of the number of cattle tested, but showed an overall upward trend.【Conclusion】 Therefore, the longevity of dairy cows should be considered while improving milk yield, so as to avoid the decline of longevity of dairy cows with the increase of milk yield.
first parity 305 d milk yield;herd days; production life; heritability; genetic correlation
10.3864/j.issn.0578-1752.2022.21.015
2021-09-01;
2021-12-17
新疆維吾爾自治區(qū)重大科技專項(xiàng)(2020A01001)、國(guó)家現(xiàn)代農(nóng)業(yè)產(chǎn)業(yè)技術(shù)體系(CARS-36)、新疆維吾爾自治區(qū)研究生科研創(chuàng)新項(xiàng)目(XJ2021G178)
董明明,E-mail:1391962589@qq.com。通信作者黃錫霞, E-mail:au-huangxixia@163.com。通信作者王雅春,E-mail:wangyachun@cau.edu.cn
(責(zé)任編輯 林鑒非)