• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看

      ?

      透析數(shù)學(xué)本質(zhì),彰顯思維活力

      2023-05-30 16:18:20包高宏
      關(guān)鍵詞:數(shù)學(xué)本質(zhì)核心素養(yǎng)

      包高宏

      [摘 ?要] 數(shù)學(xué)教學(xué)要突出本質(zhì),弱化細(xì)節(jié),才能讓學(xué)生在學(xué)習(xí)活動(dòng)中彰顯思維活力. 教學(xué)中教師要依據(jù)教學(xué)目標(biāo)創(chuàng)新教學(xué)模式,圍繞學(xué)科核心素養(yǎng)開展學(xué)習(xí)活動(dòng),在探究學(xué)習(xí)中滲透數(shù)學(xué)思想和數(shù)學(xué)方法,不斷提升思維活力,真正體現(xiàn)數(shù)學(xué)學(xué)習(xí)價(jià)值.

      [關(guān)鍵詞] 數(shù)學(xué)本質(zhì);思維活力;核心素養(yǎng)

      數(shù)學(xué)是一門磨煉思維,提高學(xué)生邏輯推理能力的學(xué)科,數(shù)學(xué)教學(xué)的目標(biāo)是提高學(xué)生的核心素養(yǎng),提升學(xué)生的思維品質(zhì). 思維能力的提高要在體驗(yàn)活動(dòng)中實(shí)現(xiàn),因此開展教學(xué)活動(dòng)是教學(xué)過程中的必要環(huán)節(jié),教學(xué)活動(dòng)不僅是教師的事情,還需要學(xué)生積極參與. 那么,課堂熱熱鬧鬧,學(xué)生積極發(fā)言,是否就能說明這是一次成功的教學(xué)活動(dòng)呢?筆者認(rèn)為不然,熱鬧的氣氛體現(xiàn)的只是一節(jié)課的外在形式,一節(jié)課的目標(biāo)是否實(shí)現(xiàn)歸根結(jié)底要看學(xué)生的思維是否得到了發(fā)展,學(xué)生在課堂上是否有了深入思考,在課堂上是否迸發(fā)了思維碰撞的火花,只有教學(xué)過程充滿學(xué)生的思維活動(dòng),才能彰顯課堂的生命力[1]. 數(shù)學(xué)教學(xué)歸根結(jié)底是數(shù)學(xué)思維的教學(xué),一節(jié)課表面看起來非常安靜,但只要學(xué)生在課堂上能夠積極思考,就是一節(jié)有活力的課堂. 數(shù)學(xué)課的活力指的是課堂上師生、生生之間的思維碰撞.

      問題背景

      新課程改革進(jìn)行得如火如荼,深入人心,廣大數(shù)學(xué)教師對于教學(xué)中強(qiáng)調(diào)數(shù)學(xué)本質(zhì)的認(rèn)識,課堂教學(xué)返璞歸真,實(shí)現(xiàn)思維活動(dòng)的深入,努力揭示數(shù)學(xué)概念、定義、結(jié)論后的本質(zhì)特征都有了統(tǒng)一認(rèn)知,但是在實(shí)際教學(xué)過程中卻存在著各種偏差,部分教師沒有真正理解新理念的本質(zhì),只是停留在課堂表面“新的形式化”,新理念只有形式,沒有落實(shí)本質(zhì),所以課堂教學(xué)只留下了表面上的熱鬧,實(shí)則學(xué)生并沒有真正理解數(shù)學(xué)本質(zhì).

      數(shù)學(xué)教學(xué)的形式化體現(xiàn)在諸多方面,如學(xué)生對數(shù)學(xué)知識的學(xué)習(xí)停留在表面的記憶和技能操作上,沒有理解數(shù)學(xué)本質(zhì). 在數(shù)學(xué)教學(xué)中,教學(xué)主體是數(shù)學(xué)內(nèi)容(本質(zhì)),形式是服務(wù)于內(nèi)容的,但有些教學(xué)活動(dòng),形式卻大于內(nèi)容. 在這樣的教學(xué)活動(dòng)中,教師過分注重形式化的東西,滿足了表面的形式化創(chuàng)新,卻弱化了數(shù)學(xué)最核心的內(nèi)容.

      過分注重“細(xì)節(jié)”,帶來的只是課堂表面上的熱鬧,這反而造成了學(xué)生對于數(shù)學(xué)本質(zhì)理解的偏差,導(dǎo)致學(xué)生過分關(guān)注與實(shí)際問題關(guān)系不大的表面現(xiàn)象,或者是形式上的數(shù)學(xué)表達(dá)方法. 學(xué)生在這些細(xì)節(jié)上分散了過多的精力,導(dǎo)致其容易忽視數(shù)學(xué)本質(zhì),舍本逐末,主次顛倒. 為改變這種現(xiàn)象,教學(xué)時(shí)教師要對外在形式上的內(nèi)容做淡化處理,不要過分強(qiáng)調(diào),而應(yīng)該著重關(guān)注數(shù)學(xué)本質(zhì),突出數(shù)學(xué)思維的培養(yǎng),彰顯數(shù)學(xué)課堂活力.

      突出數(shù)學(xué)本質(zhì),彰顯課堂活力

      1. 淡化非核心概念,注重?cái)?shù)學(xué)本質(zhì)

      概念、定理是數(shù)學(xué)學(xué)習(xí)中的重要內(nèi)容,教學(xué)中教師要處理好核心概念與非核心概念之間的關(guān)系. 非核心概念是指一些描述性或過渡性的概念,它們對于學(xué)生理解核心概念具有重要價(jià)值,但是在教學(xué)中它們起到的只是輔助功能,不能喧賓奪主. 數(shù)學(xué)核心概念或定理與許多要素有著千絲萬縷的聯(lián)系,如果處理不好,主次顛倒,就會(huì)削弱學(xué)生對數(shù)學(xué)本質(zhì)的把握,難以深刻理解數(shù)學(xué)本質(zhì)[2].

      案例1 “函數(shù)零點(diǎn)存在”的教學(xué)

      函數(shù)零點(diǎn)存在定理:如果函數(shù)y=f(x)在區(qū)間[a,b]上的圖象是一條連續(xù)不斷的曲線,且滿足f(a)f(b)<0,那么函數(shù)y=f(x)在區(qū)間(a,b)內(nèi)至少有一個(gè)零點(diǎn),即存在c∈(a,b),使得f(c)=0,這個(gè)c也就是方程f(x)=0的根.

      筆者曾聽過一次公開課,有位年輕的教師講授函數(shù)零點(diǎn)概念與方程根之間的關(guān)系時(shí)非常順暢,但是解釋函數(shù)零點(diǎn)存在定理時(shí)進(jìn)行了過度延伸. 他認(rèn)為這一定理還不夠嚴(yán)謹(jǐn)和完善,特別對定理中描述的“一條連續(xù)不斷的曲線”有異議,于是用了大量的時(shí)間給學(xué)生進(jìn)行詳細(xì)闡述.

      師:函數(shù)零點(diǎn)存在定理中要求函數(shù)圖象是一條連續(xù)不斷的曲線,其中的“連續(xù)不斷”滿足什么特征,你們知道嗎?

      生1:我覺得有兩層含義,一是連續(xù),二是不斷.

      師:很好,除了這兩層含義,還有其他意思嗎?

      生2:“連續(xù)”表示圖象連接在一起,而“不斷”則是不分開的意思.

      師:你的解釋是正確的. 大家討論交流一下,我們能否用數(shù)學(xué)思維和表達(dá)將“連續(xù)不斷”的含義再深入解釋一下.

      ……

      接下來,該教師對“不斷”的含義就三類間斷點(diǎn)配上圖形進(jìn)行了細(xì)致的分類解釋,最后還對函數(shù)圖象在閉區(qū)間[a,b]的兩個(gè)端點(diǎn)處連續(xù)做了補(bǔ)充解釋. 此時(shí)課堂越來越安靜,大部分學(xué)生已經(jīng)游離于課堂之外.

      教學(xué)目標(biāo)要依據(jù)教學(xué)內(nèi)容和學(xué)情確定,事實(shí)上在這一時(shí)期提出函數(shù)零點(diǎn)存在定理,其目標(biāo)是讓學(xué)生理解定理的本質(zhì),即當(dāng)函數(shù)y=f(x)的圖象在閉區(qū)間[a,b]內(nèi)連續(xù)不斷的情況下,只要f(a)f(b)<0,就存在零點(diǎn). 因此在學(xué)生對函數(shù)知識認(rèn)識有限的情況下,對于函數(shù)零點(diǎn)存在的前提,只需要學(xué)生了解是什么就可以了,不需要進(jìn)行精確的描述. 該教師在教學(xué)中出現(xiàn)的問題,不是自己對知識的研究不夠深入,而是沒有依據(jù)學(xué)生的認(rèn)知規(guī)律和認(rèn)知特點(diǎn),合理地設(shè)定教學(xué)目標(biāo),導(dǎo)致拓展過度,超出了學(xué)生的認(rèn)知能力,反而適得其反[3].

      在函數(shù)零點(diǎn)存在定理中,前提是函數(shù)圖象是一條“連續(xù)不斷”的曲線,作為高一的學(xué)生只需要了解這個(gè)前提即可. 這一前提對于理解定理的本質(zhì)來說只是一個(gè)“細(xì)節(jié)”,不屬于核心概念,因此不需要教師對這個(gè)非核心概念進(jìn)行過多解釋,只需要學(xué)生能根據(jù)常識認(rèn)識曲線連續(xù)不斷就可以了,這樣反而有利于學(xué)生將注意力放在數(shù)學(xué)本質(zhì)上. 本節(jié)課中,該教師在解釋定理上雖然追求嚴(yán)謹(jǐn),但是超出了學(xué)生的認(rèn)知能力,超出了學(xué)生的最近發(fā)展區(qū),因此學(xué)生難以參與課堂活動(dòng),教學(xué)目標(biāo)自然難以落實(shí).

      2. 淡化“嚴(yán)謹(jǐn)”證明,注重本質(zhì)思路

      公式的推導(dǎo)和證明是高中數(shù)學(xué)教學(xué)最重要的一部分. 在推導(dǎo)與證明的過程中,教師要先帶領(lǐng)學(xué)生厘清主要推導(dǎo)思路,再逐步完善證明過程,如果過分關(guān)注過程的完整性,要求推導(dǎo)過程一步到位,容易使學(xué)生只關(guān)注規(guī)范的證明過程,而忽視數(shù)學(xué)思想方法的本質(zhì).

      案例2 推導(dǎo)兩角差的余弦公式

      關(guān)于兩角差的余弦公式的推導(dǎo)可以利用單位圓中的三角函數(shù)線進(jìn)行,也可以利用向量知識進(jìn)行. 但利用向量知識推導(dǎo)兩角差的余弦公式更容易讓學(xué)生理解,教學(xué)中教師一般會(huì)采用這種方法. 下面展示一位教師講解這一內(nèi)容的教學(xué)實(shí)錄.

      師:如果現(xiàn)在我們不限制角的取值范圍,那么可以擴(kuò)大到什么范圍呢?

      生(齊):可以是任意角.

      師:在公式cos(α-β)中的α和β是任意角,那么α和β的差有哪些可能呢?

      生(齊):α和β的差有多種可能,但它仍然是一個(gè)任意角.

      師:對此,我們能不能進(jìn)行分類討論,以更加明確幾種不同的情況呢?

      學(xué)生先思考,再相互交流,接著發(fā)表各種看法,教師最后總結(jié). 根據(jù)任意角的誘導(dǎo)公式確定分為兩類,一類是α-β∈[0,π],另一類是α-β?[0,π],但教師沒有說明不以0

      ,或[0,2π]為分類標(biāo)準(zhǔn)的原因. 接下來,師生一起在這兩類情況下探究如何使用向量知識推導(dǎo)兩角差的余弦公式,推導(dǎo)完成后便開始應(yīng)用該公式.

      可以說課堂教學(xué)氣氛熱烈,學(xué)生發(fā)言積極,教學(xué)活動(dòng)參與度非常高,然而課堂教學(xué)結(jié)束后在學(xué)生的問卷反饋中,對“推導(dǎo)cos(α-β)=cosαcosβ+sinαsinβ這個(gè)公式采用了什么方法”這一問題,表明只對角的分類有較深的印象. 這個(gè)答案讓大家大吃一驚,學(xué)生似乎對向量知識推導(dǎo)兩角差的余弦公式?jīng)]有印象,只記得分類討論角的不同類型,很顯然教學(xué)目標(biāo)出現(xiàn)了偏離. 這一教學(xué)片段中,學(xué)生之所以沒有掌握兩角差余弦公式的推導(dǎo)方法,究其原因是教師在教學(xué)中突出了內(nèi)容細(xì)節(jié),而忽略了內(nèi)容本質(zhì),使推導(dǎo)思路和推導(dǎo)過程本末倒置.

      推導(dǎo)兩角差的余弦公式選擇的是向量數(shù)量積的定義,因?yàn)檫@一推導(dǎo)方法較為簡潔. 通過向量數(shù)量積的定義知道兩向量的夾角α-β的取值范圍只能是[0,π],因此在推導(dǎo)過程中需要分為α-β∈[0,π]與α-β?[0,π]兩類,這是自然聯(lián)想的結(jié)果. 但這個(gè)教學(xué)片段中教師重點(diǎn)討論的是如何將角進(jìn)行分類,以凸顯證明的嚴(yán)謹(jǐn)和科學(xué),這樣的證明過程使學(xué)生忽視了公式本身的推導(dǎo)過程,不符合學(xué)生的認(rèn)知習(xí)慣和特點(diǎn),因此學(xué)生對公式的推導(dǎo)方法沒有深刻的印象,只是掌握了角的分類. 在推導(dǎo)兩角差余弦公式的過程中,應(yīng)該弱化角的分類討論(這是推導(dǎo)過程中的細(xì)枝末節(jié)),弱化非核心的內(nèi)容細(xì)節(jié),突出向量知識推導(dǎo)公式的本質(zhì)思路.

      教學(xué)用書強(qiáng)調(diào)向量知識推導(dǎo)兩角差的余弦公式中提出了幾個(gè)需要關(guān)注的要點(diǎn),其中一點(diǎn)就是在探索過程中不要著重一步到位,應(yīng)該抓住問題核心探討推導(dǎo)思路,然后再進(jìn)行反思,完善推導(dǎo)過程,其中包括對角的分類討論和誘導(dǎo)公式的完善. 因此對數(shù)學(xué)一般性問題的探索,都應(yīng)依據(jù)具體的教學(xué)內(nèi)容和學(xué)生的實(shí)際認(rèn)知進(jìn)行優(yōu)化設(shè)計(jì),引導(dǎo)學(xué)生理解數(shù)學(xué)本質(zhì),對“嚴(yán)謹(jǐn)”性進(jìn)行適當(dāng)?shù)牡?,以做到詳略得?dāng),突出重點(diǎn).

      總之,課堂教學(xué)中如果沒有抓住本質(zhì)內(nèi)容,只有表面上的熱鬧氛圍,就無法實(shí)現(xiàn)學(xué)生思維發(fā)展的目標(biāo).

      3. 淡化非必要“情節(jié)”,注重情境創(chuàng)設(shè)本質(zhì)

      數(shù)學(xué)源于生活,又應(yīng)用于生活,因此創(chuàng)設(shè)情境是教學(xué)中的必要環(huán)節(jié),然而在實(shí)際教學(xué)中,情境的創(chuàng)設(shè)有時(shí)是為了創(chuàng)設(shè)而創(chuàng)設(shè),沒有考慮這一情境對于教學(xué)目標(biāo)的落實(shí)是否真正有作用. 毋庸置疑,好的情境能夠增強(qiáng)課堂的趣味性,有利于吸引學(xué)生的注意力,激發(fā)學(xué)生的學(xué)習(xí)興趣,但能否讓學(xué)生真正參與到課堂教學(xué)活動(dòng)中去,還需要教師理解教學(xué)內(nèi)容的特點(diǎn),把握數(shù)學(xué)本質(zhì),并長時(shí)間保持學(xué)生的學(xué)習(xí)興趣. 目前,數(shù)學(xué)教學(xué)中創(chuàng)設(shè)情境的情況越來越普遍,但也出現(xiàn)了隨意捏造、只重趣味不重實(shí)質(zhì)、脫離實(shí)際的情況. 下面展示某位教師教學(xué)“隨機(jī)事件概率”時(shí)引入的部分情境.

      案例3 “隨機(jī)事件概率”的教學(xué)

      在一次公開課中,筆者聽取了執(zhí)教教師在講解隨機(jī)事件概率時(shí),創(chuàng)設(shè)的一個(gè)現(xiàn)實(shí)情境:第二次世界大戰(zhàn)期間,在1943年以前,英美聯(lián)軍被德軍的潛艇在大西洋重挫,已經(jīng)沒有反抗的力量. 為了解決困境,美國海軍專門請教幾位數(shù)學(xué)家應(yīng)該怎么辦,數(shù)學(xué)家通過運(yùn)算概率的方法進(jìn)行分析,艦艇的相遇是一個(gè)有規(guī)律性的隨機(jī)事件,可以通過擴(kuò)大海軍艦隊(duì)的規(guī)模,來穿過危險(xiǎn)海域,結(jié)果英美艦隊(duì)被襲擊的概率大大下降了,保證了物資的及時(shí)供應(yīng). 這是為什么呢?

      這一情境引起了學(xué)生極大的興趣,從歷史到數(shù)學(xué),除了討論第二次世界大戰(zhàn)的事件,學(xué)生還學(xué)習(xí)了概率知識,體現(xiàn)了數(shù)學(xué)知識在實(shí)際情境中的廣泛運(yùn)用,同時(shí)又充滿了趣味性. 但是當(dāng)大家反思這節(jié)課時(shí),出現(xiàn)了疑問:這一情境對于學(xué)生理解隨機(jī)事件的概率有多大幫助呢?由于情境的內(nèi)容較為豐富,導(dǎo)致學(xué)生的思維被很多非本質(zhì)的情節(jié)所糾纏,遠(yuǎn)離了本課的內(nèi)容主體. 情境的創(chuàng)設(shè)是必須的,但是要注意揭示數(shù)學(xué)本質(zhì),發(fā)展數(shù)學(xué)思維,體現(xiàn)數(shù)學(xué)味道.

      數(shù)學(xué)教學(xué)中還存在著各種各樣的活動(dòng)形式,雖然有的課堂看起來非常熱鬧,但是其實(shí)質(zhì)對學(xué)生的思維發(fā)展沒有啟發(fā),也未體現(xiàn)數(shù)學(xué)本質(zhì). 教學(xué)中教師只有從學(xué)生的最近發(fā)展區(qū)出發(fā),以富有思考性的問題引導(dǎo)學(xué)生,才能讓課堂真正迸發(fā)出思維的火花,提升學(xué)生的數(shù)學(xué)素養(yǎng).

      參考文獻(xiàn):

      [1] 陳峰,薛鶯. 以問題引領(lǐng),提升復(fù)習(xí)效能——對初三“圓的復(fù)習(xí)”課幾個(gè)片段的感悟[J]. 中學(xué)數(shù)學(xué),2013(10):17-19.

      [2] 杜育林. 讓學(xué)引思,讓數(shù)學(xué)思維自然生長——以“一元一次方程章復(fù)習(xí)課”為例[J]. 中學(xué)數(shù)學(xué)教學(xué)參考,2018(17):20-23.

      [3] 項(xiàng)志成. 初中數(shù)學(xué)德育實(shí)踐研究[J]. ?數(shù)學(xué)教學(xué)通訊,2019(35):41-42.

      猜你喜歡
      數(shù)學(xué)本質(zhì)核心素養(yǎng)
      緊扣數(shù)學(xué)本質(zhì) 豐富學(xué)習(xí)方式
      培養(yǎng)初中生數(shù)學(xué)思維能力的“回顧反思”策略探析
      考試周刊(2016年21期)2016-12-16 10:16:17
      數(shù)學(xué)教學(xué)要注重?cái)?shù)學(xué)的本質(zhì)
      考試周刊(2016年91期)2016-12-08 21:37:44
      抓住問題本質(zhì)滲透歸納類比數(shù)學(xué)思想
      思想教育視域下公民核心素養(yǎng)教育的研究
      考試周刊(2016年86期)2016-11-11 08:51:29
      如何培養(yǎng)學(xué)生的化學(xué)核心素養(yǎng)
      考試周刊(2016年79期)2016-10-13 23:11:06
      作為“核心素養(yǎng)”的傾聽
      今日教育(2016年7期)2016-10-08 09:44:23
      “1+1”微群閱讀
      向著“人”的方向邁進(jìn)
      核心素養(yǎng):語文深度課改的靶向
      清远市| 穆棱市| 松阳县| 昭觉县| 会昌县| 建阳市| 和田县| 娱乐| 红桥区| 阜新市| 随州市| 延寿县| 大荔县| 祁连县| 遂平县| 辉南县| 古蔺县| 马龙县| 昆明市| 霍山县| 铁岭县| 汕尾市| 石屏县| 阿坝| 苍南县| 商河县| 临海市| 四会市| 南汇区| 西安市| 阿勒泰市| 霞浦县| 济宁市| 晋中市| 黎城县| 临颍县| 罗源县| 梁河县| 遵义市| 万源市| 凤城市|