張佳陽 李紅男 劉潤生 曲明?!⌒涎╃?/p>
【摘要】? 肝臟缺血再灌注會引起細胞損傷和器官功能障礙。間充質(zhì)干細胞外囊泡作為細胞間物質(zhì)轉(zhuǎn)運和信息傳遞的載體,在肝臟抗氧化應(yīng)激、促進組織修復(fù)等方面發(fā)揮重要作用。不同來源的間充質(zhì)干細胞外囊泡轉(zhuǎn)運效果不同,已有的細胞和動物實驗證明間充質(zhì)干細胞外囊泡有助于改善肝臟缺血再灌注損傷。本文從間充質(zhì)干細胞外囊泡對肝臟缺血再灌注機制的研究展開綜述,探討其發(fā)揮的重要作用。
【關(guān)鍵詞】? 肝臟缺血再灌注;間充質(zhì)干細胞;細胞外囊泡
中圖分類號? R329.2? ? 文獻標識碼? A? ? 文章編號? 1671-0223(2023)01--04
Research progress of extracellular vesicles of mesenchymal stem cells involved in hepatic ischemia-reperfusion Zhang Jiayang, Li Hongnan, Liu Runsheng, Qu Minghai, Xing Xuekun.School of Public Health, Guilin Medical University,Guilin 541199, China
【Abstract】? Liver ischemia-reperfusion can cause cell damage and organ dysfunction. Study found that mesenchymal stem cells outside the vesicles as a material transfer and information transmission between the cells of the carrier, to promote tissue repair in liver oxidative stress resistance, play a role in such aspects, ectomesenchymal stem cells from different sources outside the vesicle transport effect is different, the existing cell and animal experiments proved vesicle helps to improve liver ischemia-reperfusion injury. It will bring a new direction to the experiments of exocyst administration of mesenchymal stem cells after liver transplantation. This article reviews the mechanism of hepatic ischemia-reperfusion induced by extracellular vesicles of mesenchymal stem cells and discusses its important role.
【Key words】? ?Ischemia reperfusion; Mesenchymal stem cells; Extracellular vesicle
肝臟缺血再灌注損傷(ischemia reperfusion injury,IRI)指肝臟在血流阻斷(缺血)基礎(chǔ)上恢復(fù)血流灌注所引起的細胞損傷和器官功能障礙,失血性休克、肝臟切除術(shù)和肝移植術(shù)等均可誘發(fā)肝臟IRI,其也是肝臟手術(shù)中導(dǎo)致肝損傷的主要原因之一[1-3]。隨著外科手術(shù)技術(shù)、免疫抑制技術(shù)和圍手術(shù)期護理技術(shù)的提高,肝移植術(shù)已發(fā)展成為各種終末期肝病的有效治療方法之一。目前,肝移植術(shù)已經(jīng)在全球80多個國家開展,盡管接受肝移植術(shù)治療的患者術(shù)后1年生存率超過80%[4],但IRI仍是影響肝移植患者預(yù)后的主要原因之一[5]。IRI誘導(dǎo)的肝細胞損傷與肝移植術(shù)后早期移植物功能不良相關(guān),甚至能誘導(dǎo)移植肝原發(fā)性無功能的發(fā)生[5]。肝臟IRI可導(dǎo)致細胞因子、趨化因子釋放,活性氧(reactive oxygen species,ROS)水平升高,除引起肝臟本身損傷外,還可導(dǎo)致遠端器官如腎臟、腎上腺、肺臟、胰腺、腸道的損傷[6]。
1 間充質(zhì)干細胞及間充質(zhì)干細胞外囊泡的作用及區(qū)別
間充質(zhì)干細胞(mesenchymal stem cells,MSCs)作為高度分化的多功能細胞,其成纖維細胞的異質(zhì)性能進入各種中胚層體系,主要來源包括骨髓、臍帶、肌肉和脂肪組織等[7-9]。MSCs被國際干細胞研究學會定義為塑料黏附細胞,在標準條件下具有附著的成纖維細胞樣形態(tài),在標準體外分化條件下可分化為脂肪細胞、軟骨細胞和成骨細胞。MSCs不表達人類白細胞抗原Ⅱ類分子,使其能夠逃避異基因免疫問答,這一“免疫特權(quán)”使MSCs非常適合自體移植和同種異體移植[10-11]。
不同于MSCs具有多向分化能力和發(fā)生腫瘤的潛能,MSCs外囊泡(extracellular vesicles from MSCs,MSCs-EV)可降低致癌風險?;诋斍暗纳锲鹪?,細胞外囊泡可以大致分為兩類:外泌體和微泡。外泌體直徑一般為50~150nm,微泡直徑為50~500nm(最大至1μm)[12]。考慮到MSCs的異質(zhì)性,不同來源MSCs的免疫調(diào)節(jié)和血管生成作用不同[13]。目前在臨床試驗中使用MSCs仍存在爭議,且尚不清楚MSCs治療肝病的最佳劑量。有研究表明,大劑量MSCs輸注后可引起肺栓塞,而MSCs-EV較小且比MSCs更穩(wěn)定,在儲存和運輸過程中也更容易對質(zhì)量和數(shù)量進行控制[14]。
2? MSCs-EV抗炎癥反應(yīng)
骨髓MSCs-EV可以減少組織損傷,MSCs-EV在體內(nèi)和體外均能降低炎癥介質(zhì)的表達,通過釋放內(nèi)源性危險信號來調(diào)節(jié)先天免疫系統(tǒng)快速啟動無菌炎癥反應(yīng)對抗可能導(dǎo)致的肝臟IRI。胱天蛋白酶1(caspase-1)和炎癥小體依賴性通路可能參與肝臟IRI,NOD樣受體(NOD-like receptors,NLR)是一類重要的細胞液模式識別受體,它負責激活一些內(nèi)部分子,例如識別細胞內(nèi)危險相關(guān)分子模式的響應(yīng)病原體,導(dǎo)致NOD樣受體家族含Pyrin結(jié)構(gòu)域蛋白3(NOD-like receptor family Pyrin domain-containing protein,NLRP)、NLRP4等炎癥小體的形成,白細胞介素(interleukin,IL)-1β前體和IL-18作為炎癥和細胞死亡反應(yīng)的重要介質(zhì),受caspase-1激活后形成,導(dǎo)致細胞凋亡[15-17]。有觀察結(jié)果表明[18-19],MSCs-EV的作用不是通過直接影響促炎性NLR表達實現(xiàn)的,而是通過NLRP12減輕炎癥,NLRP12是一種通過減弱非典型核因子κB信號在體外免疫系統(tǒng)和其他環(huán)境下炎癥活動的負性調(diào)節(jié)因子。它在炎癥應(yīng)激時,可以起到肝臟保護作用,即使MSCs-EV增加了多個NLR的表達,但IL-1β的表達在MSCs-EV參與的IRI過程中降低,靶向NLRP12介導(dǎo)的抗炎反應(yīng)來調(diào)節(jié)肝臟IRI作為一種治療策略值得進一步探討。
在實驗誘導(dǎo)的氧化應(yīng)激中,MSCs-EV可在減輕與組織損傷相關(guān)炎癥反應(yīng)中發(fā)揮作用,MSCs-EV可以抑制肝細胞中NF-κB活性,如IL-6和IL-1β是由NF-κB激活轉(zhuǎn)錄調(diào)節(jié)的細胞因子的表達而生成[20]。MSCs-EV可增加小鼠正常肝細胞(AML12)體外釋放CXCL1。CXCL1 mRNA在肝臟IRI過程中表達增加,并由MSCs-EV增強進一步表達。此外,CXCL1可直接增加肝細胞增殖[21-22]。因此,CXCL1可能參與損傷后的組織修復(fù)反應(yīng)。雖然還沒有確鑿的證據(jù),但肝臟CXCL1表達增加可能有助于募集釋放NLRP12的細胞。減少肝臟IRI可以增加邊緣肝臟如來自擴展標準供體的使用,并增加供者器官庫的可用性,從而降低晚期肝病的死亡率,以上研究支持來源于MSCs的EVs用于治療減輕肝臟手術(shù)或肝移植術(shù)后肝臟IRI[23-24]。
3? 不同來源MSCs-EV的作用機制
3.1? 臍帶MSCs
Zheng等[25]表明臍帶MSCs外囊泡通過分泌一種新型聚集自噬受體——含TCP1伴侶蛋白亞基2發(fā)揮免疫調(diào)節(jié)功能,抑制CD4+ T細胞上CD154的表達從而保護肝臟。此外,這種有益作用可能主要與EVs的含TCP1伴侶蛋白亞基2影響鈣通道,下調(diào)細胞內(nèi)鈣濃度,抑制活化T細胞核因子1向細胞核轉(zhuǎn)移有關(guān)。CD154是一種短暫性蛋白,在CD4+ T細胞中表達,是IRI中不可或缺的肝損傷和肝炎癥因子;活化T細胞核因子1是調(diào)控T細胞分化、活化、耗竭和自我耐受的關(guān)鍵轉(zhuǎn)錄因子[26-29]。
使用抗體CD40或敲除CD154在體內(nèi)表達有助于抑制炎癥反應(yīng)[27]。有研究發(fā)現(xiàn)[25],在炎癥刺激6 h后CD4+ T細胞表達達到高峰,CD154表達也明顯增加,從而激活CD4+ T細胞并與其同源受體CD40相互作用刺激適應(yīng)性和先天免疫系統(tǒng),用抗體CD40或敲除CD154治療的目的是在早期抑制CD154表達,阻斷炎癥反應(yīng)的中間過程以改善肝臟IRI。
肝細胞敲除Yes-相關(guān)蛋白可導(dǎo)致嚴重的肝損傷,Iverson等[30]通過構(gòu)建非酒精性脂肪肝小鼠模型Albumin-Cre小鼠與Yapflox小鼠,觀察這些小鼠的血清谷丙轉(zhuǎn)氨酶升高水平和病理肝改變,提示Yes-相關(guān)蛋白不表達在聚集性肝臟IRI中起關(guān)鍵作用。有研究發(fā)現(xiàn)一種新的Yes-相關(guān)蛋白激活的機制是通過CD47/CD172a通路激活影響肝臟外囊泡的釋放,CD47通過靶向CD172a富集外囊泡可能是治療肝臟IRI的一種新策略[31]。
3.2? 肝臟MSCs
人肝干細胞來源外囊泡在體內(nèi)可保護肝臟免受IRI的影響,Calleri等[32]驗證了其在缺血持續(xù)90min的小鼠肝臟IRI中存活,并使用人肝干細胞來源外囊泡成功促進了70%肝切除小鼠模型的肝再生。實驗中分別使用高低兩種劑量的外囊泡,高劑量組與對照組谷丙轉(zhuǎn)氨酶和乳酸脫氫酶比較無差異,存活時間無明顯差異,提示高劑量外囊泡不能保護肝臟免受IRI的影響,低劑量組結(jié)果表明在人肝干細胞來源外囊泡處理后,谷丙轉(zhuǎn)氨酶釋放明顯增加,對缺血損傷的肝細胞有較強的保護作用[32]。有證據(jù)顯示,人肝干細胞來源外囊泡在80℃下保存6個月才失去生物活性,表明它們比干細胞的儲存時間更長[33]。
3.3? 骨髓MSCs
在肝缺血再灌注發(fā)生時,高遷移率族蛋白B1釋放到細胞外空間,通過Toll樣受體釋放信號和損傷相關(guān)細胞因子來激活促炎癥反應(yīng)[34],在嚙齒類動物模型中使用高遷移率族蛋白B1中和抗體,通過下調(diào)高遷移率族蛋白B1 siRNA表達水平,有效保護肝臟缺血再灌注損傷組織[35]。IL-1可誘導(dǎo)肝臟中細胞間黏附分子-1表達從而影響中性粒細胞的轉(zhuǎn)運[35-36],而抗體抗細胞間黏附分子-1可預(yù)防中性粒細胞外滲,明顯減輕肝損傷[37]。有研究對比分析了骨髓來源MSCs和MSCs衍生外囊泡與人類成年真皮成纖維細胞及衍生外囊泡在小鼠肝IRI后期模型[38-39],發(fā)現(xiàn)與用成纖維細胞及衍生外囊泡處理小鼠相比,在此前先靜脈注射MSCs和MSCs衍生的外囊泡肝缺血導(dǎo)致的肝損傷顯著減輕。綜合數(shù)據(jù)顯示,成纖維細胞或成纖維細胞衍生的外囊泡在IRI后不能防止肝損傷,而MSCs和MSCs衍生外囊泡有望成為未來IRI的治療方法。
4? 小結(jié)
MSCs-EV作為載體,在轉(zhuǎn)運物質(zhì)方面發(fā)揮了重要作用,不同來源的MSCs-EV轉(zhuǎn)運效果也不同。以上從基礎(chǔ)實驗機制方面闡述了不同來源的MSCs-EV在肝臟缺血再灌注中的作用,使用MSCs-EV促進肝組織修復(fù)在許多不同的模型中得到驗證,為其臨床修復(fù)肝損傷帶來新的可能。由于大多數(shù)研究采用細胞實驗和小鼠模型來進行,尚處于研究階段,所涉及的一些通路和作用機制還需進一步驗證。未來MSCs-EV將會給肝臟IRI帶來新的希望,特別是應(yīng)用于臨床研究,尋求其中特異性治療靶點。
5? 參考文獻
[1] Montalvo-Jave EE,Pi?a E,Montalvo-Arenas C,et al.Role of ischemic preconditioning in liver surgery and hepatic transplantation[J].J Gastrointest Surg,2009,13(11):2074-2083.
[2] Fondevila C,Busuttil RW,Kupiec-Weglinski JW.Hepatic ischemia/reperfusion injury-a fresh look[J].Exp Mol Pathol,2003,74(2): 86-93.
[3] de Rougemont O,Dutkowski P,Clavien PA.Biological modulation of liver ischemia-reperfusion injury[J].Curr Opin Organ Transplant,2010,15(2): 183-189.
[4] Zarrinpar A,Busuttil RW.Liver transplantation:past, present and future[J].Nat Rev Gastroenterol Hepatol,2013,10(7):434-440.
[5] Hwang W,Lee J.Pathophysiologic Implications of Cytokines Secretion duringLiver Transplantation Surgery[J].Int J Med Sci,2018,15(14): 1737-1745.
[6] Nastos C,Kalimeris K,Papoutsidakis N,et al.Global consequences of liver ischemia/reperfusion injury[J].Oxid Med Cell Longev,2014,2014: 906965.
[7] Uccelli A,Moretta L,Pistoia V.Mesenchymal stemcells in health and disease[J].Nat Rev Immunol,2008,8(9):726-736.
[8] Giuliani M,Oudrhiri N,Noman ZM,et al.Human mesenchymal stem cells derived from induced pluripotent stem cells down-regulate NK-cell cytolytic machinery[J].Blood,2011,118(12):3254-3262.
[9] Arslan F,Lai RC,Smeets MB,et al.Mesenchymal stem cell-derived exosomes increase ATP levels, decrease oxidative stress and activate PI3K/Akt pathway to enhance myocardial viability and prevent adverse remodeling after myocardial ischemia/reperfusion injury[J].Stem Cell Res,2013,10(3):301-312.
[10] Erpicum P,Detry O,Weekers L,et al.Mesenchymal stromal cell therapy in conditions of renal ischaemia/reperfusion[J].Nephrol Dial Transplant,2014,29(8):1487-1493.
[11] Puglisi MA,Tesori V,Lattanzi W,et al.Therapeutic implications of mesenchymal stem cells in liver injury[J].J Biomed Biotechnol,2011,2011:860578.
[12] van Niel G,D'Angelo G,Raposo G.Shedding light on the cell biology of extracellular vesicles[J].Nat Rev Mol Cell Biol,2018,19(4):213-228.
[13] Boregowda SV,Krishnappa V,Haga CL,et al.A Clinical Indications Prediction Scale Based on TWIST1 for Human Mesenchymal Stem Cells[J].EBioMedicine,2015,4:62-73.
[14] Yao J,Zheng J,Cai J,et al.Extracellular vesicles derived from human umbilical cord mesenchymal stem cells alleviate rat hepatic ischemia-reperfusion injury by suppressing oxidative stress and neutrophil inflammatory response[J].FASEB J,2019,33(2):1695-1710.
[15] Nauta AJ,Kruisselbrink AB,Lurvink E,et al.Mesenchymal stem cells inhibit generation and function of both CD34+-derived and monocyte-derived dendritic cells[J].J Immunol,2006,177(4):2080-2087.
[16] Li XC,Turka LA.An update on regulatory T cells in transplant tolerance and rejection[J].Nat Rev Nephrol,2010,6(10):577-583.
[17] Caplan AI,Dennis JE.Mesenchymal stem cells as trophic mediators [J]. J Cell Biochem,2006,98(5):1076-1084.
[18] Franchi L,Mu?oz-Planillo R,Nú?ez G.Sensing and reacting to microbes through the inflammasomes[J].Nat Immunol,2012,13(4):325-332.
[19] Schroder K,Tschopp J.The inflammasomes[J].Cell,2010,140(6):821-832.
[20] Saiman Y,F(xiàn)riedman SL.The role of chemokines in acute liver injury [J].Front Physiol,2012,3:213.
[21] Zaki MH,Man SM,Vogel P,et al.Salmonella exploits NLRP12-dependent innate immune signaling to suppress host defenses during infection[J].Proc Natl Acad Sci U S A,2014,111(1):385-390.
[22] Vansaun MN,Mendonsa AM,Lee Gorden D.Hepatocellular proliferation correlates with inflammatory cell and cytokine changes in a murine model of nonalchoholic fatty liver disease[J].PLoS One,2013,8(9):e73054.
[23] Haga H,Yan IK,Borrelli DA,et al.Extracellular vesicles from bone marrow-derived mesenchymal stem cells protect against murine hepatic ischemia/reperfusion injury[J].Liver Transpl,2017,23(6):791-803.
[24] Kuo TK,Hung SP, Chuang CH,et al.Stemcell therapy for liver disease: parameters governing the success of using bone marrowmesenchymal stem cells[J].Gastroenterology,2008,134(7):2111-21,2121.e1-3.
[25] Zheng J,Lu T,Zhou C,et al.Extracellular Vesicles Derived from Human Umbilical Cord Mesenchymal Stem Cells Protect Liver Ischemia/Reperfusion Injury by Reducing CD154 Expression on CD4+ T Cells via CCT2[J].Adv Sci (Weinh),2020,7(18):1903746.
[26] ]Huang GN,Huso DL,Bouyain S,et al.NFAT binding and regulation of T cell activation by the cytoplasmic scaffolding Homer proteins[J].Science,2008,319(5862):476-481.
[27] Rao J,Cheng F,Yang S,et al.Ag-specific CD4 T cells promote innate immune responses in liver ischemia reperfusion injury[J].Cell Mol Immunol,2019,16(1):98-100.
[28] Hogan PG.Calcium-NFAT transcriptional signalling in T cell activation and T cell exhaustion[J].Cell Calcium,2017,63:66-69.
[29] Martinez GJ,Pereira RM,Aijo T,et al.The transcription factor NFAT promotes exhaustion of activated CD8+T cells[J].Immunity,2015,42(2):265-278.
[30] Iverson SV,Comstock KM,Kundert JA,et al.Contributions of new hepatocyte lineages to liver growth, maintenance, and regeneration in mice[J].Hepatology,2011,54(2):655-663.
[31] Yuan Z,Ye L,F(xiàn)eng X,et al.YAP-dependent induction of CD47-enriched extracellular vesicles inhibits dendritic cell activation and ameliorates hepatic ischemia-reperfusion injury[J].Oxid Med Cell Longev,2021,2021:6617345.
[32] Calleri A,Roggio D,Navarro-Tableros V,et al.Protective effects of human liver stem cell-derived extracellular vesicles in a mouse model of hepatic ischemia-reperfusion injury[J].Stem Cell Rev Rep,2021,17(2):459-470.
[33] Abe Y,Hines IN,Zibari G,et al.Mouse model of liver ischemia and reperfusion injury:method for studying reactive oxygen and nitrogen metabolites in vivo[J].Free Radic Biol Med,2009,46(1):1-7.
[34] Tsung A,Sahai R,Tanaka H,et al.The nuclear factor HMGB1 mediates hepatic injury after murine liver ischemia-reperfusion[J].J Exp Med,2005,201(7):1135-1143.
[35] Zhao G,F(xiàn)u C,Wang L,et al.Down-regulation of nuclear HMGB1 reduces ischemia-induced HMGB1 translocation and release and protects against liver ischemia-reperfusion injury[J].Sci Rep,2017,7:46272.
[36] Farhood A,McGuire GM,Manning AM,et al.Intercellular adhesion molecule 1 (ICAM-1) expression and its role in neutrophil-induced ischemia-reperfusion injury in rat liver[J].J Leukoc Biol,1995,57(3):368-374.
[37] Ganey PE,Bailie MB,VanCise S,et al.Activated neutrophils from rat injured isolated hepatocytes[J].Lab Invest,1994,70(1):53-60.
[38] González-Flecha B,Cutrin JC,Boveris A.Time course and mechanism of oxidative stress and tissue damage in rat liver subjected to in vivo ischemia-reperfusion[J].J Clin Invest,1993,91(2):456-464.
[39] Anger F,Camara M,Ellinger E,et al.Human mesenchymal stromal cell-derived extracellular vesicles improve liver regeneration after ischemia reperfusion injury in mice[J].Stem Cells Dev,2019,28(21):1451-1462.
[2022-08-12收稿]