何靜
摘要:數(shù)學是具有思想性、抽象性、邏輯性的一門學科。對學生而言,學好數(shù)學,能力比知識更重要,方法比結論更重要。數(shù)學思想滲透于小學數(shù)學教學中,不僅能深化學生對數(shù)學知識的理解,而且能使學生構建相應的思維體系,提升數(shù)學學習效果。文章將分析小學數(shù)學教材知識中的數(shù)學思想,探索數(shù)學思想對于數(shù)學學習的意義,針對當前小學數(shù)學教學中存在的問題提出相應的數(shù)學思想滲透策略。
關鍵詞:數(shù)學思想;教學滲透;應用價值;有效策略
數(shù)學思想是學習數(shù)學知識、運用數(shù)學方法解決實際問題的重要思想。掌握數(shù)學思想,就能轉化抽象、復雜的數(shù)學知識,幫助學生更好地吸收與掌握數(shù)學知識,促進其學習水平提高。就小學生來說,其自身的理解能力還不完善,在對數(shù)學知識進行學習時,由于知識點理論性強,會出現(xiàn)無法理解的情況。此時,教師應適當滲透數(shù)學思想,打開學生思考的大門,讓學生掌握數(shù)學知識的學習和探究技巧,可鍛煉學生的思維能力,促進學生對數(shù)學思想的理解和把握,提高其學習效率。
1? ?小學數(shù)學教學中滲透數(shù)學思想的價值
第一,有助于培養(yǎng)學生的數(shù)學思想,促使其形成良好的數(shù)學觀。數(shù)學知識體系的構建過程主要是指教師指導學生的過程,其出發(fā)點是讓學生依據(jù)自身的實際學情,也就是其學習經驗以及掌握的知識內容,開展自我思考,以得出相應的結論。在實際教學中,獨立探究、實踐、合作交流等各種教學方式,都是以學生自身的數(shù)學意識以及數(shù)感作為前提的。學生只有具備了相應的數(shù)學意識以及數(shù)感,開展教學活動才會更加容易,使學生收到良好的學習效果。因此,數(shù)學教師在具體教學時,要注重培養(yǎng)學生的數(shù)學思維及數(shù)感,積極融入數(shù)學思想,以促使學生在遇到無法解決的數(shù)學問題時,能通過數(shù)學思想找到解決問題的方法,構建相應的數(shù)學關系,以有效解決數(shù)學問題,提高學生的學習效率。
第二,有助于學生解題能力的提升。小學生學習數(shù)學知識的主要目的就是解題、提高考試成績,而想要實現(xiàn)該目的,學生就需要掌握相應的解題思想與方法。不少小學生表示,學習數(shù)學知識難的原因是無法清楚地認識到數(shù)學知識的本質,在實際運用時,無法有效轉化理論知識。而數(shù)學思想的巧妙滲透,能使學生在具體生活中了解到數(shù)學知識的運用,并能通過自己所學習的數(shù)學知識解決實際問題,最終提升解決數(shù)學問題的能力。
第三,有助于學生構建完善的知識框架。為了使小學生的數(shù)學學科核心素養(yǎng)得到有效提升,數(shù)學教師在具體教學時,要引導學生積極構建自己的知識框架,對學習內容進行分類歸納,分析數(shù)學的本質,充分掌握數(shù)學知識的應用方法。當學生充分掌握相關數(shù)學思想時,教師就能將脈絡清晰、完整的知識體系呈現(xiàn)給學生,而學生也不再是機械記憶,而是經過歸納與整理知識體系,將知識體系轉變成自己的認知結構,從而形成學以致用的能力。
第四,有助于小學生實現(xiàn)全面發(fā)展。課程服務于教育,教育的目的是促使人全面發(fā)展,而數(shù)學思想的合理運用,能使小學生實現(xiàn)全面發(fā)展,提升學生的數(shù)學學科核心素養(yǎng)。綜合素養(yǎng)作為所有知識技能與態(tài)度的集合,是多功能、可遷移的,是學生實現(xiàn)自我發(fā)展、融入社會所必需的,經過義務教育階段的學習,不僅能夠使學生形成數(shù)學素養(yǎng),而且能為其終身發(fā)展奠定扎實的基礎。在小學數(shù)學課堂教學中滲透數(shù)學思想,可以使學生掌握相關基礎知識與技能,這不僅能夠使學生形成抽象思維以及推理能力,還能促使其形成相應的創(chuàng)新意識以及實踐能力。
2? ?小學數(shù)學教學中滲透數(shù)學思想存在的問題
在新課程標準背景下,小學數(shù)學課堂教學越來越注重數(shù)學思想,倡導在課堂教學過程中融入數(shù)學思想,但在實際操作中仍存與一些問題,具體表現(xiàn)為:
第一,教師對于數(shù)學思想的認知不足。受應試教育影響,數(shù)學教師通常會將教學重點置于學生對于教材知識的理解與掌握上。數(shù)學思想以及數(shù)學理論通常有著較強的隱蔽性,教師在實際教學時,不太關注數(shù)學思想的滲透。此外,數(shù)學思想比較抽象,常常蘊含于數(shù)學知識或問題中,需要在不斷地歸納、總結與分析中獲得,這不僅在無形中增加了數(shù)學思想的滲透難度,而且對數(shù)學教師而言,也有著較大的挑戰(zhàn)性。有些教師面對數(shù)學思想時,常常采取“忽視”的態(tài)度,認為學生對數(shù)學知識進行學習與探究后,會自然地掌握相關數(shù)學思想,最終導致學生無法有效理解數(shù)學思想,對于數(shù)學思想的掌握與運用過程也極其漫長,從而影響學生對于數(shù)學知識的學習效果。
第二,小學數(shù)學教學當中數(shù)學思想的滲透效果不顯著。目前,在小學數(shù)學課堂教學中,教師講解數(shù)學知識或通過數(shù)學知識解決問題時,會對數(shù)學思想的具體應用進行深入講解。但是,教師在講解數(shù)學思想的時候,更多的是將“轉化思想”“數(shù)形結合”等方法傳授給學生,而沒有對其進行深入介紹,學生在學習完后,對于數(shù)學思想通常也表現(xiàn)得似懂非懂。同時,數(shù)學教師在進行解題教學時,也沒有詳細、系統(tǒng)地講解數(shù)學思想的運用,這就導致學生對于數(shù)學思想的掌握不扎實,不僅會影響到學生自身的數(shù)學思維培養(yǎng),也給學生的學習帶來了困難,從而造成數(shù)學課堂的教學效果不佳。
第三,小學生對于數(shù)學思想的學習不全面。就小學數(shù)學來說,其知識點較為簡單,數(shù)學知識本身的邏輯性較弱,大部分學生的問題都可以通過數(shù)學知識直接解決,因此,學生對于數(shù)學思想的學習積極性不高,認為只要掌握常用的思想與方法,能做數(shù)學題即可,缺乏深入探究其他數(shù)學思想的動力。雖然小學數(shù)學的知識點都比較簡單,數(shù)學題也不是很復雜,但學習數(shù)學的初期是學生在未來深入學習以及探究數(shù)學知識的前提。同時,由于小學生缺乏通過數(shù)學思想解決問題的意識與習慣,不能夠有效地將數(shù)學知識應用到實際問題的分析和解決中,因此降低了學生的積極性,也影響到學生后期的有效學習。
3? ?小學數(shù)學教學中滲透數(shù)學思想的策略
3.1數(shù)形結合思想的滲透
數(shù)形結合思想通??梢岳斫獬蓪⑾鄬唵?、直觀的幾何圖形以及復雜、多樣的數(shù)量關系進行互相轉化,降低學習的難度,在圖形和代數(shù)關系的互相轉化中,促進數(shù)學問題的高效解決。數(shù)形結合的實際運用可分成以數(shù)解形與以形助數(shù),通過數(shù)的精確性以及形的直觀性,提升學生的解題能力。因此,數(shù)學教師在引導小學生學習相關知識的時候,可找準機會,將復雜的代數(shù)關系轉化為形象的圖形,或者在圖形上增加數(shù)據(jù),讓學生經過讀圖分析,把握其中的數(shù)量關系,明確解題方案,優(yōu)化解題過程。
例如,在對“加與減”的相關內容進行講解時,教師可根據(jù)加減的法則,將具體的數(shù)量轉化為與之對應的線段。例如,周末,小明和家人到游樂園玩用氣槍打氣球的“射擊游戲”,小明給了老板5元錢,得到5次射擊的機會,在射擊完成后,老板檢查后告訴小明,只擊中一個氣球,于是給了小明一個削筆刀作為獎勵。那么,在射擊游戲中,小明有幾顆子彈沒有擊中氣球?在學生閱讀完試題材料后,教師提問,試題中給出了哪些數(shù)量關系?如何直觀地體現(xiàn)這些數(shù)量關系?通過合理的提問,幫助小學生養(yǎng)成好的審題習慣,并找出相應的數(shù)據(jù)與條件。接著,教師在黑板上畫條線段,分為等量的5份,每1份代表一次射擊,隨后在這條線段從左邊起的第一份上進行標注,以此代表射中氣球的個數(shù),并將線段數(shù)量和其相對的數(shù)據(jù)標在線段上方,以便學生經過對比,形象、直觀地理解其中的數(shù)量關系,并列出具體算式,這樣計算起來就容易多了。由此可知,通過數(shù)形結合,不僅能激發(fā)小學生學習數(shù)學知識的興趣,而且能激活其數(shù)學思維,從而使學生更順利、有效地理解題意,明確解題方法,促進其數(shù)學素養(yǎng)的提升。
3.2轉化思想的滲透
學生在剛接觸新知識的時候,通常較為懵懂,需要憑借一定的依托去理解,通過遷移舊知識來獲得新知識。轉化思想是學習數(shù)學知識、解決實際問題的有效思想,也是鍛煉學生思維、培養(yǎng)學生創(chuàng)造能力的有效途徑。教師要注重新舊知識間的內在聯(lián)系,引導學生對新知識、新問題進行等效轉化,將其變成已知的知識或問題,或同已知的知識構建聯(lián)系,這樣就可以運用已經掌握的知識分析和解決相關問題,讓其產生感性認知。
例如,在對“生活中的大數(shù)”的相關內容進行講解時,學生對“百、千、萬”等數(shù)量單位并沒有直觀的印象,也不能將具體的單位與實際的數(shù)量聯(lián)系起來。此時,數(shù)學教師就需要立足于實際,通過生活中常見的物品進行輔助教學,將數(shù)學單位轉化為具體的物品數(shù)量,幫助學生感知“百、千、萬”的真實含義。首先,教師利用多媒體給學生展示1個糖果,并標注1個糖果;然后,增加糖果的數(shù)量,將100個糖果排成一列,并標注100個糖果;隨后給學生展示1000個糖果、10000個糖果,并分別對應百、千、萬。這樣,通過從數(shù)字到圖片的轉化,學生能夠根據(jù)具體的物品數(shù)量,直觀地理解百、千、萬的具體含義,提升課堂學習效果。除此之外,數(shù)學教師還可引導學生對“除法”進行學習,立足于現(xiàn)實生活,將學生熟悉的場景作為輔助進行深入理解。教師可利用多媒體,展示12個蘋果,引導學生思考:如果將這12個蘋果分給2個人,怎樣分才能使每個人得到的數(shù)量一樣多?如果將這些蘋果分給三個人呢?分給四個人呢?以此將“平均”的概念引出來。并通過現(xiàn)實生活當中經常遇到的分東西的情景,讓學生理解除法的概念及其知識點。通過轉化思想,能夠將未知的數(shù)學知識轉化為已知的知識,引導學生利用已經掌握的知識和經驗進行分析和探索,既能夠提升學生的學習效果,又能使學生充分掌握知識的內涵及規(guī)律,并實現(xiàn)知識與生活之間的有效貫通,提升學生的知識應用能力。
3.3建模思想的滲透
建模思想主要指通過數(shù)學思維模型解決實際生活中的問題,抓住數(shù)學現(xiàn)象或問題中的主要因素構建解決數(shù)學問題的方案的一種思維模式。數(shù)學建模是思維模式形成的具體過程,在解決問題時,可將其轉變成變量和常量的邏輯關系,通過已經學習的數(shù)學知識及其邏輯關系,解決現(xiàn)實生活中的數(shù)學問題。就小學數(shù)學知識來說,其理論內容和現(xiàn)實生活有著密切的關聯(lián),教師可依據(jù)教材內容,引入現(xiàn)實生活情境,讓學生通過將理論知識與實際生活相結合,合理建模,快速解決數(shù)學問題。
例如,學校的圖書室新購買了故事書810本,是原先故事書的3/5,請問,圖書室原先有多少本故事書?解答這類數(shù)學題時,教師可指導學生與自己的實際生活情境相結合進行思考,并以此為基礎開展數(shù)量關系的建模。比如,現(xiàn)在圖書館中的故事書數(shù)量用圓形代替,原先的故事書量也用圓來表示,由于新增加了故事書的關系,可以把代表原先圖書館的故事書數(shù)量的圓放在代表現(xiàn)在圖書館故事書數(shù)量的圓內,以此來代表數(shù)量之間的關系,學生通過這種建模,能更加直觀地思考以及分析數(shù)學題目。又或者在對“探究平均數(shù)”的相關內容開展教學時,教師可提出相應的問題:選擇10名學生,分成A、B兩組,每組各5人,開展算術比賽,一共有十道題目,規(guī)則是答對一道題,積一分,A組得分是10 分、7 分、9 分、8 分、9 分,B 組得分是9 分、8 分、10 分、6 分、7 分,請問,哪個組贏了?學生在看到問題后,經過相應的計算與比較,就能快速得出結果。接著,教師再增加條件,將A組的人數(shù)改成6,得分改成10 分、7 分、9 分、8 分、9 分、8 分,問題不變。學生表示,由于兩組人數(shù)不同,所以,不能放到一起比較。此時,數(shù)學教師可指導學生思考,在這種情況下要怎樣比較,學生思考后回答:應對比兩隊平均成績。在學生回答后,教學任務也由此引出,并讓學生充分理解“平均數(shù)”的概念,促使學生積極主動地參與建模過程。
綜上所述,小學數(shù)學知識中蘊含著豐富的數(shù)學思想,教師需要靈活應對,在學生學習和解題過程中,注重相關數(shù)學思想的滲透,幫助學生提煉數(shù)學知識,總結解決數(shù)學問題的高效方法,運用數(shù)學思想貫通數(shù)學理論知識與實際問題之間的聯(lián)系,提升學生的學習效果。教師應深入挖掘與應用數(shù)學思想,以便于學生充分掌握相關數(shù)學思想,進而能夠優(yōu)化解題過程,為后期的學習與發(fā)展奠定扎實的基礎。
參考文獻:
[1]柯麗秋.小學數(shù)學教學中滲透數(shù)學思想方法的實踐策略[J].名師在線,2023(4):23-25.
[2]曾纓.小學數(shù)學有效滲透數(shù)學思想方法的策略探究[J].學苑教育,2023(1):44-46.
[3]王叢萍.數(shù)學思想方法在小學數(shù)學教學中的滲透探討[J].數(shù)學之友,2022,36(24):47-48.
[4]葛敏芳.淺析數(shù)學思想方法在小學數(shù)學課堂中的高效滲透[J].數(shù)學教學通訊,2022(28):85-86.
[5]李小花.小學數(shù)學教學中強化數(shù)學思想方法的策略探究[J].新智慧,2022(21):90-92.