• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看

      ?

      CuI催化的A3-偶聯(lián)反應(yīng)合成鄰羥基苯基丙炔胺類化合物的研究

      2023-06-14 02:07:48樊陳莉謝吉娜惠文杰陳浩宇何心偉
      關(guān)鍵詞:丙炔水楊醛胺類

      樊陳莉 謝吉娜 惠文杰  陳浩宇 何心偉

      摘要:丙炔胺類化合物因其具有多個(gè)反應(yīng)位點(diǎn)而在有機(jī)合成中具有廣泛的應(yīng)用。本文發(fā)展了一種CuI催化的水楊醛、四氫吡咯和末端炔的A3-偶聯(lián)反應(yīng)合成鄰羥基苯基丙炔胺衍生物的方法。水楊醛和芳基乙炔中無(wú)論是吸電子基團(tuán)還是供電子基團(tuán)均能較好的適用于該反應(yīng),且水楊醛中含有多個(gè)取代基時(shí)也能得到相應(yīng)的目標(biāo)產(chǎn)物,并利用1H,13C NMR和HRMS等手段對(duì)目標(biāo)化合物的結(jié)構(gòu)進(jìn)行了表征。該合成方法具有操作簡(jiǎn)單、合成效率高和取代基容忍性好等優(yōu)點(diǎn),為鄰羥基苯基丙炔胺類化合物的合成提供了一種新的合成思路。

      關(guān)鍵詞:A3-偶聯(lián)反應(yīng);丙炔胺;水楊醛;苯乙炔

      中圖分類號(hào):O626文獻(xiàn)標(biāo)志碼: A文章編號(hào):1001-2443(2023)02-0138-08

      丙炔胺是一類具有廣泛用途的含氮化合物,近年來(lái)在藥理和藥物化學(xué)領(lǐng)域的應(yīng)用日益廣泛[1]。優(yōu)降寧[2]、雷沙吉蘭[3]、司來(lái)吉蘭[4]等丙炔胺衍生物被發(fā)現(xiàn)在治療帕金森癥和阿爾茲海默癥等精神類疾病中具有很好的效果。此外,丙炔胺類化合物具有多個(gè)反應(yīng)位點(diǎn),早期通過(guò)金屬催化和環(huán)加成反應(yīng)等用于合成脂肪族或芳香族雜環(huán)化合物,如吡咯、咪唑、吡唑、喹啉等重要含氮雜環(huán)化合物[5-6]。近期,丙炔胺類化合物的多樣性化學(xué)轉(zhuǎn)化在天然產(chǎn)物和功能材料分子合成中也得到了廣泛應(yīng)用[7-8]。因此,其合成方法也備受關(guān)注。結(jié)構(gòu)簡(jiǎn)單的丙炔胺化合物可以通過(guò)炔基鹵化物或炔酸酯類化合物的氨基化反應(yīng)得到[9-11]。此外,醛或酮的還原氨化也成為構(gòu)建丙炔胺骨架常用且高效的合成方法[12]。過(guò)去十年,過(guò)渡金屬催化的末端炔類化合物對(duì)亞胺的加成反應(yīng)已成為合成丙炔胺的一種較流行的方法[13]。但是,這些方法大多存在反應(yīng)條件苛刻、反應(yīng)時(shí)間長(zhǎng)或使用當(dāng)量金屬催化劑等缺陷,因此,需要發(fā)展簡(jiǎn)單、高效的合成丙炔胺類化合物的方法。

      醛或酮與氨和炔的三組分偶聯(lián)反應(yīng)稱之為A3-偶聯(lián)反應(yīng),已成為近年來(lái)直接構(gòu)建丙炔胺類化合物的通用方法[14-15],該方法通過(guò)使用催化量的金屬催化劑(如Cu, Ag, Au, In等)在溫和實(shí)驗(yàn)條件下實(shí)現(xiàn)丙炔胺類化合物的高效合成[16-20]。此外,手性催化劑調(diào)控的不對(duì)成A3-偶聯(lián)反應(yīng)[21]及金屬催化的串聯(lián)脫羧A3-偶聯(lián)反應(yīng)[22-23]被廣泛應(yīng)用于合成手性丙炔胺類化合物和非對(duì)稱丙炔胺或3-氨基-1,4-烯炔化合物等。在綠色化學(xué)理念指導(dǎo)下,各種負(fù)載的銅催化劑被制備并用于無(wú)溶劑下的A3-偶聯(lián)反應(yīng),這種催化劑具有較好的可回收性,但其催化劑回收過(guò)程的成本仍然很高[24-28]。因此,有必要尋找一種簡(jiǎn)單有效的合成丙炔胺衍生物的方法。本文以廉價(jià)易得的CuI為催化劑,利用水楊醛、四氫吡咯和末端炔的A3-偶聯(lián)反應(yīng)實(shí)現(xiàn)一種結(jié)構(gòu)新穎的鄰羥基苯基丙炔胺類化合物的克級(jí)規(guī)模合成,為丙炔胺類化合物在有機(jī)合成中的應(yīng)用提供了依據(jù)。設(shè)計(jì)合成路線如圖1所示。

      1 實(shí)驗(yàn)部分

      1.1 實(shí)驗(yàn)試劑和儀器

      BRUKER-AV-500型核磁共振儀(500 MHz,CDCl3為溶劑,TMS為內(nèi)標(biāo)) ; X-4 數(shù)字顯示顯微熔點(diǎn)測(cè)定儀(北京泰克儀器有限公司,溫度計(jì)未經(jīng)校正)。

      實(shí)驗(yàn)所用溶劑和試劑均為分析純(可直接使用)。

      1.2 丙炔胺衍生物的合成步驟

      在裝有磁性攪拌棒的25 mL圓底燒瓶中加入胺(6.5 mmol)、醛(5.0 mmol)、乙炔(6.5 mmol)、碘化亞銅(I) (20 mol%)和甲苯(10 mL)。將混合物脫氣并回填氮?dú)?,然后在預(yù)熱至80 °C的油浴中攪拌8小時(shí)(TLC監(jiān)測(cè))。反應(yīng)完成后(薄層色譜法測(cè)定),將反應(yīng)混合物冷卻至室溫,用CH2Cl2(10 mL)稀釋,通過(guò)硅膠薄層過(guò)濾。用CH2Cl2洗滌濾餅,將組合濾液在真空中濃縮。采用硅膠閃柱色譜法對(duì)粗品進(jìn)行純化,得到相應(yīng)的丙炔胺3a-3u。

      1.3 產(chǎn)物表征數(shù)據(jù)

      2-(3-Phenyl-1-(pyrrolidin-1-yl)prop-2-yn-1-yl)phenol (3a): White solid (85%, 1.18 g); mp = 80~81 °C,

      1H NMR (500 MHz, CDCl3) δ 7.55~7.52 (m, 3H), 7.37~7.35 (m, 3H), 7.23 (t, J = 7.5 Hz, 1H), 6.87~6.84 (m, 2H), 5.29 (s, 1H), 2.92~2.87 (m, 2H), 2.83~2.79 (m, 2H), 1.91~1.85 (m, 4H);13C NMR (125 MHz, CDCl3) δ 157.6, 131.9, 129.3, 128.6, 128.4, 127.8, 122.5, 122.1, 118.9, 116.3, 89.0, 82.9, 57.0, 48.9, 23.8; HRMS (APCI) m/z: calcd for C19H19NO [M + H]+278.1539, found 278.1538.

      2-(1-(Pyrrolidin-1-yl)-3-(p-tolyl)prop-2-yn-1-yl)phenol (3b): White solid (87%, 1.27 g); mp = 61~62 ℃,

      1H NMR (500 MHz, CDCl3) δ 7.54 (d, J = 7.5 Hz, 1H), 7.43 (d, J = 8.0 Hz, 2H), 7.21 (t, J = 7.5 Hz, 1H), 7.17 (d, J = 8.0 Hz, 2H), 6.86~6.83 (m, 2H), 5.28 (s,1H), 2.88 (s, 2H), 2.81~2.79 (m, 2H), 2.37 (s, 3H), 1.87 (s, 4H);13C NMR (125 MHz, CDCl3) δ 157.5, 138.7, 131.8, 129.3, 129.1, 127.9, 122.2, 119.4, 119.0, 116.3, 89.2, 82.1, 56.9, 48.9, 23.8, 21.5; HRMS (APCI) m/z: calcd for C20H21NO [M + H]+292.1695, found 292.1694.

      2-(3-(4-Chlorophenyl)-1-(pyrrolidin-1-yl)prop-2-yn-1-yl)phenol (3c): White solid (80%, 1.24 g); mp = 69~70 °C,1H NMR (500 MHz, CDCl3) δ 7.49 (d, J = 7.5 Hz,1H), 7.45 (d, J = 8.5 Hz, 2H), 7.33 (d, J = 8.5 Hz, 2H), 7.22 (t, J = 7.5 Hz,1H), 6.86~6.83 (m, 2H), 5.27 (s,1H), 2.87 (s, 2H), 2.81~2.79 (m, 2H), 1.88 (s, 4H);13C NMR (125 MHz, CDCl3) δ 157.5, 134.8, 133.8, 133.2, 129.6, 129.0, 128.8, 127.9, 122.0, 119.2, 116.6, 88.0, 84.1, 57.1, 49.2, 23.9; HRMS (APCI) m/z: calcd for C19H18ClNO [M + H]+312.1149, found 312.1147.

      4-Methyl-2-(3-phenyl-1-(pyrrolidin-1-yl)prop-2-yn-1-yl)phenol (3d): Yellow oil (82%, 1.19 g);1H NMR (500 MHz, CDCl3) δ 7.54~7.52 (m, 2H), 7.37~7.35 (m, 3H), 7.31 (s, 1H), 7.02 (d, J = 8.0 Hz, 1H), 6.76 (d, J = 8.0 Hz, 1H), 5.23 (s, 1H), 2.89~2.85 (m, 2H), 2.82~2.77 (m, 2H), 2.28 (s, 3H), 1.88~1.85 (m, 4H);13C NMR (125 MHz, CDCl3) δ 155.1, 131.9, 129.7, 128.5, 128.4, 128.3, 128.0, 122.6, 121.8, 116.0, 88.8, 83.1, 57.0, 48.9, 23.8, 20.7; HRMS (APCI) m/z: calcd for C20H21NO [M + H]+292.1695, found 292.1696.

      4-Methyl-2-(1-(pyrrolidin-1-yl)-3-(p-tolyl)prop-2-yn-1-yl)phenol (3e): Yellow solid (89%, 1.36 g); mp = 67~68 °C,1H NMR (500 MHz, CDCl3) δ 7.43 (d, J = 8.0 Hz, 2H), 7.31 (s, 1H), 7.17 (d, J = 8.0 Hz, 2H), 7.02 (d, J = 8.0 Hz, 1H), 6.75 (d, J = 8.0 Hz, 1H), 5.23 (s, 1H), 2.89~2.85 (m, 2H), 2.81~2.77 (m, 2H), 2.38 (s, 3H), 2.28 (s, 3H), 1.88~1.85 (m, 4H);13C NMR (125 MHz, CDCl3) δ 155.1, 138.7, 131.8, 129.7, 129.1, 128.3, 128.0, 121.9, 119.5, 116.0, 89.0, 82.3, 57.0, 48.9, 23.8, 21.5, 20.7; HRMS (APCI) m/z: calcd for C21H23NO [M + H]+306.1852, found 306.1850.

      2-(3-(4-Chlorophenyl)-1-(pyrrolidin-1-yl)prop-2-yn-1-yl)-4-methylphenol (3f): Yellow solid (86%, 1.40 g); mp = 79~80 °C,1H NMR (500 MHz, CDCl3) δ 7.46 (d, J = 8.5 Hz, 2H), 7.34 (d, J = 8.0 Hz, 2H), 7.03 (d, J = 8.0 Hz, 1H), 6.76 (d, J = 8.0 Hz, 1H), 5.20 (s, 1H), 2.84 (s, 2H), 2.79~2.77 (m, 2H), 2.28 (s, 3H), 1.87 (s, 4H);13C NMR (125 MHz, CDCl3) δ 155.0, 134.6, 133.1, 129.8, 128.7, 128.2, 128.1, 121.6, 121.0, 116.1, 87.7, 84.3, 57.1, 49.1, 23.8, 20.7; HRMS (APCI) m/z: calcd for C20H20ClNO [M + H]+326.1306, found 326.1307.

      4-Chloro-2-(3-phenyl-1-(pyrrolidin-1-yl)prop-2-yn-1-yl)phenol (3g): Yellow solid (75%, 1.17 g); mp = 61~62 °C,1H NMR (500 MHz, CDCl3) δ 7.54~7.52 (m, 2H), 7.50 (d, J = 7.5 Hz, 1H), 7.38~7.35 (m, 3H), 7.17 (d, J = 8.5 Hz, 1H), 6.78 (d, J = 8.5 Hz, 1H), 5.24 (s, 1H), 2.88 (s, 2H), 2.80~2.76 (m, 2H), 1.89~1.86 (m, 4H);13C NMR (125 MHz, CDCl3) δ 156.3, 131.9, 129.1, 128.8, 128.4, 127.7, 123.6, 122.2, 117.5, 89.5, 82.0, 56.7, 48.9, 23.8; HRMS (APCI) m/z: calcd for C19H18ClNO [M + H]+312.1149, found 312.1146.

      4-Chloro-2-(1-(pyrrolidin-1-yl)-3-(p-tolyl)prop-2-yn-1-yl)phenol (3h): White solid (88%, 1.43 g); mp = 75~76 °C,1H NMR (500 MHz, CDCl3) δ 7.50 (s, 1H), 7.43 (d, J = 8.0 Hz, 1H), 7.18~7.15 (m, 3H), 6.78 (d, J = 8.5 Hz, 1H), 5.24 (s, 1H), 2.88 (s, 2H), 2.79~2.78 (m, 2H), 2.38 (s, 3H), 1.87 (s, 4H);13C NMR (125 MHz, CDCl3) δ 156.2, 139.0, 131.8, 129.2, 129.1, 127.8, 123.7, 123.6, 119.1, 117.6, 89.7, 81.1, 56.6, 48.9, 23.8, 21.5; HRMS (APCI) m/z: calcd for C20H20ClNO [M + H]+326.1306, found 326.1303.

      4-Chloro-2-(3-(4-chlorophenyl)-1-(pyrrolidin-1-yl)prop-2-yn-1-yl)phenol (3i): Yellow solid (80%, 1.38 g); mp = 94~95 °C,1H NMR (500 MHz, CDCl3) δ 7.46 (d, J = 8.5 Hz, 3H), 7.34 (d, J = 8.5 Hz, 2H), 7.17 (d, J = 8.5 Hz, 1H), 6.78 (d, J = 8.5 Hz, 1H), 5.21 (s, 1H), 2.85 (s, 2H), 2.78~2.76 (m, 2H), 1.88 (s, 4H);13C NMR (125 MHz, CDCl3) δ 156.2, 134.9, 133.7, 133.2, 128.9, 128.8, 127.6, 123.6, 123.4, 120.6, 117.7, 88.4, 83.1, 56.7, 49.0, 23.8; HRMS (APCI) m/z: calcd for C19H17Cl2NO [M + H]+346.0760, found 346.0757.

      2-Bromo-6-(1-(pyrrolidin-1-yl)-3-(p-tolyl)prop-2-yn-1-yl)phenol (3j): Yellow solid (82%, 1.51 g); mp = 86~87 °C,1H NMR (500 MHz, CDCl3) δ 7.49~7.45 (m, 2H), 7.42 (d, J = 8.0 Hz, 2H), 7.17 (d, J = 7.5 Hz, 2H), 6.72 (t, J = 7.5 Hz, 1H), 5.28 (s, 1H), 2.92~2.90 (m, 2H), 2.81~-2.80 (m, 2H), 2.37 (s, 3H), 1.88 (s, 4H);13C NMR (125 MHz, CDCl3) δ 154.6, 139.0, 132.7, 131.8, 129.2, 127.1, 123.3, 119.6, 119.1, 110.3, 89.7, 81.2, 57.1, 48.8, 23.8, 21.6; HRMS (APCI) m/z: calcd for C20H20BrNO [M + H]+370.0801, found 370.0799.

      2-Bromo-4-chloro-6-(3-(4-methoxyphenyl)-1-(pyrrolidin-1-yl)prop-2-yn-1-yl)phenol (3k): Yellow solid (75%, 1.58 g); mp = 86~87 °C,1H NMR (500 MHz, CDCl3) δ 7.47~7.45 (m, 4H), 6.89 (d, J = 8.5 Hz, 2H), 5.24 (s, 1H), 3.83 (s, 3H), 2.91~2.90 (m, 2H), 2.80~2.78 (m, 2H), 1.90~1.88 (m, 4H);13C NMR (125 MHz, CDCl3) δ 160.1, 153.5, 133.4, 131.9, 127.1, 124.2, 123.5, 114.1, 113.8, 110.6, 90.0, 79.6, 56.9, 55.3, 48.8, 23.8; HRMS (APCI) m/z: calcd for C20H19BrClNO2[M + H]+422.0339, found 422.0333.

      2,4-Di-tert-butyl-6-(1-(pyrrolidin-1-yl)-3-(p-tolyl)prop-2-yn-1-yl)phenol (3l): Yellow solid (70%, 1.41 g); mp = 74~75 °C,1H NMR (500 MHz, CDCl3) δ 7.51 (s, 1H), 7.43 (d, J = 6.5 Hz, 2H), 7.27 (s, 1H), 7.18 (d, J = 8.0 Hz, 2H), 5.26 (s, 1H), 2.88 (s, 2H), 2.80 (s, 2H), 2.38 (s, 3H), 1.87 (s, 4H), 1.45 (s, 9H), 1.33 (s, 9H);13C NMR (125 MHz, CDCl3) δ 154.0, 140.0, 138.5, 135.4, 131.7, 129.1, 123.3, 122.7, 121.4, 119.8, 89.0, 82.9, 57.4, 48.7, 34.9, 34.3, 31.6, 29.6, 24.0, 22.6, 21.5; HRMS (APCI) m/z: calcd for C28H37NO [M + H]+404.2947, found 404.2944.

      4-Bromo-2-(3-(3-chlorophenyl)-1-(pyrrolidin-1-yl)prop-2-yn-1-yl)phenol (3m): Yellow solid (75%, 1.47 g); mp = 74~75 °C,1H NMR (500 MHz, CDCl3) δ 7.57 (s, 1H), 7.51 (s, 1H), 7.42 (d, J = 7.5 Hz, 1H), 7.36 (d, J = 8.0 Hz, 1H), 7.32~7.28 (m, 2H), 6.74 (d, J = 8.5 Hz, 1H), 5.22 (s, 1H), 2.85 (s, 2H), 2.79~2.75 (m, 2H), 1.90~1.87 (m, 4H);13C NMR (125 MHz, CDCl3) δ 156.7, 134.3, 132.2, 131.8, 130.4, 130.1, 129.7, 129.1, 123.8, 118.2, 110.8, 88.1, 83.3, 56.6, 49.0, 23.8; HRMS (APCI) m/z: calcd for C19H17BrClNO [M + H]+ 392.0233, found 392.0234.

      4-Nitro-2-(3-phenyl-1-(pyrrolidin-1-yl)prop-2-yn-1-yl)phenol (3n): Red solid (68%, 1.09 g); mp = 72~73 °C,1H NMR (500 MHz, CDCl3) δ 8.56 (s, 1H), 8.13 (d, J = 9.0 Hz, 1H), 7.38 (d, J = 9.0 Hz, 1H), 7.32~7.29 (m, 2H), 7.26~7.21 (m, 3H), 4.25 (s, 2H), 3.44 (s, 4H), 2.02 (s, 4H);13C NMR (125 MHz, CDCl3) δ 156.3, 147.2, 143.0, 138.1, 128.6, 128.3, 126.6, 126.1, 119.4, 119.2, 117.1, 111.6, 111.5, 52.1, 33.2, 25.3; HRMS (APCI) m/z: calcd for C19H18N2O3[M + H]+323.1390, found 323.1386.

      2-(1-(Pyrrolidin-1-yl)non-2-yn-1-yl)phenol (3o): Yellow oil (72%, 1.03 g);1H NMR (500 MHz, CDCl3) δ 7.47 (d, J = 7.5 Hz, 1H), 7.19 (t, J = 7.5 Hz, 1H), 6.84~6.81 (m, 2H), 5.03 (s, 1H), 2.81~2.77 (m, 2H), 2.73~2.68 (m, 2H), 2.34 (t, J = 7.5 Hz, 2H), 1.85~1.82 (m, 4H), 1.62~1.56 (m, 2H), 1.49~1.43 (m, 2H), 1.36~1.32 (m, 4H), 0.91 (t, J = 7.5 Hz, 3H);13C NMR (125 MHz, CDCl3) δ 157.6, 129.1, 127.8, 122.7, 118.7, 116.0, 89.6, 73.3, 56.6, 48.6, 31.3, 28.8, 28.5, 23.8, 22.6, 18.7, 14.0; HRMS (APCI) m/z: calcd for C19H27NO [M + H]+286.2165, found 286.2163.

      4-Bromo-2-(3-(cyclohex-1-en-1-yl)-1-(pyrrolidin-1-yl)prop-2-yn-1-yl)phenol (3p): Yellow solid (87%, 1.56 g); mp = 76~77 °C,1H NMR (500 MHz, CDCl3) δ 7.56 (s, 1H), 7.30 (d, J = 7.5 Hz, 1H), 6.72 (d, J = 8.5 Hz, 1H), 6.24 (s, 1H), 5.14 (s, 1H), 2.82 (s, 2H), 2.73 (s, 2H), 2.23 (s, 2H), 2.16 (s, 2H), 1.87 (s, 4H), 1.71 (s, 2H), 1.65 (s, 2H);13C NMR (125 MHz, CDCl3) δ 156.8, 135.9, 131.9, 130.6, 124.4, 119.9, 118.0, 110.7, 91.5, 78.9, 56.5, 48.7, 29.4, 25.6, 23.8, 22.2, 21.4; HRMS (APCI) m/z: calcd for C19H22BrNO [M + H]+360.0957, found 360.0953.

      4-Bromo-2-(1-(pyrrolidin-1-yl)-3-(thiophen-3-yl)prop-2-yn-1-yl)phenol (3q): White solid (87%, 1.57 g); mp = 101~102 °C,1H NMR (500 MHz, CDCl3) δ 7.60 (s, 1H), 7.55 (s, 1H), 7.31 (s, 2H), 7.19 (s, 1H), 6.74 (d, J = 8.0 Hz, 1H), 5.21 (s, 1H), 2.86 (s, 2H), 2.78 (s, 2H), 1.87 (s, 4H), 1.71 (s, 2H);13C NMR (125 MHz, CDCl3) δ 156.8, 132.1, 130.6, 130.0, 129.6, 125.6, 124.1, 121.1, 118.1, 110.8, 84.6, 81.6, 56.7, 48.9, 23.8; HRMS (APCI) m/z: calcd for C17H16BrNOS [M + H]+364.0188, found 361.0189.

      2-(3-Phenyl-1-(piperidin-1-yl)prop-2-yn-1-yl)phenol (3r): White solid (80%, 1.16 g); mp = 83~84 °C,

      1H NMR (500 MHz, CDCl3) δ 7.56~7.54 (m, 3H), 7.38~7.35 (m, 3H), 7.22 (d, J = 8.0 Hz, 1H), 6.87~6.84 (m, 3H), 5.11 (s, 1H), 2.76~2.72 (m, 4H), 1.89 (br, 6H);13C NMR (125 MHz, CDCl3) δ 157.6, 131.9, 129.4, 128.6, 128.5, 128.4, 122.6, 121.3, 119.0, 116.4, 89.8, 82.3, 61.0, 25.9, 23.9; HRMS (APCI) m/z: calcd for C20H21NO [M + H]+292.1695, found 292.1693.

      2-(1-Morpholino-3-phenylprop-2-yn-1-yl)phenol (3s): Yellow solid (68%, 0.99 g); mp = 98~99 °C,1H NMR (500 MHz, CDCl3) δ 7.57~7.54 (m, 3H), 7.38~7.35 (m, 3H), 7.27~7.23 (m, 2H), 6.91~6.87 (m, 2H), 5.12 (s, 1H), 3.81 (s, 4H), 2.81 (s, 4H);13C NMR (125 MHz, CDCl3) δ 156.9, 131.9, 129.8, 128.8, 128.1, 122.1, 120.5, 119.5, 118.7, 90.5, 81.4, 66.7, 60.6; HRMS (APCI) m/z: calcd for C19H19NO2[M + H]+294.1488, found 294.1485.

      2-(1-(3,4-Dihydroisoquinolin-2(1H)-yl)-3-phenylprop-2-yn-1-yl)phenol (3t): White solid (84%, 1.42 g); mp = 112~113 °C,1H NMR (500 MHz, CDCl3) δ 10.3 (s, 1H), 7.45~7.43 (m, 2H), 7.32~7.28 (m, 4H), 7.23~7.19 (m, 3H), 7.16~7.11 (m, 2H), 6.86~6.83 (m, 2H), 4.95 (s, 1H), 4.18 (dd, J = 14.0 Hz, J = 14.0 Hz, 2H), 3.19~3.14 (s, 1H), 3.12~3.06 (s, 1H), 2.96~2.92 (s, 1H), 2.88~2.84 (s, 1H);13C NMR (125 MHz, CDCl3) δ 157.9, 134.3, 133.1, 131.8, 129.2, 129.0, 128.4, 128.3, 127.8, 127.4, 126.2, 122.6, 121.1, 119.3, 116.2, 87.6, 85.6, 58.4, 54.2, 45.2, 28.6; HRMS (APCI) m/z: calcd for C24H21NO [M + H]+340.1695, found 340.1692.

      1-(1,3-Diphenylprop-2-yn-1-yl)pyrrolidine (3u): Yellow oil (80%, 1.04 g);1H NMR (500 MHz, CDCl3) δ 7.63 (d, J = 7.5 Hz, 2H), 7.51~7.50 (m, 2H), 7.37 (t, J = 7.5 Hz, 2H), 7.33~7.30 (m, 4H), 4.90 (s, 1H), 2.71~2.69 (m, 4H), 1.84~1.79 (m, 4H)13C NMR (125 MHz, CDCl3) δ 139.6, 131.8, 128.5, 128.2, 128.1, 128.0, 127.5, 123.2, 86.9, 86.7, 59.1, 50.3, 23.5; HRMS (APCI) m/z: calcd for C19H19N [M + H]+ 262.1596, found 262.1598.

      2 結(jié)果與討論

      選擇不同取代基的水楊醛、二級(jí)胺和末端炔為原料,以20 mol%的CuI為催化劑,甲苯作溶劑,80 oC的溫度下反應(yīng)8 h,合成得到了系列結(jié)構(gòu)不同的丙炔胺衍生物,考察了底物取代基的電子效應(yīng)和空間位阻效應(yīng)對(duì)該反應(yīng)的影響,具體結(jié)果見(jiàn)表1。

      結(jié)果表明,各種取代基的水楊醛、苯乙炔等均能很好的適用于該反應(yīng),并以良好以上收率得到相應(yīng)的丙炔胺類化合物。對(duì)苯乙炔而言,無(wú)論苯環(huán)上連有吸電子基(如—Cl),還是連有供電子基(如—CH3),對(duì)該反應(yīng)的影響不大(表1, entries 1~3)。當(dāng)使用活性較弱的烷基末端炔時(shí),產(chǎn)率出現(xiàn)稍微下降(表1, entry 15);令人滿意的是,當(dāng)使用1-環(huán)己烯基乙炔和3-噻吩乙炔進(jìn)行反應(yīng)時(shí),均能以優(yōu)異的產(chǎn)率獲得相應(yīng)的產(chǎn)物3p和3q (表1, entries 16, 17)。對(duì)水楊醛而言,當(dāng)苯環(huán)羥基對(duì)位連有較弱的吸電子基(如—Cl,—Br),或連有供電子基(如—CH3)時(shí),對(duì)該反應(yīng)沒(méi)有明顯影響,仍能以75%~89%的收率得到目標(biāo)產(chǎn)物(表1, entries 4~13);而當(dāng)羥基對(duì)位連有較強(qiáng)的吸電子基(如—NO2)時(shí),由于取代基的電子效應(yīng),水楊醛活性降低,使得產(chǎn)物3n的產(chǎn)率出現(xiàn)明顯降低(表1, entry 14)。值得一提的是,當(dāng)水楊醛羥基鄰位和對(duì)位連有較大的取代基時(shí)(如—Br, —tBu),該反應(yīng)亦能較好的進(jìn)行,并以70%和75%的產(chǎn)率得到產(chǎn)物3k和3l (表1, entries 11, 12)。進(jìn)一步地,使用水楊醛作為底物時(shí),在反應(yīng)也能較好的進(jìn)行,并以80%的產(chǎn)率得到相應(yīng)的產(chǎn)物3u (表1, entry 21)。

      隨后考察了二級(jí)胺對(duì)該反應(yīng)的影響,結(jié)果發(fā)現(xiàn)使用不同的二級(jí)胺時(shí),產(chǎn)物的產(chǎn)率有所不同。使用活性相當(dāng)?shù)倪哙せ蚧钚暂^小的四氫異喹啉時(shí),反應(yīng)產(chǎn)率沒(méi)有明顯改變,仍能以良好以上收率得到目標(biāo)產(chǎn)物3r和3t (表1, entries 18, 20)。當(dāng)使用活性較弱的嗎啉作為胺類化合物時(shí),產(chǎn)物3s的產(chǎn)率明顯降低(表1, entry 19)。

      3 結(jié)論

      本文發(fā)展了一種CuI催化三組分A3-偶聯(lián)反應(yīng)合成苯丙炔胺類化合物的方法,該方法以水楊醛、四氫吡咯和末端炔為底物合成得到一種具有多個(gè)反應(yīng)位點(diǎn)的鄰羥基苯基丙炔胺類化合物。該方法底物普適性廣,取代基容忍性好,具有原料來(lái)源廣泛,實(shí)驗(yàn)條件溫和,反應(yīng)選擇性高、產(chǎn)率優(yōu)異等優(yōu)點(diǎn),可以實(shí)現(xiàn)鄰羥基苯基丙炔胺類化合物的克級(jí)規(guī)模合成,具有一定的實(shí)際應(yīng)用價(jià)值和良好的應(yīng)用前景。

      參考文獻(xiàn):

      [1] LAUDER K, TOSCANI A, SCALACCI N, et al. Synthesis and reactivity of propargylamines in organic chemistry[J]. Chemical Reviews,2017, 117(24): 14091?14200.

      [2] LANGSTON J W, IRWIN I, LANGSTON E B, et al. Pargyline prevents MPTP-induced parkinsonism in primates[J]. Science, 1984, 225: 1480?1482.

      [3] CHEN J J,SWOPE D M.Clinical pharmacology of rasagiline: A novel, second-generation propargylamine for the treatment of Parkinson disease [J]. Journal of Clinical Pharmacology, 2005, 45(8):878?894.

      [4] BIRKS J, FLICKER L. Selegiline for Alzheimers disease [J]. Cochrane Database of Systematic Reviews,2003,1:CD00044210.

      [5] YAMAMOTO Y, HAYASHI H, SAIGOKU T, et al.Domino coupling relay approach to polycyclic pyrrole-2-carboxylates[J]. Journal of the American Chemical Society,2005, 127(31):10804-10805.

      [6] FENG H D, ERMOLAT'EV D S, SONG G H, et al. Synthesis of Oxazolidin-2-ones via a copper(I)-catalyzed tandem decarboxylative/carboxylative cyclization of a propiolic acid, a primary amine and an aldehyde[J]. Advanced Synthesis & Catalysis, 2012, 354(2-3):505-509.

      [7] ERMOLAT'EV D S, BARIWAL J B, STEENACKERS H P L, et al. Concise and diversityoriented route toward polysubstituted 2-aminoimidazole alkaloids and their analogues[J]. Angewandte Chemie International Edition, 2010, 49(49):9465?9468.

      [8] ZINDO F T, JOUBERT J, MALAN S F. Propargylamine as functional moiety in the design of multifunctional drugs for neurodegenerative disorders: MAO inhibition and beyond[J]. Future Medicinal Chemistry, 2015, 7(5):609?629.

      [9] MAO F, LI J, WEI H, et al. Tacrine?propargylamine derivatives with improved acetylcholinesterase inhibitory activity and lower hepatotoxicity as a potential lead compound for the treatment of Alzheimers disease[J]. Journal of Enzyme Inhibition and Medicinal Chemistry, 2015, 30(6):995?1001.

      [10] KOPKA I E, FATAFTAH Z A, RATHKE M W. Preparation of a series of highly hindered secondary amines, including bis-(triethylcarbinyl)amine[J]. The Journal of Organic Chemistry, 1980, 45(23):4616?4622.

      [11] HENNION G F, HANZEL R S. The alkylation of amines with tacetylenic chlorides. Preparation of sterically hindered amines[J]. Journal of the American Chemical Society, 1960, 82(18):4908?4912.

      [12] LI C J. The development of catalytic nucleophilic additions of terminal alkynes in water[J]. Accounts of Chemical Research, 2010, 43(4):581?590.

      [13] BLAY G, MONLEON A, PEDRO J. Recent Developments in asymmetric alkynylation of imines[J]. Current Organic Chemistry, 2009, 13(15):1498–1539.

      [14] GHOSH S, BISWAS K. Metal-free multicomponent approach for the synthesis of propargylamine: A review[J]. RSC Advances, 2021, 11(4):2047-2065

      [15] MANUJYOTHI R, ANEEJA T, ANILKUMAR G. Solvent-free synthesis of propargylamines: An overview[J]. RSC Advances, 2021, 11(32):19433–19449.

      [16] PESHKOV V A, PERESHIVKO O P, VAN DER EYCKEN E V. A walk around the A3-coupling[J]. Chemical Society Reviews, 2012, 41(10):3790-3807

      [17] UHLI G N, LI C J. Site-Specific Modification of amino acids and peptides by aldehyde–alkyne–amine coupling under ambient aqueous conditions [J]. Organic Letters, 2012, 14(12): 3000-3003.

      [18] LI J, XU Y, HU X, et al. Easy access to 2,4-disubstituted cyclopentenones by a gold(III)-catalyzed A3-coupling/cyclization cascade[J]. Organic Letters, 2020, 22(24):9478-9483.

      [19] CHEN X, CHE N T, ZHOU Y, et al. Efficient synthesis of propargylamines from terminal alkynes, dichloromethane and tertiary amines over silver catalysts[J]. Organic & Biomolecular Chemistry, 2014, 12(2):247-250.

      [20] ZHANG Y, LI P, WANG M, et al. Indium-catalyzed highly efficient three-component coupling of aldehyde, alkyne, and amine via C?H bond activation[J]. The Journal of Organic Chemistry, 2009, 74(11):4364-4367.

      [21] ROKADE B V, BARKER J, GUIRY P J. Development of and recent advances in asymmetric A3coupling[J]. Chemical Society Reviews, 2019, 48(18):4766-4790.

      [22] XU X, FENG H, VAN DER EYCKEN E V. Microwave-assisted Cu(I)-catalyzed synthesis of unsymmetrical 1,4-diamino-2-butynes via cross-A3-coupling/decarboxylative A3-coupling[J]. The Journal of Organic Chemistry, 2021, 86(20):14036-14043.

      [23] FENG H, ERMOLATEV D S, SONG G, et al. Regioselective Cu(I)-catalyzed tandem A3-coupling/decarboxylative coupling to 3-amino-1,4-enynes[J]. Organic Letters, 2012, 14(7):1942-1945.

      [24] YAN S, PAN S, OSAKO T, et al. Solvent-free A3and KA2 coupling reactions with mol ppm level loadings of a polymer-supported copper(II)?bipyridine complex for green synthesis of propargylamines[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(10):9097?9102.

      [25] KATKAR S V, JAYARAM R V. Cu?Ni bimetallic reusable catalyst for the synthesis of propargylamines via multicomponent coupling reaction under solvent-free conditions[J]. RSC Advances, 2014, 4(89):47958?47964.

      [26] LI P, REGATI S, HUANG H C, et al. A sulfonate-based Cu(I) metal?organic framework as a highly efficient and reusable catalyst for the synthesis of propargylamines under solvent-free conditions[J]. Chinese Chemical Letters, 2015, 26(1):6?10.

      [27] KAUR P, KUMAR B, KUMAR V, et al. Chitosan-supported copper as an efficient and recyclable heterogeneous catalyst for A3/decarboxylative A3-coupling reaction[J]. Tetrahedron Letters, 2018, 59(21):1986?1991.

      [28] PERUMGANI P C, KEESARA S, PARVATHANENI S, et al. Polystyrene supported N-phenylpiperazine?Cu(II) complex: An efficient and reusable catalyst for KA2-coupling reactions under solvent-free conditions[J]. New Journal of Chemistry, 2016, 40(6):5113?5120.

      CuI-catalyzed A3-Coupling Reactions for the Synthesis of o-Hydroxyphenyl Propargylamines

      FAN Chen-li XIE Ji-na HUI Wen-jie CHEN Hao-yu HE Xin-wei

      (1. Department of Material Engineering, Wuhu Institute of Technology, Wuhu 241003, China; 2. College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China)

      Abstract: Propargylamine compounds have been widely used in organic synthesis because of their multiple reaction sites, and thus have attracted extensive attention. In this paper, a CuI-catalyzed A3-coupling reactions of salicyladehydes, pyrrolidine and terminal alkynes for the synthesis of propargylamines has been developed. Salicyladehydes and aromatic alkynes bearing with electron-withdrawing or electron-donating groups were well tolerated. In particular, disubtituted salicyladehydes were investigated to showcase the prospective utility of this protocol. Moreover, all products were characterized by1H,13C NMR and HRMS. The results showed that the method has the advantages of wide scope of substrates, good tolerance of substituents, and without separation of intermediates by using multi-component one-pot reaction, achieving step economy and application in organic synthesis.

      Key words: A3-coupling reactions; propargylamines; salicylaldehydes; terminal alkynes

      (責(zé)任編輯:王海燕)

      猜你喜歡
      丙炔水楊醛胺類
      活性炭對(duì)水體中典型醛肟類選冶藥劑的吸附研究
      分子篩用于丙炔/丙烯的高效分離
      丙炔氟草胺合成新工藝
      物化法處理醇胺類污染地下水的實(shí)驗(yàn)分析
      1,3-丙二胺縮水楊醛稀土配合物的合成及近紅外性能研究
      芳胺類化合物的原位氧化溴化工藝研究
      25%丙炔噁草酮水懸浮劑的高效液相色譜分析
      安徽化工(2016年4期)2016-11-29 03:40:06
      丙炔氟草胺等195個(gè)農(nóng)藥產(chǎn)品擬獲批
      全球胺類產(chǎn)品市場(chǎng)2020年將達(dá)到140.7億美元
      胺類化合物合成與應(yīng)用研究進(jìn)展
      化德县| 平塘县| 化州市| 信阳市| 开封市| 集安市| 全州县| 新沂市| 同德县| 方山县| 深水埗区| 句容市| 江永县| 册亨县| 海晏县| 十堰市| 新田县| 大厂| 德化县| 涟源市| 资兴市| 连山| 临桂县| 晋江市| 巨鹿县| 广丰县| 五台县| 汉中市| 兴安盟| 诸暨市| 睢宁县| 廉江市| 莒南县| 柳江县| 台北县| 钟祥市| 内江市| 凤阳县| 蒙山县| 沈丘县| 丹阳市|