李由 王世雄 張昊川 鄧鎮(zhèn)凱 黃河
【摘要】 肺癌是當今全球惡性腫瘤中發(fā)病率和死亡率較高的一種,盡管已經研究了各種各樣的方法干預肺癌的進展,但醫(yī)治效果仍欠佳,加上多數患者確診時已失去最佳手術時機,或因預防策略不足,肺癌患者收效是微弱的。維生素D(VitD)作為一種脂溶性維生素,其熟為人知的作用是調節(jié)鈣磷代謝,用來治療骨質疏松等代謝性骨病。近年來,隨著醫(yī)療發(fā)展和研究的深入,發(fā)現(xiàn)VitD參與多種生物途徑,并與癌癥的發(fā)病機制息息相關。體內和體外實驗已經公開了VitD發(fā)揮免疫調節(jié)和抗腫瘤的功能。本文從VitD參與肺癌的作用機制、VitD系統(tǒng)中基因的多態(tài)性與肺癌的關系及未來靶向治療等方面展開綜述。
【關鍵詞】 維生素D 肺癌 免疫細胞 基因多態(tài)性
Research Progress of Gene Polymorphism in Vitamin D Metabolic Pathway and Lung Cancer/LI You, WANG Shixiong, ZHANG Haochuan, DENG Zhenkai, HUANG He. //Medical Innovation of China, 2023, 20(12): -188
[Abstract] Lung cancer is one of the malignant tumors with high morbidity and mortality in the world today. Although various methods have been studied to interfere with the progress of lung cancer, the curative effect is still unsatisfactory. In addition, most patients have lost the best opportunity for surgery when they are diagnosed, or because of insufficient preventive strategies, the effect of lung cancer patients is weak. Vitamin D (VitD), as a lipid-soluble vitamin, is well known for its role in regulating calcium and phosphate metabolism, and is used to treat metabolic bone diseases such as osteoporosis. In recent years, with the development of medical treatment and the deepening of research, it has been found that VitD participates in many biological pathways and is closely related to the pathogenesis of cancer. In vivo and in vitro experiments have revealed that VitD plays an immunomodulatory and antitumor role. This article reviews the mechanism of VitD's participation in lung cancer, the relationship between gene polymorphism in VitD system and lung cancer, and the future targeted therapy.
[Key words] VitD Lung cancer Immunocyte Gene polymorphism
First-author's address: Shenzhen Second People's Hospital, Guangdong Province, Shenzhen 518035, China
doi:10.3969/j.issn.1674-4985.2023.12.043
肺癌是發(fā)生率較高的惡性腫瘤之一,死亡率也非常高。最新統(tǒng)計顯示2020年全球范圍內約有220萬人被新診斷患有肺癌[1],發(fā)現(xiàn)的時候大部分已經發(fā)展至中晚期階段,已喪失最佳手術時機,且新診斷出的肺癌患者中約85%為非小細胞肺癌,其惡性程度非常高,5年生存率較低[2]。雖然治療肺癌可采用順鉑、阿霉素等多種化療藥物,但由于藥物選擇性不高、吸收不佳、毒副作用大,患者難以耐受,療效較差,且極易產生耐藥性[3-4]。因此,開發(fā)對自身免疫細胞毒性小、對腫瘤細胞選擇性高、耐藥能力低的新型藥物成為當務之急。最近的資料顯示,維生素D(VitD)及VitD受體(VDR)水平異常與癌癥的發(fā)病機制有關,越來越多的證據也支持VitD/VDR軸在抑制腫瘤方面的重要性[5]。流行病學研究表明,VitD或VDR的缺乏可以增加多種癌癥的風險[6]。有研究表明血液中25羥基維生素D[25(OH)D]
的含量增加10 nmol/L,癌癥患者的總死亡率可降低4%左右,提示VitD能提高癌癥患者的預后[7]。在另一項劑量反應研究中顯示,25(OH)D濃度每增加10 nmol/L,肺癌風險可降低5%,這項研究表明25(OH)D濃度可能與肺癌風險降低有關[8]。最近國外多項薈萃分析表明,高水平的循環(huán)VitD可以降低肺癌的發(fā)病率及死亡率,且血清VitD的水平和肺癌的風險呈現(xiàn)出明顯的負相關性,以上研究表明,VitD對肺癌起到保護作用[9-10]。此外,據報道VitD/VDR途徑參與抑制腫瘤細胞的增殖、分化、凋亡及遷移能力,不僅能調節(jié)腫瘤細胞的能量代謝,還能調節(jié)其微環(huán)境的免疫細胞成分等[11]。因此,此綜述中,我們從VitD與癌癥可能的作用機制出發(fā),回顧VitD及其基因多態(tài)性與肺癌的關系,從而得出肺癌診斷、預防及治療方面的最新發(fā)現(xiàn)。
1 VitD的概述與流行病學
VitD是一種類固醇激素,它主要以1,25(OH)2D3
的活性形式存在人的機體內,主要通過紫外線照射皮膚產生,少量來源于食物。經過陽光照射皮膚產生的最初的VitD是無活性的,通過肝臟和腎臟的活化,分別代謝為25(OH)D3及1,25(OH)2D3,后者為活性形式,可增加小腸中鈣的吸收及腎臟中鈣和磷酸鹽的吸收,它還有助于平衡骨骼中的鈣鹽沉積。最近的證據顯示,VitD除了有調節(jié)鈣磷代謝的作用之外,在其他途徑如控制能量代謝、調節(jié)自身免疫等過程中發(fā)揮重要作用[12]。由于免疫細胞和癌細胞具有共同的途徑,同時活性VitD是VDR高親和力配體,因此可通過具有轉錄功能的VDR誘導健康和腫瘤細胞的基因表達管控其增殖、分化和凋亡,故而,VitD信號傳導也會在腫瘤細胞的增殖、分化和凋亡等過程中發(fā)揮至關重要的作用。這些開創(chuàng)性的認識促使人們對VitD和癌癥之間的關系進行更深入的研究。流行病學資料顯示,VitD不足與多種腫瘤的高風險和不良預后存在顯著相關[11]。Garland等[13]最早提出低水平血清25(OH)D可能與大腸癌的發(fā)生率有關,隨后大量的薈萃分析亦證實了這一假說[14-15]。越來越多的研究顯示低水平血清VitD與多種腫瘤的發(fā)生有關,包括乳腺癌、肝癌、白血病及肺癌等[16-19]。國外多項薈萃分析中也表明,VitD水平越高,癌癥的發(fā)生風險越低[20-21]。這些新的研究證據有效地支持了VitD對癌癥具有保護作用的假說。
2 VitD參與肺癌的相關作用機制
2.1 VitD代謝過程 維生素D3 80%~90%由紫外線照射皮膚合成,10%~20%由飲食攝入,在肝臟、腎臟中分別代謝為25(OH)D3及活性1,25(OH)2D3
(圖1),其中代謝中的25-羥化酶、25(OH)D-1α-羥化酶和25(OH)D3-24-羥化酶均由細胞色素P450(CYP450)酶系統(tǒng)來編碼[22]。1,25(OH)2D3通過與VDR及RXR(維甲酸X受體)聯(lián)合后形成異二聚體,配體活化后的異二聚體復合物與TAGAP基因VDREs(VitD反應元件)結合從而誘導基因表達(圖2),通過調節(jié)細胞免疫,調控細胞周期,誘導細胞凋亡等來發(fā)揮其重要生物學活性[23]。
2.2 VitD的在肺組織中的代謝(圖3) 參與VitD代謝的酶主要有25-羥化酶、25(OH)D-1α-羥化酶和25(OH)D3-24-羥化酶,都由CYP450編碼,其中25-羥化酶主要由CYP2R1、CYP27A1及CYP3A4進行基因編碼,25(OH)D-1α-羥化酶主要由CYP27B1編碼[24],25(OH)D3-24-羥化酶則由CYP24A1編碼,它們分別參與維生素D3的激活與降解,對維持維生素D3水平的平衡尤其重要[25]?,F(xiàn)有的資料顯示無活性VitD所需要的酶由CYP24A1和CYP3A4參與編碼[26]。CYP450酶系統(tǒng)廣泛分布于各種組織器官中,主要在肝臟中,也可存在肺部正常支氣管上皮細胞,目前大量的研究證據表明VitD系統(tǒng)中基因的多態(tài)性與肺癌之間有非常緊密的聯(lián)系。
2.3 VitD系統(tǒng)在肺癌中的作用機制 目前國內外學者對于VitD系統(tǒng)中的VDR、CYP24A1、CYP27B1、CYP27A1、CYP2R1及CYP3A4等在肺組織中的異常表達及其基因的多態(tài)性與肺癌的關系取得了一定的研究進展。
2.3.1 VitD/VDR途徑與肺癌的關系 VDR為親核蛋白,可分為膜受體及核受體,膜受體調節(jié)鈣磷代謝,而核受體則調節(jié)蛋白質的合成,VDR分為DNA結合區(qū)(DBD)及配體結合區(qū)(LBD)2個重要功能區(qū),在VitD代謝途徑中,DBD是VDR發(fā)揮轉錄功能的主要成分,而LBD則促進異二聚體復合物的形成,進一步調控基因的轉錄和表達,從而抑制肺癌的增殖、侵襲及轉移,并誘導細胞分化[27]。
2.3.2 VDR在肺癌中的異常表達 Kim等[28]在肺腺癌的研究中發(fā)現(xiàn)核VDR表達較高的患者有生存率升高的趨勢。Pineda等[29]在肺癌的研究中也發(fā)現(xiàn)高核VDR表達與總生存期(OS)改善有關,而細胞質VDR表達與OS沒有關聯(lián)。Khazan等[30]研究發(fā)現(xiàn)VDR mRNA在肺癌中過度表達與預后不良相關。以上研究為檢測肺癌組織中VDR的表達水平對預測肺癌患者存活率提供了理論依據。
2.3.3 VDR基因多態(tài)性與肺癌的易感性和預后 VDR基因多態(tài)性取決于它的多個酶切位點,并可能與肺癌的發(fā)生及預后相關,Cdx-2、Fok Ⅰ、Tag Ⅰ、Bsm Ⅰ、
Apa Ⅰ等是目前的研究熱點。Zhou等[31]研究發(fā)現(xiàn)VDR Cdx-2型與肺鱗癌預后較好相關。Heist等[32]研究表明VDR Fok Ⅰ型與進展期肺癌預后不良相關。Pineda等[29]觀察了194例來自西班牙南部的非小細胞肺癌(NSCLC)患者,結果顯示,VDR rs11568820(Cdx-2)、VDR rs731236(Taq Ⅰ)和VDR rs7975232(Apa Ⅰ)多態(tài)性與NSCLC的生存率相關。Gnagnarella等[33]的綜合薈萃分析顯示,與野生型的Bsm Ⅰ多形蛋白相比,發(fā)現(xiàn)純合子和雜合子變體發(fā)生肺癌的風險顯著降低;對Bsm Ⅰ
(rs1544410)、Taq Ⅰ (rs731236)、VDR Fok Ⅰ (rs2228570)、Apa Ⅰ (rs7975232)、Cdx2 (rs11568820)和肺癌風險相關性進行最全面的綜合,結果顯示Fok Ⅰ、Bsm Ⅰ、Cdx2、Apa Ⅰ和Taq Ⅰ與肺癌易感性相關。總之,VDR基因多態(tài)性與肺癌易感性及存活率有關,其研究結果的差異可能與遺傳變異、種族差異、肺癌分期、樣本量大小及研究方案的設計等因素相關,因關聯(lián)性仍不十分明確,值得進一步深入研究。
2.3.4 CYP450酶系統(tǒng)在肺癌組織中的異常表達 CYP24A1、CYP27B1、CYP27A1、CYP2R1及CYP3A4均屬于CYP450酶家族成員,是VitD代謝途徑的5個重要的酶,其中與肺癌關聯(lián)性研究最多的是CYP24A1、CYP27B1及CYP27A1。CYP24A1被認為是致癌基因,它可能通過消除1,25(OH)2D3的局部抗癌作用而促進腫瘤的侵襲性。研究表明,與正常組織相比,CYP24A1在肺癌組織中過度表達[34-35]。Shiratsuchi等[36]確定了CYP24A1的致癌潛力,其過表達與癌細胞的增殖潛力相關,且CYP24A1擴增的肺腺癌和Kras突變的肺腺癌中存在遺傳互斥性。以上研究表明CYP24A1可能是治療肺癌的一個新靶點,將會為CYP24A1抑制劑用于肺癌治療提供依據。CYP27B1是唯一能激活VitD的酶,可以提高活性VitD的水平[37]。Kong等[38]研究發(fā)現(xiàn),CYP27B1在NSCLC組織和正常組織中的表達有顯著差異,且CYP27B1高表達與NSCLC較好的總生存率相關。Ge等[39]應用逆轉錄-定量聚合酶鏈反應分析NSCLC組織中CYP24A1 mRNA、CYP27B1和CYP27A1的表達,結果顯示,NSCLC中CYP24A1 mRNA和CYP27B1表達均上調,CYP24A1表達與病理類型、分化程度和預后有關,CYP27B1表達與TNM分期、分化和預后顯著相關,故CYP24A1和CYP27B1被視為NSCLC的獨立預后因素,并可能成為輔助臨床診斷、預后評估及治療的新靶點。
2.3.5 CYP24A1、CYP27B1及CYP2R1基因多態(tài)性與肺癌的易感性和存活率 由于單核苷酸多態(tài)性(SNPs)在人類基因組中的遺傳變異形式最為豐富,因此鑒定肺癌易感性相關的SNPs將有助于進行肺癌早期診斷及風險預測,對降低肺癌的死亡率有重要意義[40]。Wu等[41]研究發(fā)現(xiàn)CYP24A rs6068816純合子的NSCLC風險可能降低54%,攜帶CT和TT基因型顯示對NSCLC有更強的保護作用,并且發(fā)現(xiàn)CYP24A rs6068816與NSCLC風險之間關聯(lián)的可能原因是CYP24A1可以逃避生長控制。Qu等[42]研究也得出了相似的結論。然而Pineda等[29]研究卻顯示,CYP24A1 rs6068816多態(tài)性的TT基因型比攜帶C等位基因的NSCLC患者疾病進展和死亡風險更高。Wu等[40]還發(fā)現(xiàn)CYP24A1 rs2181874突變純合顯著增加NSCLC風險。Xiong等[43]單位點分析表明,CYP24A1 rs6022999與肺癌風險顯著相關,單體型GTAT及ATGC與肺癌風險降低相關,因此,rs6022999可能是中國人肺癌易感性遺傳生物標記。由于大多數全基因組關聯(lián)分析(GWAS)報道的風險相關變異體發(fā)現(xiàn)于非編碼區(qū),而非翻譯區(qū)報道很少,Zhuo等[44]首次較為集中研究CYP24A1(rs4809957)3UTR(基因mRNAs的3個非翻譯區(qū))的SNPs與肺癌風險的關聯(lián),雖未發(fā)現(xiàn)與肺癌易感性有關聯(lián),卻發(fā)現(xiàn)與肺癌的TNM分期和淋巴結轉移相關,但需要繼續(xù)擴大樣本量和優(yōu)化分組來進一步研究這種變異與肺癌的風險關聯(lián),以便找到更多可能的基因多態(tài)性調控位點來評估肺癌發(fā)生風險。Pineda等[29]發(fā)現(xiàn)CYP27B1(rs4646536)多態(tài)性與NSCLC生存率相關,并且可能作為NSCLC預后的重要標志物。最近一項研究表明,CYP2R1基因中SNP rs10741657與NSCLC患者死亡風險相關,且發(fā)現(xiàn)GG和AG基因型NSCLC患者OS優(yōu)于AA基因型患者[44]。但目前文獻尚缺乏對CYP27B1及CYP2R1基因多態(tài)性完整信息的總結。綜上所述,CYP24A1、CYP27B1及CYP2R1基因多態(tài)性可作為NSCLC獨立預后因子,并可能成為協(xié)助臨床診斷、治療和預后的新靶點,然而,它們參與NSCLC發(fā)病的確切機制尚不十分明確,仍需要額外大量研究樣本來驗證以上結論。
3 VitD抑制劑靶向治療探索
CYP24A1是治療肺癌的一個潛在靶點,研發(fā)特異性CYP24A1抑制劑是治療肺癌的重要的方向。目前發(fā)現(xiàn)CYP24A1抑制劑四氫萘酮化合物KD-35聯(lián)合1,25-D3會顯著抑制結直腸癌(CRC)細胞系CaCO-2細胞的增殖[45-46]。另一種CYP24A1抑制劑阿司咪唑通過抑制CYP24A1表達和增強VDR表達以增強骨化三醇抑制不同癌細胞的增殖[47]。研究發(fā)現(xiàn),阿司咪唑與化療藥物產生協(xié)同作用,并誘導NSCLC對化療的敏感性和多藥耐藥性的逆轉[48]。Chávez-López[47]等發(fā)現(xiàn)阿司咪唑和吉非替尼聯(lián)合治療肺癌可降低人肺癌細胞系A549細胞中的Eag Ⅰ mRNA水平和蛋白表達,并且誘導這些細胞中通道蛋白的亞細胞定位變化,能夠更好地抑制肺癌細胞增殖,提高細胞系的存活,這項研究表明,阿司咪唑-吉非替尼聯(lián)合用藥可能是治療肺癌患者較為有前途的新療法。有研究發(fā)現(xiàn)金雀異黃素類似物可以有效抑制肺癌細胞的生長,且較少發(fā)生高鈣血癥[49]。大豆異黃酮及衍生物也是一種CYP24A1抑制劑,在體外實驗中發(fā)現(xiàn)它可抑制肺癌A549及H1299細胞的增殖,但其用藥濃度及潛在的副作用尚不十分明確[50]。VitD類似物也屬于CYP24A1抑制劑的范疇,在抗癌領域中被廣泛地研究,在多種腫瘤中已經被證實具有抗增殖、抑制轉移、免疫調節(jié)等作用,其中MART-10[19-去甲-2α-(3-羥丙基)-1α,25(OH)2D3]被認為是癌癥治療非常有前途的候選物,但需要進一步的體內試驗研究來驗證[51-53]。然而,VitD類似物與肺癌關系的研究并不十分明確,僅有少部分研究在小鼠Levis肺癌(LLC)模型及在體外研究A549人肺癌模型中進行[54-55]。Biyani等[56]最新研究中以CYP24為陽性靶蛋白,以CYP27B1為反靶蛋白,鑒定了一種新的基于70-nt DNA適體的CYP24抑制劑即Apt-7,它與CYP24的親和力比CYP27B1高5.8倍,它能選擇性抑制CYP24,此外,Apt-7通過內吞作用在CYP24過表達的A549肺腺癌細胞中顯示細胞內化,并在癌細胞中誘導抗增殖活性,這種新型適體Apt-7提供了一種識別和抑制CYP24的新探針,有助于肺癌的診斷和治療。
CYP24抑制被認為是癌癥潛在的治療方法,但由于它的非特異性、耐藥性和潛在的不良反應限制了其臨床的運用。迄今為止,CYP24A1抑制劑和VitD類似物在肺癌治療中的臨床研究仍比較有限,CYP24A1的特異性抑制劑能否安全有效地應用于肺癌的臨床治療中,以及如何更好地與VitD協(xié)同治療肺癌,尚需進一步深入的研究??傊?,VitD系統(tǒng)基因多態(tài)性的研究將指導肺癌的診斷及個性化治療,有助于肺癌預后評估及藥物的研發(fā),對進一步攻克肺癌至關重要。
參考文獻
[1] SUNG H,F(xiàn)ERLAY J,SIEGEL R L,et al.Global cancer statistics 2020:GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J].CA Cancer J Clin,2021,71(3):209-249.
[2] SONGYANG Y,SONG T,SHI Z,et al.Effect of vitamin D on malignant behavior of non-small cell lung cancer cells[J].Gene,2021,768:145309.
[3] HUANG Y,LEI L,LIU Y.Propofol improves sensitivity of lung cancer cells to cisplatin and its mechanism[J/OL].Med Sci Monit,2020,26:e919786.https://pubmed.ncbi.nlm.nih.gov/32225124/.
[4] HASSAN W A,YOSHIDA R,KUDOH S,et al.Notch1 controls cell chemoresistance in small cell lung carcinoma cells[J].Thorac Cancer,2016,7(1):123-128.
[5] GRAZIANO S,JOHNSTON R,DENG O,et al.Vitamin D/vitamin D receptor axis regulates DNA repair during oncogene-induced senescence[J].Oncogene,2016,35(41):5362-5376.
[6] EL-SHARKAWY A,MALKI A.Vitamin D signaling in inflammation and cancer: molecular mechanisms and therapeutic implications[J].Molecules,2020,25(14):3219.
[7] LI M,CHEN P,LI J,et al.Review: the impacts of circulating 25-hydroxyvitamin D levels on cancer patient outcomes: a systematic review and meta-analysis[J].J Clin Endocrinol Metab,2014,99(7):2327-2336.
[8] CHEN G C,ZHANG Z L,WAN Z,et al.Circulating 25-hydroxyvitamin D and risk of lung cancer: a dose-response meta-analysis[J].Cancer Causes Control,2015,26(12):1719-1728.
[9] WEI H,JING H,WEI Q,et al.Associations of the risk of lung cancer with serum 25-hydroxyvitamin D level and dietary vitamin D intake: a dose-response PRISMA Meta-anlysis[J/OL].Medicine (Baltimore),2018,97(37):e12282.https://pubmed.ncbi.nlm.nih.gov/30212966/.
[10] SUN K,ZUO M,ZHANG Q,et al.Anti-tumor effect of vitamin d combined with calcium on lung cancer: a systematic review and Meta-analysis[J].Nutr Cancer,2021,73(11-12):2633-2642.
[11] CARLBERG C,VELLEUER E.Vitamin D and the risk for cancer: a molecular analysis[J].Biochem Pharmacol,2022,196:114735.
[12] CARLBERG C,MU?OZ A.An update on vitamin D signaling and cancer[J].Semin Cancer Biol,2022,79:217-230.
[13] GARLAND C F,GARLAND F C.Do sunlight and vitamin D reduce the likelihood of colon cancer?[J].Int J Epidemiol,1980,9(3):227-231.
[14] WU G,XUE M,ZHAO Y,et al.Low circulating 25-hydroxyvitamin D level is associated with increased colorectal cancer mortality: a systematic review and dose-response meta-analysis[J].Biosci Rep,2020,40(7):BSR20201008.
[15] XU Y,QIAN M,HONG J,et al.The effect of vitamin D on the occurrence and development of colorectal cancer: a systematic review and meta-analysis[J].Int J Colorectal Dis,2021,36(7):1329-1344.
[16] VOUTSADAKIS I A.Vitamin D baseline levels at diagnosis of breast cancer: a systematic review and Meta-analysis[J].Hematol Oncol Stem Cell Ther,2021,14(1):16-26.
[17] YI Z,WANG L,TU X.Effect of vitamin D deficiency on liver cancer risk: a systematic review and Meta-analysis[J].Asian Pac J Cancer Prev,2021,22(4):991-997.
[18] MADDHESHIYA S,SINGH S K,KUMAR I,et al.Bone mineral metabolism during chemotherapy in childhood acute lymphoblastic leukemia[J].J Pediatr Hematol Oncol,2021,43(5):172-175.
[19] FENG Q,ZHANG H,DONG Z,et al.Circulating 25-hydroxyvitamin D and lung cancer risk and survival: a dose-response meta-analysis of prospective cohort studies[J/OL].Medicine (Baltimore),2017,96(45):e8613.https://pubmed.ncbi.nlm.nih.gov/29137092/.
[20] XU J,YUAN X,TAO J,et al.Association of circulating 25-hydroxyvitamin D levels with colorectal cancer: an updated Meta-analysis[J].J Nutr Sci Vitaminol (Tokyo),2018,64(6):432-444.
[21] QIAN M,LIN J,F(xiàn)U R,et al.The role of vitamin D intake on the prognosis and incidence of lung cancer: a systematic review and Meta-analysis[J].J Nutr Sci Vitaminol (Tokyo),2021,67(5):273-282.
[22]李榕,韓寶惠.維生素D與肺癌[J].腫瘤,2010,30(5):443-446.
[23] SHRI P M,PREMKUMAR K,ASHA D S.Molecular docking study on vitamin D supplements to understand their interaction with VDR-RXRα heterodimer and VDRE of TAGAP gene[J].
J Biomol Struct Dyn,2022,24:1-10.
[24] CHENG J B,LEVINE M A,BELL N H,et al.Genetic evidence that the human CYP2R1 enzyme is a key vitamin D 25-hydroxylase[J].Proc Natl Acad Sci USA,2004,101(20):7711-7715.
[25] SHINKYO R,SAKAKI T,KAMAKURA M,et al.Metabolism of vitamin D by human microsomal CYP2R1[J].Biochem Biophys Res Commun,2004,324(1):451-457.
[26] FERN?NDEZ-ARAQUE A,GIAQUINTA-ARANDA A,MORENO-SAINZ C,et al.Haplotypes in the GC, CYP2R1 and CYP24A1 genes and biomarkers of bone mineral metabolism in older adults[J].Nutrients,2022,14(2):259.
[27] PIKE J W,MEYER M B,BISHOP K A.Regulation of target gene expression by the vitamin D receptor - an update on mechanisms[J].Rev Endocr Metab Disord,2012,13(1):45-55.
[28] KIM S H,CHEN G,KING A N,et al.Characterization of vitamin D receptor (VDR) in lung adenocarcinoma[J].Lung Cancer,2012,77(2):265-271.
[29] PINEDA LANCHEROS L E,P?REZ RAM?REZ C,S?NCHEZ MART?N A,et al.Impact of genetic polymorphisms on the metabolic pathway of vitamin D and survival in non-small cell lung cancer[J].Nutrients,2021,13(11):3783.
[30] KHAZAN N,KIM K K,HANSEN J N,et al.Identification of a vitamin-D receptor antagonist, MeTC7, which Inhibits the Growth of Xenograft and transgenic tumors in vivo[J].J Med Chem,2022,65(8):6039-6055.
[31] ZHOU W,HEIST R S,LIU G,et al.Polymorphisms of vitamin D receptor and survival in early-stage non-small cell lung cancer patients[J].Cancer Epidemiol Biomarkers Prev,2006,15(11):2239-2245.
[32] HEIST R S,ZHOU W,WANG Z,et al.Circulating 25-hydroxyvitamin D, VDR polymorphisms, and survival in advanced non-small-cell lung cancer[J].J Clin Oncol,2008,26(34):5596-5602.
[33] GNAGNARELLA P,RAIMONDI S,ARISTARCO V,et al.
Ethnicity as modifier of risk for vitamin D receptors polymorphisms: comprehensive meta-analysis of all cancer sites[J].Crit Rev Oncol Hematol,2021,158:103202.
[34] KING A N,BEER D G,CHRISTENSEN P J,et al.The vitamin D/CYP24A1 story in cancer[J].Anticancer Agents Med Chem,2010,10(3):213-224.
[35] RAMNATH N,NADAL E,JEON C K,et al.Epigenetic regulation of vitamin D metabolism in human lung adenocarcinoma[J].J Thorac Oncol,2014,9(4):473-482.
[36] SHIRATSUCHI H,WANG Z,CHEN G,et al.Oncogenic potential of CYP24A1 in lung adenocarcinoma[J].J Thorac Oncol,2017,12(2):269-280.
[37] LATACZ M,SNARSKA J,KOSTYRA E,et al.Single nucleotide polymorphisms in 25-hydroxyvitamin D3 1-alpha-hydroxylase (CYP27B1) gene: the risk of malignant tumors and other chronic diseases[J].Nutrients,2020,12(3):801.
[38] KONG J,XU F,QU J,et al.Genetic polymorphisms in the vitamin D pathway in relation to lung cancer risk and survival[J].Oncotarget,2015,6(4):2573-2582.
[39] GE N,CHU X M,XUAN Y P,et al.Associations between abnormal vitamin D metabolism pathway function and non-small cell lung cancer[J].Oncol Lett,2017,14(6):7538-7544.
[40]屈若祎.CYP24A1基因單核苷酸多態(tài)性對女性肺癌發(fā)生及預后的作用及相關機制研究[D].沈陽:中國醫(yī)科大學,2019.
[41] WU X,CHENG J,YANG K.Vitamin D-related gene polymorphisms, plasma 25-hydroxy-vitamin D, cigarette smoke and non-small cell lung cancer (NSCLC) risk[J].Int J Mol Sci,2016,17(10):1597.
[42] QU R,LI X,QUAN X,et al.Polymorphism in CYP24A1 is associated with lung cancer risk: a case-control study in Chinese female nonsmokers[J].DNA Cell Biol,2019,38(3):243-249.
[43] XIONG Q,JIAO Y,YANG P,et al.The association study between CYP24A1 gene polymorphisms and risk of liver, lung and gastric cancer in a Chinese population[J].Pathol Res Pract,2020,216(12):153237.
[44] ZHUO M,ZHUANG X,TANG W,et al.The Impact of IL-16 3'UTR Polymorphism rs859 on lung carcinoma susceptibility among Chinese han individuals[J].Biomed Res Int,2018,2018:8305745.
[45] KONG J,CHEN X,WANG J,et al.Genetic polymorphisms in the vitamin D pathway and non-small cell lung cancer survival[J].Pathol Oncol Res,2020,26(3):1709-1715.
[46] K?SA J P,HORV?TH P,W?LFLING J,et al.CYP24A1 inhibition facilitates the anti-tumor effect of vitamin D3 on colorectal cancer cells[J].World J Gastroenterol,2013,19(17):2621-2628.
[47] CH?VEZ-L?PEZ M G,Z??IGA-GARC?A V,HERN?NDEZ-GALLEGOS E,et al.The combination astemizole-gefitinib as a potential therapy for human lung cancer[J].Onco Targets Ther,2017,6(10):5795-5803.
[48] ELLEGAARD A M,DEHLENDORFF C,VIND A C,et al.
Repurposing cationic amphiphilic antihistamines for cancer treatment[J].EBioMedicine,2016,9:130-139.
[49]龐田田,李游山,白瑜,等.基于CYP24A1的癌癥治療研究進展[J].陜西理工學院學報(自然科學版),2016,32(3):65-70,77.
[50]江文斌.大豆異黃酮及衍生物對肺癌細胞增殖和凋亡的影響[D].南昌:南昌大學,2017.
[51] PAWLIK A,ANISIEWICZ A,F(xiàn)ILIP-PSURSKA B,et al.
Divergent effect of tacalcitol (PRI-2191) on Th17 Cells in 4T1 tumor bearing young and old ovariectomized mice[J].Aging Dis,2020,11(2):241-253.
[52] YANG S W,TSAI C Y,PAN Y C,et al.MART-10, a newly synthesized vitamin D analog, represses metastatic potential of head and neck squamous carcinoma cells[J].Drug Des Devel Ther,2016,10:1995-2002.
[53] CHIANG K C,YEH T S,HUANG C C,et al.MART-10 represses cholangiocarcinoma cell growth and high vitamin D receptor expression indicates better prognosis for cholangiocarcinoma[J].Sci Rep,2017,7:43773.
[54] WIETRZYK J,CHODY?SKI M,F(xiàn)ITAK H,et al.Antitumor properties of diastereomeric and geometric analogs of vitamin D3[J].Anticancer Drugs,2007, 18(4):447-457.
[55] MAJ E,F(xiàn)ILIP-PSURSKA B,?WITALSKA M,et al.Vitamin D analogs potentiate the antitumor effect of imatinib mesylate in a human A549 lung tumor model[J].Int J Mol Sci,2015,16(11):27191-27207.
[56] BIYANI M,YASUDA K,ISOGAI Y,et al.Novel DNA aptamer for CYP24A1 inhibitionwith enhanced antiproliferative activity in cancer cells[J].ACS Appl Mater Interfaces,2022,14(16):18064-18078.
(收稿日期:2022-11-03) (本文編輯:陳韻)