• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看

      ?

      扶梯上側(cè)板橫撐液力成形仿真研究

      2023-11-21 03:23:52張?jiān)?/span>
      精密成形工程 2023年11期
      關(guān)鍵詞:側(cè)板液力管件

      張?jiān)?/p>

      扶梯上側(cè)板橫撐液力成形仿真研究

      張?jiān)?/p>

      (西繼迅達(dá)電梯有限公司,河南 許昌 461000)

      縮短上側(cè)板橫撐脹形件的開(kāi)發(fā)周期,降低開(kāi)發(fā)成本。采用理論研究與仿真分析相結(jié)合的方法對(duì)脹形管件的壁厚分布及加載路徑進(jìn)行研究。首先,借助ABAQUS有限元軟件,對(duì)簡(jiǎn)單管件兩次液壓成形過(guò)程進(jìn)行仿真模擬,通過(guò)對(duì)比仿真結(jié)果與實(shí)驗(yàn)結(jié)果,驗(yàn)證仿真建模的正確性。其次,基于有限元軟件對(duì)橫撐管件液力成形、退火等過(guò)程進(jìn)行仿真分析。最后,通過(guò)分析、總結(jié)獲取合理的加載路徑。通過(guò)理論計(jì)算得到了預(yù)脹形所需的內(nèi)壓力值,為橫撐管件預(yù)脹形仿真分析提供了參考。在預(yù)脹形階段,當(dāng)內(nèi)壓力<65 MPa時(shí),由于內(nèi)壓力不足,管件無(wú)法成功脹形,當(dāng)內(nèi)壓力>65 MPa時(shí),管件中間脹形區(qū)域存在應(yīng)力集中現(xiàn)象,不利于后續(xù)管件脹形,所以預(yù)脹形階段的合理加載路徑為常壓65 MPa。在終脹形階段,常壓加載路徑下的脹形結(jié)果不理想,而在多線性加載路徑4下退火件及未退火件都能獲得理想的脹形結(jié)果,因此,多線性加載路徑4為終脹形的合理加載路徑。相較于常壓加載,終脹形階段采用多線性高壓加載,管件成形效果更好;終脹形前進(jìn)行退火處理,可以降低脹形管件的殘余應(yīng)力,壁厚分布也更加均勻。

      上側(cè)板橫撐;液力成形;數(shù)值模擬;加載路徑;退火

      上部驅(qū)動(dòng)是自動(dòng)扶梯內(nèi)部結(jié)構(gòu)的關(guān)鍵部件,上部驅(qū)動(dòng)主要包括上側(cè)板組件、導(dǎo)軌、扶手驅(qū)動(dòng)軸組件、橫撐及各支撐構(gòu)件,其中橫撐主要起連接上側(cè)板、支撐蓋板的作用。如圖1所示,現(xiàn)有扶梯上側(cè)板橫撐主要采用焊接工藝生產(chǎn),將橫撐管件、限位擋塊、連接塊焊接為一個(gè)整體,現(xiàn)有工藝易產(chǎn)生焊接缺陷,如氣孔、夾渣、凹坑、未熔合等,引起應(yīng)力集中,導(dǎo)致強(qiáng)度降低。液壓成形是一種新型柔性制造技術(shù),利用液壓成形工藝制造的扶梯上側(cè)板橫撐,無(wú)焊縫,質(zhì)量輕,節(jié)約材料,靜扭強(qiáng)度剛度高,且壁厚均勻,因此,具有巨大的應(yīng)用潛力和廣闊的市場(chǎng)前景[1-5]。

      1-Lateral brace tube; 2,4-Limit stop; 3-Connecting block

      合理的加載路徑是影響管件液壓成形質(zhì)量的關(guān)鍵因素,若成形參數(shù)匹配不合理將出現(xiàn)起皺、屈曲、脹裂失效等缺陷[6-10],為此,國(guó)內(nèi)外學(xué)者對(duì)管件液壓成形工藝進(jìn)行了大量研究,對(duì)管件液壓成形工藝研究的方法主要以實(shí)驗(yàn)與有限元仿真分析為主。周佳愷等[11]針對(duì)管件液壓脹形提出了一種快速、準(zhǔn)確的仿真方法,通過(guò)對(duì)比仿真結(jié)果及實(shí)驗(yàn)結(jié)果,驗(yàn)證了該方法的正確性。Huang等[12]利用流固耦合方法對(duì)扭力梁液壓成形過(guò)程進(jìn)行了仿真分析,探討了流體特性、成形壓力、軸向進(jìn)給速度等參數(shù)對(duì)成形效果的影響,解決了成形管件壁厚分布不均勻的問(wèn)題。李明等[13]探討了不同加載方式對(duì)管件彎曲預(yù)成形和液壓成形效果的影響,研究表明,在脈動(dòng)加載下成形管件壁厚分布更均勻。Colpani等[14]進(jìn)行了316L不銹鋼T型管液壓成形研究,并探討了內(nèi)壓力和軸向進(jìn)給位移等參數(shù)對(duì)管件液力成形結(jié)果的影響。高文文[15]基于有限元模擬和實(shí)驗(yàn)方法研究了不同長(zhǎng)徑比參數(shù)下汽車(chē)橋殼液壓脹形管件壁厚和應(yīng)力-應(yīng)變分布情況。徐勇等[16]采用仿真及實(shí)驗(yàn)方法分析了脹形壓力、整形壓力等參數(shù)對(duì)波紋管成形效果的影響,獲得了最佳成形參數(shù)。

      雖然國(guó)內(nèi)外學(xué)者廣泛開(kāi)展了管件液力成形數(shù)值模擬及實(shí)驗(yàn)研究,并取得了不少研究成果,但是,針對(duì)上側(cè)板橫撐液壓成形工藝,有關(guān)不同加載路徑及熱處理工藝對(duì)橫撐管件液力成形結(jié)果影響的研究較少,并且由于上側(cè)板橫撐液力成形的規(guī)律及數(shù)據(jù)積累有限,因此給設(shè)計(jì)制造帶來(lái)一定困難。

      由于扶梯上側(cè)板橫撐管件兩端直徑為40 mm,而脹形區(qū)域的最大外徑為80 mm,管件若直接進(jìn)行液壓成形會(huì)因脹形率過(guò)大而破裂。為此,選取直徑為50 mm的直管進(jìn)行液壓成形,利用縮徑工藝保證管件兩端直徑為40 mm[17-19]。采用兩次脹形工藝來(lái)成形上側(cè)板橫撐,最終脹形管件尺寸如圖2所示。

      圖2 橫撐最終脹形尺寸

      為了縮短上側(cè)板橫撐液壓脹形件的開(kāi)發(fā)周期,降低開(kāi)發(fā)成本,本文借助ABAQUS有限元軟件,首先對(duì)簡(jiǎn)單管件兩次液壓成形過(guò)程進(jìn)行有限元仿真分析,通過(guò)將仿真結(jié)果與實(shí)驗(yàn)結(jié)果進(jìn)行對(duì)比,驗(yàn)證仿真建模的正確性。其次,基于有限元軟件對(duì)橫撐管件液力成形、退火等過(guò)程進(jìn)行仿真分析。最后,通過(guò)分析、總結(jié),獲取合理的加載路徑。以期為自動(dòng)扶梯高質(zhì)量零部件的研制與生產(chǎn)奠定基礎(chǔ),同時(shí)也為合理設(shè)計(jì)上側(cè)板橫撐脹形工藝及產(chǎn)品性能分析提供依據(jù)和參考。

      1 理論脹形壓力

      管件液力成形原理如圖3所示。首先將管件置于模具中,其次向管材內(nèi)部注入液體高壓介質(zhì),同時(shí)在軸向施加壓力補(bǔ)償管料,最后將管坯壓入模具型腔成形。圖3中的d為模具過(guò)渡圓角半徑,為脹形區(qū)域的寬度,為管坯總長(zhǎng),1為單側(cè)非脹形區(qū)長(zhǎng)度,為軸向進(jìn)給位移。

      圖3 管件液力成形原理

      為了在上側(cè)板橫撐預(yù)脹形分析中能夠提供可靠的數(shù)據(jù),本文采用文獻(xiàn)[20]推導(dǎo)出的脹形壓力計(jì)算公式,對(duì)管件脹形所需內(nèi)壓力進(jìn)行研究。為了研究管件所需的脹形壓力,在管件中部脹形區(qū)選取一體單元,如圖4所示,則管件所需脹形壓力i的計(jì)算如式(1)所示。

      圖4 脹形管件應(yīng)力示意圖

      式中:ρ為管件內(nèi)圓環(huán)向曲率半徑;0為管件初始內(nèi)圓半徑;ρ為所選體單元處管件內(nèi)圓徑向曲率半徑;為軸向應(yīng)力與環(huán)向應(yīng)力之比;為軸向應(yīng)變與環(huán)向應(yīng)變之比;0為初始管件外徑;i為瞬時(shí)管件外徑;0為初始管件壁厚;i為管件瞬時(shí)壁厚;為應(yīng)力系數(shù);為材料的硬化指數(shù);、為橢圓(脹形區(qū)域的外輪廓近似為橢圓)的長(zhǎng)軸和短軸。

      2 簡(jiǎn)單管件脹形模擬

      為了驗(yàn)證數(shù)值計(jì)算的準(zhǔn)確性,基于文獻(xiàn)[21]的實(shí)驗(yàn)工況,利用ABAQUS軟件對(duì)簡(jiǎn)單管件液力成形過(guò)程進(jìn)行仿真分析,通過(guò)對(duì)比實(shí)驗(yàn)結(jié)果,驗(yàn)證仿真分析的正確性,為橫撐管件液力成形的數(shù)值計(jì)算提供有益參考。

      2.1 有限元模型建立

      實(shí)驗(yàn)管坯總長(zhǎng)為250 mm,外徑為65 mm,壁厚為1.5 mm。根據(jù)文獻(xiàn)[21],管件材料為L(zhǎng)F2M鋁合金,密度為2.77 g/cm3,泊松比為0.34,彈性模量為56 GPa,LF2M鋁合金的真實(shí)應(yīng)力-應(yīng)變參照劉靜等[22]測(cè)得的真實(shí)應(yīng)力與真實(shí)應(yīng)變實(shí)驗(yàn)數(shù)據(jù)。預(yù)脹形及終脹形有限元模型如圖5所示。由于模型都是軸對(duì)稱的,因此僅選用1/8模型來(lái)計(jì)算,共15 932個(gè)網(wǎng)格單元,設(shè)置模具為剛體,設(shè)定其摩擦因數(shù)為0.1,預(yù)脹形及終脹形階段的軸向進(jìn)給量分別為10 mm和5 mm,內(nèi)壓力峰值均為40 MPa。

      圖5 管件終脹形有限元模型

      2.2 仿真結(jié)果

      將仿真分析結(jié)果與文獻(xiàn)[21]中的實(shí)驗(yàn)結(jié)果進(jìn)行對(duì)比,如圖6所示。可以看出,仿真結(jié)果與實(shí)驗(yàn)結(jié)果非常吻合。

      脹形管件沿軸向壁厚的仿真數(shù)據(jù)與文獻(xiàn)[21]中實(shí)驗(yàn)數(shù)據(jù)的對(duì)比結(jié)果如表1所示??梢钥闯觯抡婺M結(jié)果與實(shí)驗(yàn)結(jié)果十分接近,誤差<8%。通過(guò)對(duì)比成形效果與軸向壁厚分布數(shù)據(jù),驗(yàn)證了管件液力成形數(shù)值模擬的正確性。

      3 上側(cè)板橫撐液力成形工藝仿真分析

      為了給上側(cè)板橫撐預(yù)脹形仿真分析提供可靠的數(shù)據(jù),有必要研究脹形時(shí)的理論加載路徑。管件材料為10號(hào)鋼,密度為7.83 g/cm3,彈性模量為210 GPa,泊松比為0.28,屈服強(qiáng)度為300 MPa,0=4 mm,0= 40 mm,=637,d=20 mm,=0.2,=80 mm,將以上數(shù)據(jù)代入式(1)~(5)可得到不同(0~0.9)下的內(nèi)壓力為37~75 MPa。

      圖6 脹形效果對(duì)比

      表1 沿軸向壁厚的數(shù)據(jù)對(duì)比

      3.1 上側(cè)板橫撐脹形工藝

      上側(cè)板橫撐預(yù)脹形及終脹形工藝的模具結(jié)構(gòu)如圖7所示。在預(yù)脹形時(shí),在脹形區(qū)域中間增加限位模,并且滑動(dòng)模及壓塊水平移動(dòng),以帶動(dòng)管件水平運(yùn)動(dòng)從而實(shí)現(xiàn)軸向補(bǔ)料。在終脹形時(shí),拆掉限位模,在管件兩端施加軸向進(jìn)給力,這樣管件會(huì)緊貼模具型腔成形[23]。

      3.2 上側(cè)板橫撐預(yù)脹形數(shù)值模擬

      由于脹形初始管件采用直徑為50 mm圓管縮徑后的模型是軸對(duì)稱模型,因此只需建立1/8模型。上側(cè)板橫撐預(yù)脹形有限元模型如圖8所示,分別采用平面四邊形單元和六面體單元對(duì)脹形模具和管件進(jìn)行網(wǎng)格劃分,共35 660個(gè)網(wǎng)格單元,10號(hào)鋼材料的真實(shí)應(yīng)力-應(yīng)變關(guān)系參照文獻(xiàn)[24]給出的實(shí)驗(yàn)數(shù)據(jù)。

      軸向進(jìn)給量對(duì)管件脹形效果有較大影響。當(dāng)軸向進(jìn)給量過(guò)小時(shí),會(huì)導(dǎo)致管坯軸向補(bǔ)料不足,壁厚減薄嚴(yán)重,壁厚分布不合理;當(dāng)軸向進(jìn)給量過(guò)大時(shí),會(huì)導(dǎo)致管件端部產(chǎn)生死皺,成形效果較差。為了控制管件壁厚,對(duì)預(yù)脹形設(shè)置2個(gè)分析步:水平滑動(dòng)模具先軸向進(jìn)給25 mm;管件及模具再同時(shí)軸向進(jìn)給5 mm。由理論計(jì)算可知,內(nèi)壓力為37~75 MPa,為了減少計(jì)算量,預(yù)脹形內(nèi)壓力選取常壓45、53、57、61、65、75 MPa,分別對(duì)應(yīng)的值為0.8、0.6、0.5、0.4、0.3、0。

      管件在常壓45、53、57、61、65、75 MPa下的成形結(jié)果如圖9所示??梢钥闯?,當(dāng)脹形壓力<65 MPa時(shí),由于內(nèi)壓力不足,管件未貼模,無(wú)法成功脹形,在常壓75 MPa時(shí),由于內(nèi)壓力較大,管件中間脹形區(qū)域存在應(yīng)力集中現(xiàn)象,不利于后續(xù)管件脹形,而在常壓65 MPa時(shí),管件脹形區(qū)域貼合模具,脹形效果較好,所以管件預(yù)脹形的合理加載路徑為常壓65 MPa方案。

      圖7 上側(cè)板橫撐液壓脹形工藝

      圖8 橫撐管件預(yù)脹形有限元模型

      65 MPa內(nèi)壓力下管件、截面的壁厚分布情況如圖10所示??梢钥闯?,從非脹形區(qū)到脹形區(qū),壁厚呈先增大后減小的趨勢(shì),管件壁厚最大達(dá)到5.1 mm左右,脹形部分的壁厚略小,最小壁厚為3.65 mm。

      3.3 上側(cè)板橫撐終脹形仿真分析

      基于預(yù)脹形常壓65 MPa的結(jié)果對(duì)管件終脹形過(guò)程進(jìn)行仿真分析,上側(cè)板橫撐終脹形有限元模型如圖11所示,共35 876個(gè)網(wǎng)格單元。終脹形材料屬性、接觸設(shè)置以及約束條件等均與預(yù)脹形分析設(shè)置一致。

      為了探討不同加載路徑及退火工藝對(duì)終脹形結(jié)果的影響,采用常壓和多線性加載方式對(duì)管件進(jìn)行終脹形模擬,不同內(nèi)壓力加載路徑如圖12所示。管件及模具在0.5 s時(shí)開(kāi)始軸向進(jìn)給,軸向進(jìn)給量均為4 mm,同時(shí),參考文獻(xiàn)[25]給出的方法對(duì)脹形管件進(jìn)行退火及未退火模擬。

      終脹形仿真結(jié)果如圖13所示。從圖13a和圖13b可以看出,常壓加載路徑下的管件由于內(nèi)壓力不足,管件脹形區(qū)域無(wú)法貼模,脹形結(jié)果不理想。從圖13c和圖13d可以看出,對(duì)于多線性加載路徑,在加載路徑4下退火件及未退火件都能夠緊密貼合模具,獲得理想的脹形結(jié)果。因此,多線性加載路徑4為終脹形的合理加載路徑。

      3.4 退火工藝對(duì)壁厚分布的影響

      為了降低管件在預(yù)脹形后產(chǎn)生的殘余應(yīng)力,在終脹形前采用去應(yīng)力退火工藝對(duì)脹形管件進(jìn)行退火處理。對(duì)于退火處理的管件,在終脹形模擬時(shí)只導(dǎo)入預(yù)脹形65 MPa下脹形結(jié)果的網(wǎng)格,來(lái)模擬退火處理后的管件脹形過(guò)程。

      圖9 預(yù)脹形模擬結(jié)果

      圖10 預(yù)脹形管件壁厚分布

      圖11 橫撐終脹形有限元模型

      圖12 終脹形加載路徑

      為了研究退火工藝對(duì)脹形管件壁厚分布的影響,表2對(duì)比了退火及未退火管件的壁厚分布數(shù)據(jù)??梢钥闯?,未退火件2個(gè)截面的最大減薄率及最大增厚率均大于退火件的,說(shuō)明退火件的壁厚分布更加合理。綜上所述,預(yù)脹形后對(duì)橫撐管件進(jìn)行退火處理,不僅脹形結(jié)果更加理想,壁厚分布更均勻,而且脹形管件更貼合模具。

      圖13 終脹形模擬結(jié)果

      表2 橫撐管件終脹形壁厚數(shù)據(jù)

      4 結(jié)論

      以扶梯上側(cè)板橫撐為研究對(duì)象,首先將簡(jiǎn)單管件兩次脹形模擬結(jié)果與文獻(xiàn)實(shí)驗(yàn)結(jié)果進(jìn)行對(duì)比,驗(yàn)證了仿真建模的正確性,其次,采用理論研究與仿真分析相結(jié)合的方法對(duì)扶梯上側(cè)板橫撐液力成形工藝過(guò)程進(jìn)行了仿真分析,最后對(duì)橫撐管件的壁厚分布以及加載路徑進(jìn)行了研究,通過(guò)數(shù)值計(jì)算得出以下結(jié)論:

      1)利用ABAQUS有限元軟件對(duì)簡(jiǎn)單管件脹形過(guò)程進(jìn)行仿真分析,對(duì)比了實(shí)驗(yàn)數(shù)據(jù)與有限元仿真數(shù)據(jù),誤差<8%,驗(yàn)證了模擬的正確性與數(shù)值計(jì)算的準(zhǔn)確性。

      2)由于預(yù)脹形時(shí)在脹形區(qū)域中間增加了限位模,因此采用常壓加載方案即可。與常壓加載相比,在終脹形階段采用多線性高壓加載,管件成形效果更好。

      3)終脹形前進(jìn)行退火處理可以降低殘余應(yīng)力,使脹形管件壁厚分布更合理、脹形效果更理想。

      [1] ABBASSI F, AHMAD F, GULZAR S, et al. Design of T-shaped Tube Hydroforming Using Finite Element and Artificial Neural Network Modeling[J]. Journal of Mechanical Science and Technology, 2020, 34(3): 1129- 1138.

      [2] JIANG L F, HE Y, LIN Y C, et al. Influence of Process Parameters on Thinning Ratio and Fittability of Bellows Hydroforming[J]. The International Journal of Advanced Manufacturing Technology, 2020, 107: 3371- 3387.

      [3] MARLAPALLE B G, HINGOLE R S. Predictions of Formability Parameters in Tube Hydroforming Process[J]. SN Applied Sciences, 2021, 3: 606.

      [4] HAN C, FENG H. A New Method for Hydroforming of Thin-walled Spherical Parts Using Overlapping Tubular Blanks[J]. International Journal of Advanced Manufacturing Technology, 2020, 106: 1543-1552.

      [5] WANG L, XU X F, FAN Y B, et al. Loading Path Design of Thin-walled Aluminum Alloy T-shaped Tube Hydroforming Process Based on the Control of Limit Pressure[J]. The International Journal of Advanced Manufacturing Technology, 2020, 108(11): 3119-3131.

      [6] YANG Lian-fa, HU Guo-lin, LIU Jian-wei. Investigation of Forming Limit Diagram for Tube Hydroforming Considering Effect of Changing Strain Path[J]. International Journal of Advanced Manufacturing Technology, 2015, 79: 793-803.

      [7] LI Jin-nan, YU Hong-jie, QIAN Cai-fu, et al. Hydro-forming Simulation and Analysis of Ω-Shape Expansion Joint[J]. IOP Conference Series: Materials Science and Engineering, 2019, 504(1): 012049

      [8] SAFARI M, SALIMI J. Experimental and Numerical Investigation of Hydroforming Process of Bi-Layered Metallic Bellows[J]. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 2022, 236(6): 2536-2544.

      [9] 劉蕾, 周金朝, 郭遠(yuǎn)東, 等. 某型號(hào)汽車(chē)波紋管液壓脹形工藝參數(shù)優(yōu)化研究[J]. 精密成形工程, 2022, 14(2): 14-21.

      LIU Lei, ZHOU Jin-zhao, GUO Yuan-dong, et al. Optimization of Hydraulic Bulging Process Parameters of a Certain Type of Automobile Bellows[J]. Journal of Netshape Forming Engineering, 2022, 14(2): 14-21.

      [10] GHORBANI H, KIM J H, HOSSEINZADEH M. Manufacturing of Bent Tubes with Non-uniform Curvature and Cross-section Using a Novel Hydroforming Die: Experimental, Finite Element Analysis, and Optimization[J]. The International Journal of Advanced Manufacturing Technology, 2020, 107: 1683-1695.

      [11] 周佳愷, 鮑益東. 基于一步成形法的薄壁圓管液壓脹形[J].鍛壓技術(shù), 2021, 46(12): 122-127.

      ZHOU Jia-kai, BAO Yi-dong. Hydroforming for Thin-walled Round Tube Based on One-step Forming Finite Element Method[J]. Forging & Stamping Technology,2021, 46(12): 122-127.

      [12] HUANG Y, LI J, YANG J C, et al. Simulation Analysis of Torsion Beam Hydroforming Based on the Fluid-Solid Coupling Method[J]. Chinese Journal of Mechanical Engineering, 2023, 36: 3.

      [13] 李明, 徐勇, 張士宏, 等. 彎曲預(yù)成形和液壓成形對(duì)汽車(chē)裝飾尾管壁厚分布的影響[J].鍛壓技術(shù), 2020, 45(3): 41-46.

      LI Ming, XU Yong, ZHANG Shi-hong, et al. Effect of Pre-bending and Hydroforming on Thickness Distribution for Automobile Decorate Tailpipe[J]. Forging & Stamping Technology,2020, 45(3): 41-46.

      [14] COLPANI A, FIORENTINO A, CERETTI E. Characterization and Optimization of the Hydroforming Process of AISI 316L Steel Hydraulic Tubes[J]. The International Journal of Advanced Manufacturing Technology, 2020, 107: 293-309.

      [15] 高文文. 長(zhǎng)徑比參數(shù)對(duì)薄壁細(xì)長(zhǎng)管液壓脹形成形影響的研究[D]. 秦皇島: 燕山大學(xué), 2020.

      GAO Wen-wen. Study on the Influence of the Ratio of Length to Outer Diameter Parameter on the Hydraulic Bulging Forming of Thin-walled Slender Tube[D]. Qin-huangdao: Yanshan University, 2020.

      [16] 徐勇, 尹闊, 靳鵬飛, 等. 窄波距薄壁波紋管液力成形工藝研究[J]. 塑性工程學(xué)報(bào), 2021, 28(8): 23-29.

      XU Yong, YIN Kuo, JIN Peng-fei, et al. Research on Hydro-mechanical Forming Process of Thin-walled Bellows with Narrow Wave Space[J]. Journal of Plasticity Engineering, 2021, 28(8): 23-29.

      [17] 袁杰, 李健, 竇鳳樓, 等. 管件縮徑工藝仿真分析[J]. 鍛壓技術(shù), 2015, 40(6): 50-55.

      YUAN Jie, LI Jian, DOU Feng-lou, et al. Simulation Analysis on Necking Process of Tube[J]. Forging & Stamping Technology, 2015, 40(6): 50-55.

      [18] 高鐵軍, 劉占軍, 王忠金. 筒坯端部條件對(duì)薄壁零件粘性介質(zhì)外壓縮徑的影響[J]. 鍛壓技術(shù), 2011, 36(1): 124-127.

      GAO Tie-jun, LIU Zhan-jun, WANG Zhong-jin. Influences of Conditions at Tube Blank End on Viscous Medium Outer Pressure Necking of Thin-wall Parts[J]. Forging & Stamping Technology, 2011, 36(1): 124-127.

      [19] 唐巧生, 王諶, 李鳴. 摩擦條件對(duì)無(wú)縫異徑管冷成形的影響研究[J]. 鍛壓技術(shù), 2011, 36(6): 145-148.

      TANG Qiao-sheng, WANG Chen, LI Ming. Effect of Friction Condition on Seamless Reducer Cold Forming Process[J]. Forging & Stamping Technology, 2011, 36 (6): 145-148.

      [20] YANG B, ZHANG W G, LI S H. Analysis and Finite Element Simulation of the Tube Bulge Hydroforming Process[J]. International Journal of Advanced Manufacturing Technology, 2006, 29: 453-458.

      [21] LANG L H, LI H L, YUAN S J. Investigation into the Pre-forming’s Effect During Multi-stages of Tube Hydroforming of Aluminum Alloy Tube by Using Useful Wrinkles[J]. Journal of Materials Processing Technology, 2009, 209: 2553-2563.

      [22] 劉靜, 楊合, 詹梅, 等. 鋁合金管力學(xué)性能的拉伸試驗(yàn)研究[J]. 鍛壓技術(shù), 2010, 35(2): 113-116.

      LIU Jing, YANG He, ZHAN Mei, et al. Material Property Investigation of Aluminium Alloy Tubes with Tensile Test[J]. Forging & Stamping Technology, 2010, 35(2): 113-116.

      [23] 張?jiān)? 微型車(chē)后橋縮徑-脹形工藝的理論與仿真分析研究[D]. 柳州: 廣西科技大學(xué), 2014.

      ZHANG Yu-ning. Theoretical and Simulation Analysis of Necking-bulging Process for a Mini-car Rear Axle[D]. Liuzhou: Guangxi University of Science and Technology, 2014.

      [24] 高鵬飛. 汽車(chē)后橋殼液壓脹形工藝的數(shù)值仿真[D]. 秦皇島: 燕山大學(xué), 2005.

      GAO Peng-fei. Numerical Simulation of Hydroforming Process for Automobile Rear Axle Housing[D]. Qinhuangdao: Yanshan University, 2005.

      [25] 張?jiān)? 李健, 李彬, 等. 微型車(chē)后橋液力成形工藝的理論與仿真研究[J]. 鍛壓技術(shù), 2014, 39(9): 143- 149.

      ZHANG Yu-ning, LI Jian, LI Bin, et al. Theoretical and Simulation of Hydraulic Bulging Process for a Mini-car Rear Axle[J]. Forging & Stamping Technology, 2014, 39(9): 143-149.

      Simulation Study on Hydraulic Bulging Process of Lateral Brace for Escalator Upper Side-panel

      ZHANG Yu-ning

      (XJ Schindler Elevator Co., Ltd., Henan Xuchang 461000, China)

      The work aims to shorten the development cycle of bulging part of lateral brace for upper side-panel and reduce the developmental cost. Theoretical research and simulation analysis were combined to study the wall thickness distribution and loading paths of bulging tube. Twice bulging processes of simple shape tube were simulated by ABAQUS finite element software firstly, simulation results were compared with the experimental results and the correctness of simulation modeling was verified, and then the hydraulic bulging and annealing processes of lateral brace tube were numerically simulated based on finite element software and finally the reasonable load paths were obtained through analysis and summary. The internal pressure required for pre-forming was obtained through theoretical calculation, which provided a reference for pre-forming simulation analysis of lateral brace tube. During the pre-forming stage, when the internal pressure was less than 65 MPa, the tube could not successfully expand due to insufficient internal pressure. When the internal pressure was more than 65 MPa, stress concentration existed in the middle bulging area of tube, which was not conducive to the subsequent bulging of tube. Therefore, the reasonable loading path in the pre-forming stage was normal pressure of 65 MPa. In the final bulging stage, the bulging results under the normal pressure loading path were not ideal, while the ideal bulging results could be obtained for both annealed and unannealed parts under multi-linear loading path 4. Therefore, the multi-linear loading path 4 was the reasonable loading path for final bulging. Compared with normal pressure loading, the forming effect of tube is better when multi-linear high pressure loading is used in the final bulging stage. Annealing treatment before final bulging reduces the residual stress of the bulging tube and makes the wall thickness distribution more uniform.

      lateral brace for upper side-panel; hydraulic bulging; numerical simulation; loading path; annealing

      10.3969/j.issn.1674-6457.2023.011.023

      TG394

      A

      1674-6457(2023)011-0199-08

      2023-06-11

      2023-06-11

      張?jiān)? 扶梯上側(cè)板橫撐液力成形仿真研究[J]. 精密成形工程, 2023, 15(11): 199-206.

      ZHANG Yu-ning. Simulation Study on Hydraulic Bulging Process of Lateral Brace for Escalator Upper Side-panel[J]. Journal of Netshape Forming Engineering, 2023, 15(11): 199-206.

      責(zé)任編輯:蔣紅晨

      猜你喜歡
      側(cè)板液力管件
      液力回收透平性能改善的研究
      一種輪胎模具
      液力扭轉(zhuǎn)沖擊器配合液力加壓器的鉆井提速技術(shù)研究與現(xiàn)場(chǎng)試驗(yàn)
      Mn-Ni-Mo鋼埋弧焊增材制造管件的性能和組織研究
      振動(dòng)篩側(cè)板裂紋的處理方法
      細(xì)長(zhǎng)薄壁管件車(chē)削變形誤差控制研究
      篦冷機(jī)側(cè)板的結(jié)構(gòu)改進(jìn)
      四川水泥(2016年7期)2016-07-18 12:06:26
      傳動(dòng)系液力緩速器系統(tǒng)介紹
      45°彎頭管件注塑模設(shè)計(jì)
      核電站核級(jí)管件的制造與使用
      文山县| 达州市| 四子王旗| 曲阜市| 华亭县| 临高县| 晴隆县| 新丰县| 兴仁县| 陵川县| 永德县| 卓资县| 崇信县| 东乌珠穆沁旗| 大渡口区| 曲周县| 凤城市| 皮山县| 齐齐哈尔市| 竹山县| 铜川市| 江油市| 金沙县| 隆化县| 门源| 治多县| 三门峡市| 烟台市| 于田县| 信丰县| 清涧县| 邵东县| 福鼎市| 大石桥市| 江陵县| 赫章县| 开平市| 阿尔山市| 峨边| 赣榆县| 通榆县|